Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to ‘Candidatus Liberibacter asiaticus’
Abstract
:1. Introduction
2. Results
2.1. Integration and Expression of the stx IA Gene
2.2. Huanglongbing (HLB) Evaluation of the CLas-Infected Plants
2.3. Evaluations of Fruit and Juice Quality
2.4. Western Blot and Indirect ELISA Assays for the Sarcotoxin IA Detection
3. Discussion
3.1. Reaction of the STX IA Transgenic Plants to CLas Infection
3.2. Quality of the Fruit Produced by the STX IA Transgenic Plants under CLas Infection
4. Materials and Methods
4.1. Plant Materials and Transformation Construct
4.2. Plant Cultivation
4.3. Confirmation of the Integration and Expression of the stx IA Gene
4.4. ‘Candidatus Liberibacter asiaticus’ (CLas) Inoculation
4.5. Huanglongbing (HLB) Evaluation of the CLas-Infected Plants
4.6. Evaluations of the Fruit and Juice Quality
4.6.1. Fruit Harvest
4.6.2. Physicochemical Analysis
4.6.3. Determination of Sugars and Organic Acids Contents
4.7. Western Blot and Indirect ELISA Assays for the Sarcotoxin IA Detection
4.8. Statistical Analysis and Data Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food Agricultural Organization, FAO. FAOSTAT: Production Crops. Available online: http://www.fao.org/faostat/en/#data (accessed on 30 May 2022).
- U.S. Department of Agriculture, USDA. FAS—Foreign Agricultural Service. Available online: https://www.fas.usda.gov (accessed on 11 March 2022).
- Carvalho, D.U.; Neves, C.S.V.J.; Cruz, M.A.; Colombo, R.C.; Yada, I.F.U.; Leite, R.P.L., Jr.; Tazima, Z.H. Performance of ‘Salustiana’ sweet orange on different rootstocks under Brazilian subtropical conditions. Sci. Hortic. 2021, 287, 110226. [Google Scholar] [CrossRef]
- Bové, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Bové, J.M. Huanglongbing and the future of citrus in São Paulo State, Brazil. J. Plant Pathol. 2012, 94, 465–467. [Google Scholar]
- Bergamin Filho, A.; Inoue-Nagata, A.K.; Bassanezi, R.B.; Belasque, J.; Amorim, L.; Macedo, M.A.; Barbosa, J.C.; Willocquet, L.; Savary, S. The importance of primary inoculum and area-wide disease management to crop health and food security. Food Sec. 2016, 8, 221–238. [Google Scholar] [CrossRef]
- Nehela, Y.; Killiny, N. Revisiting the complex pathosystem of huanglongbing: Deciphering the role of citrus metabolites in symptom development. Metabolites 2020, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Coletta-Filho, H.D.; Targon, M.L.P.N.; Takita, M.A.; De Negri, J.D.; Pompeu, J., Jr.; Machado, M.A.; Amaral, A.M.; Muller, G.W. First report of the causal agent of Huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil. Plant Dis. 2004, 88, 1382. [Google Scholar] [CrossRef]
- Jagoueix, S.; Bové, J.M.; Garnier, M. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria. Int. J. Syst. Evol. Microbiol. 1994, 44, 379–386. [Google Scholar] [CrossRef]
- Teixeira, D.C.; Danet, J.L.; Eveillard, S.; Martins, E.C.; Jesus, W.C., Jr.; Yamamoto, P.T.; Lopes, S.A.; Bassanezi, R.B.; Ayres, A.J.; Saillard, C.; et al. Citrus Huanglongbing in São Paulo State, Brazil: PCR detection of the ‘Candidatus’ Liberibacter species associated with the disease. Mol. Cell. Probes 2005, 19, 173–179. [Google Scholar] [CrossRef]
- da Graça, J.V. Citrus greening disease. Annu. Rev. Phytopathol. 1991, 29, 109–136. [Google Scholar] [CrossRef]
- Lopes, S.A.; Martins, E.C.; Frare, G.F. Detecção de ‘Candidatus Liberibacter americanus’ em Murraya paniculata. Summa Phytopathol. 2005, 31, 48–49. [Google Scholar]
- Boveé, J.M.; Ayres, A.J. Etiology of three recent diseases of citrus in Sao Paulo State: Sudden death, variegated chlorosis and Huanglongbing. IUBMB Life 2007, 59, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.A.; Bertolini, E.; Frare, G.F.; Martins, E.C.; Wulff, N.A.; Teixeira, D.C.; Fernandes, N.G.; Cambra, M. Graft transmission efficiencies and multiplication of “Candidatus Liberibacter americanus” and “Ca. Liberibacter asiaticus” in citrus plants. Phytopathology 2009, 99, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Achor, D.S.; Etxeberria, E.; Wang, N.; Folimonova, S.Y.; Chung, D.R.; Albrigo, L.G. Sequence of anatomical symptom observations in citrus affected with huanglongbing disease. Plant Pathol. J. 2010, 9, 56–64. [Google Scholar] [CrossRef]
- Fan, J.; Chen, C.; Blansky, R.H.; Gmitter, F.G.; Li, Z.G. Changes in carbohydrate metabolism in Citrus sinensis infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathol. 2010, 59, 1037–1043. [Google Scholar] [CrossRef]
- Rosales, R.; Burns, J.K. Phytohormone changes and carbohydrate status in sweet orange fruit from Huanglongbing-infected plants. J. Plant Growth Regul. 2011, 30, 312–321. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Robertson, C.J.; Garnsey, S.M.; Gowda, S.; Dawson, W.O. Examination of the responses of different genotypes of citrus to Huanglongbing (citrus greening) under different conditions. Phytopathology 2009, 99, 1346–1354. [Google Scholar] [CrossRef]
- Mafra, V.; Martins, P.K.; Francisco, C.S.; Ribeiro-Alves, M.; Freitas-Astúa, J.; Machado, M.A. ‘Candidatus Liberibacter americanus’ induces significant reprogramming of the transcriptome of the susceptible citrus genotype. BMC Genom. 2013, 14, 247. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Da Graça, J.V.; Bassanezi, R.B. Citrus Huanglongbing: The pathogen, its epidemiology, and impact. Plant Health Prog. 2007, 5, 327–345. [Google Scholar]
- Bassanezi, R.B.; Montesino, L.H.; Stuchi, E.S. Effects of huanglongbing on fruit quality of sweet orange cultivars in Brazil. Eur. J. Plant Pathol. 2009, 125, 565–572. [Google Scholar] [CrossRef]
- Bassanezi, R.B.; Montesino, L.H.; Gasparoto, M.C.G.; Bergamin Filho, A.; Amorim, L. Yield loss caused by huanglongbing in different sweet orange cultivars in São Paulo, Brazil. Eur. J. Plant Pathol. 2011, 130, 577–586. [Google Scholar] [CrossRef]
- Stokstad, E. New disease endangers Florida’s already-suffering citrus plants. Science 2006, 312, 523–524. [Google Scholar] [CrossRef] [PubMed]
- Dagulo, L.; Danyluk, M.D.; Spann, T.M.; Valim, M.F.; Goodrich-Schneider, R.; Sims, C.; Rouseff, R. Chemical characterization of orange juice from plants infected with citrus greening (Huanglongbing). J Food Sci. 2010, 75, C199–C207. [Google Scholar] [CrossRef] [PubMed]
- Kiefl, J.; Kohlenberg, B.; Hartmann, A.; Obst, K.; Paetz, S.; Krammer, G.; Trautzsch, S. Investigation on key molecules of Huanglongbing (HLB)- induced orange juice off-flavor. J. Agric. Food Chem. 2018, 66, 2370–2377. [Google Scholar] [CrossRef] [PubMed]
- Dala-Paula, B.M.; Plotto, A.; Bai, J.; Manthey, J.A.; Baldwin, E.A.; Ferrarezi, R.S.; Gloria, M.B.A. Effect of huanglongbing or greening disease on orange juice quality, a review. Front. Plant Sci. 2019, 9, 1976. [Google Scholar] [CrossRef] [PubMed]
- Raithore, S.; Kiefl, J.; Manthey, J.A.; Plotto, A.; Bai, J.; Zhao, W.; Baldwin, E. Mitigation of off-flavor in Huanglongbing-affected orange juice using natural citrus non-volatile compounds. J. Agric. Food Chem. 2020, 68, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, T.; Baldwin, E.A.; Manthey, J.A.; Plotto, A.; Zhang, Q.; Gao, W.; Bai, J.; Shan, Y. Extraction method affects contents of flavonoids and carotenoids in Huanglongbing-affected “Valencia” orange Juice. Foods 2021, 10, 783. [Google Scholar] [CrossRef]
- Bassanezi, R.B.; Lopes, S.A.; Miranda, M.P.; Wulff, N.A.; Volpe, H.X.L.; Ayres, A.J. Overview of citrus huanglongbing spread and management strategies in Brazil. Trop. Plant Pathol. 2020, 45, 251–264. [Google Scholar] [CrossRef]
- Belasque, J., Jr.; Bassanezi, R.B.; Yamamoto, P.T.; Ayres, A.J.; Tachibana, A.; Violante, A.R.; Tank, A., Jr.; Di Giorgi, F.; Tersi, F.E.A.; Menezes, G.M.; et al. Lessons from Huanglongbing management in São Paulo State, Brazil. J. Plant Pathol. 2010, 92, 285–302. [Google Scholar]
- Boscariol, R.L.; Monteiro, M.; Takahashi, E.K.; Chabregas, S.M.; Vieira, M.L.C.; Vieira, L.G.; Pereira, L.F.P.; Mourão Filho, F.A.A.; Cardoso, S.C.; Christiano, R.S.C.; et al. Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis ‘Hamlin’. J. Am. Soc. Hortic. Sci. 2006, 131, 530–536. [Google Scholar] [CrossRef]
- Barbosa-Mendes, J.M.; Mourão Filho, F.A.A.; Bergamin Filho, A.; Harakava, R.; Beer, S.V.; Mendes, B.M.J. Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker. Sci. Hortic. 2009, 122, 109–115. [Google Scholar] [CrossRef]
- Cardoso, S.C.; Barbosa-Mendes, J.M.; Boscariol-Camargo, R.L.; Christiano, R.S.C.; Vieira, M.L.C.; Mendes, B.M.J.; Mourão Filho, F.A.A. Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin A gene for resistance to Xanthomonas citri subsp. citri. Plant Mol. Biol. Rep. 2010, 28, 185–192. [Google Scholar] [CrossRef]
- Grosser, J.W.; Dutt, M.; Omar, A.; Orbovic, V.; Barthe, G. Progress towards the development of transgenic disease resistance in citrus. II Int. Symp. Citrus Biotechnol. 2009, 892, 101–107. [Google Scholar] [CrossRef]
- Dutt, M.; Barthe, G.; Irey, M.; Grosser, J. Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus Greening). PLoS ONE 2015, 10, e0137134. [Google Scholar] [CrossRef] [PubMed]
- Apparecido, R.P.; Carlos, E.F.; Lião, L.M.; Vieira, L.G.E.; Alcantara, G.B. NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics 2017, 3, 20. [Google Scholar] [CrossRef]
- Kobayashi, A.K.; Vieira, L.G.E.; Bespalhok Filho, J.C.; Leite, R.P., Jr.; Pereira, L.F.P.; Molinari, H.B.C.; Marques, V.V. Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene. Eur. J. Plant Pathol. 2017, 149, 865–873. [Google Scholar] [CrossRef]
- Skosyrev, V.S.; Kulesskiy, E.A.; Yakhnin, A.V.; Temirov, Y.V.; Vinokurov, L.M. Expression of the recombinant antibacterial peptide sarcotoxin IA in Escherichia coli cells. Protein Expr. Purif. 2003, 28, 350–356. [Google Scholar] [CrossRef]
- Bespalhok Filho, J.C.; Kobayashi, A.K.; Pereira, L.F.P.; Vieira, L.G.E. Laranja transgênica: Transformação de laranja visando resistência ao cancro cítrico usando genes de peptídeos antibacterianos. Biotecnol. Cienc. Desenvolv. 2001, 28, 229–234. [Google Scholar]
- Okada, M.; Natori, S. Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J. Biol. Chem. 1985, 260, 7174–7177. [Google Scholar] [CrossRef]
- Eleftherianos, I.; Zhang, W.; Heryanto, C.; Mohamed, A.; Contreras, G.; Tettamanti, G.; Wink, M.; Bassal, T. Diversity of insect antimicrobial peptides and proteins-A functional perspective: A review. Int. J. Biol. Macromol. 2021, 191, 277–287. [Google Scholar] [CrossRef]
- Iwai, H.; Nakajima, Y.; Natori, S.; Arata, Y.; Shimada, I. Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR. Eur. J. Biochem. 1993, 217, 639–644. [Google Scholar] [CrossRef]
- Nakajima, Y.; Qu, X.M.; Natori, S. Interaction between liposomes and sarcotoxin IA, a potential antibacterial protein of Sarcophaga peregrina (flesh fly). J. Biol. Chem. 1987, 262, 1665–1669. [Google Scholar] [CrossRef]
- Okemoto, K.; Nakajima, Y.; Fujioka, T.; Natori, S. Participation of two N-terminal residues in LPS-neutralizing activity of sarcotoxin IA. J. Biochem. 2002, 131, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.Y.; Chowdhury, M.; Huang, Y.D.; Yu, X.Q. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 2014, 98, 5807–5822. [Google Scholar] [CrossRef]
- Carmona-Ribeiro, A.M.; Carrasco, L.D.M. Novel formulations for antimicrobial peptides. Int. J. Mol. Sci. 2014, 15, 18040. [Google Scholar] [CrossRef]
- Dutt, M.; Grosser, J.W. Evaluation of parameters affecting Agrobacterium mediated transformation of citrus. Plant Cell Tissue Organ Cult. 2009, 98, 331–340. [Google Scholar] [CrossRef]
- He, Y.; Chen, S.; Peng, A.; Zou, X.; Xu, L.; Lei, T.; Liu, X.; Yao, L. Production and evaluation of transgenic sweet orange (Citrus sinensis Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a novel Agrobacterium-mediated transformation of mature axillary buds. Sci. Hortic. 2011, 128, 99–107. [Google Scholar] [CrossRef]
- Hao, G.; Zhang, S.; Stover, E. Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. tabaci and Xanthomonas citri, but not ‘Candidatus Liberibacter asiaticus’. PLoS ONE 2017, 12, e0186810. [Google Scholar] [CrossRef]
- Attílio, L.B. Transformação genética de laranja doce (Citrus sinensis L. Osbeck) com o gene D4E1 dirigido pelos promotores CaMV35S ou AtPP2. 81f. 2013. Ph.D. Thesis, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil, 2013. [Google Scholar]
- Elmayan, T.; Vaucheret, H. Expression of single copies of a strongly expressed 35S transgene can be silenced post-transcriptionally. Plant J. 1996, 9, 787–797. [Google Scholar] [CrossRef]
- Johnson, E.G.; Wu, J.; Bright, D.B.; Graham, J.H. Root loss on presymptomatic huanglongbing-affected plants is preceded by ‘Candidatus Liberibacter asiaticus’ root infection but not phloem plugging. Plant Pathol. 2013, 63, 290–298. [Google Scholar] [CrossRef]
- Tatineni, S.; Sagaram, U.S.; Gowda, S.; Robertson, C.J.; Dawson, W.O.; Iwanami, T.; Wang, N. In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology 2008, 98, 592–599. [Google Scholar] [CrossRef]
- Belasque Júnior, J.; Bergamin Filho, A.; Bassanezi, R.B.; Barbosa, J.C.; Fernandes, N.G.; Yamamoto, P.T.; Lopes, S.A.; Machado, M.A.; Leite, R.P., Jr.; Ayres, A.J.; et al. Base científica para a erradicação de plantas sintomáticas e assintomáticas de Huanglongbing (HLB, greening) visando o controle efetivo da doença. Trop. Plant Pathol. 2009, 34, 137–145. [Google Scholar] [CrossRef]
- Gottwald, T.R.; Graham, J.H.; Irey, M.S.; McCollum, T.G.; Wood, B.W. Inconsequential effect of nutritional treatments on huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Prot. 2012, 36, 73–82. [Google Scholar] [CrossRef]
- Sauer, A.V.; Zanutto, C.A.; Nocchi, P.T.R.; Machado, M.A.; Bock, C.H.; Nunes, W.M. Seasonal variation in populations of ‘Candidatus Liberibacter asiaticus’ in citrus plants in Paraná state, Brazil. Plant Dis. 2015, 99, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Spann, T.M.; Schumann, A.W. The role of plant nutrients in disease development with emphasis on citrus and Huanglongbing. Proc. Fla. State Hortic. Soc. 2009, 122, 169–171. [Google Scholar]
- Coletta-Filho, H.D.; Carlos, E.F.; Alves, K.C.S.; Pereira, M.A.R.; Boscariol-Camargo, R.L.; De Souza, A.A.; Machado, M.A. In planta multiplication and graft transmission of ‘Candidatus Liberibacter asiaticus’ revealed by Real-Time PCR. Eur. J. Plant Pathol. 2010, 126, 53–60. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Achor, D.S. Early lines of citrus greening (Huanglongbing) disease development at the ultrastructural level. Phytopathology 2010, 100, 949–958. [Google Scholar] [CrossRef]
- Li, W.; Abad, J.A.; French-Monar, R.D.; Rascoe, J.; Wen, A.; Gudmestad, N.C.; Secor, G.A.; Lee, I.; Duan, Y.; Levy, L. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J. Microbiol. Methods 2009, 78, 59–65. [Google Scholar] [CrossRef]
- Mitsuhara, I.; Matsufuru, H.; Ohshima, M.; Kaku, H.; Nakajima, Y.; Murai, N.; Natori, S.; Ohashi, Y. Induced expression of sarcotoxin IA enhanced host resistance against both bacterial and fungal pathogens in transgenic tobacco. Mol. Plant-Microbe Interact. 2000, 13, 860–868. [Google Scholar] [CrossRef]
- Zou, X.; Jiang, X.; Xu, L.; Lei, T.; Peng, A.; He, Y.; Yao, L.; Chen, S. Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Mol. Biol. 2016, 93, 341–353. [Google Scholar] [CrossRef]
- Wang, N.; Li, W.; Irey, M.; Albrigo, G.; Bo, K.; Kim, J.S. Citrus huanglongbing. Plant For. Sci. Biotech. 2009, 3, 67–72. [Google Scholar]
- Trivedi, P.; He, Z.; Van Nostrand, J.D.; Albrigo, G.; Zhou, J.; Wang, N. Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME J. 2012, 6, 363–383. [Google Scholar] [CrossRef] [PubMed]
- McCollum, G.; Baldwin, E. Huanglongbing: Devastating Disease of Citrus; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 315–361. [Google Scholar]
- Baldwin, E.A.; Plotto, A.; Bai, J.; Manthey, J.; Zhao, W.; Raithore, S.; Irey, M. Effect of abscission zone formation on orange (Citrus sinensis) fruit/juice quality for plants affected by Huanglongbing (HLB). J. Agric. Food Chem. 2018, 66, 2877–2890. [Google Scholar] [CrossRef] [PubMed]
- Silveira, F.G.F.; Souza, J.O., Jr.; Souza, L.D.S.; Brito, A.D.S.; Paiva, A.D.Q.; Pereira, B.D.S.; Santos, E.B.; Silva, E.F.; Lima, J.D.C. Fruit quality and nutritional analysis in ‘Pêra’orange as affected by soil available water and different rootstocks. Int. J. Environ. Sci. Technol. 2021, 19, 7387–7398. [Google Scholar] [CrossRef]
- Yin, X.R.; Xie, X.L.; Xia, X.J.; Yu, J.Q.; Ferguson, I.B.; Giovannoni, J.J.; Chen, K.S. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening. Plant J. 2016, 86, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Ladaniya, M.S. Citrus Fruit: Biology, Technology and Evaluation; ICAR Research Complex for Goa: Goa, India, 2008. [Google Scholar]
- Lado, J.; Gambetta, G.; Zacarias, L. Key determinants of citrus fruit quality: Metabolites and main changes during maturation. Sci. Hortic. 2018, 233, 238–248. [Google Scholar] [CrossRef]
- Gupta, A.K.; Pathak, U.; Tongbram, T.; Medhi, M.; Terdwongworakul, A.; Magwaza, L.S.; Mditshwa, A.; Chen, T.; Mishra, P. Emerging approaches to determine maturity of citrus fruit. Crit. Rev. Food Sci. Nutr. 2021, 62, 5245–5266. [Google Scholar] [CrossRef]
- Organization for Economic Co-Operation and Development, OECD. Citrus Fruit, International Standards for Fruit and Vegetables; OECD Publishing: Paris, France, 2010. [Google Scholar]
- Companhia de Entrepostos e Armazéns Gerais de São Paulo, Ceagesp. Normas de Classificação de Citros de Mesa; CEAGESP: São Paulo, Brazil, 2011. [Google Scholar]
- Lado, J.; Rodrigo, J.M.; Zacarias, L. Maturity indicators and citrus fruit quality. Stewart Postharvest Rev. 2014, 2, 1–6. [Google Scholar]
- Castle, W.S. A career perspective on Citrus rootstocks, their development, and commercialization. HortScience 2010, 45, 11–15. [Google Scholar] [CrossRef]
- Baldwin, E.; Plotto, A.; Manthey, J.; McCollum, G.; Bai, J.; Irey, M.; Cameron, R.; Luzio, G. Effect of Liberibacter infection (Huanglongbing disease) of citrus on orange fruit physiology and fruit/fruit juice quality: Chemical and physical analyses. J. Agric. Food Chem. 2010, 58, 1247–1262. [Google Scholar] [CrossRef]
- Liao, H.L.; Burns, J.K. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected plants: Comparison with girdled fruit. J. Exp. Bot. 2012, 63, 3307–3319. [Google Scholar] [CrossRef]
- Raithore, S.; Dea, S.; Plotto, A.; Bai, J.; Manthey, J.; Narciso, J.; Irey, M.; Baldwin, E. Effect of blending Huanglongbing (HLB) disease affected orange juice with juice from healthy orange on flavor quality. Food Sci. Technol. 2015, 62, 868–874. [Google Scholar] [CrossRef]
- Dala Paula, B.M.; Raithore, S.; Manthey, J.A.; Baldwin, E.A.; Bai, J.; Zhao, W.; Glória, M.B.A.; Plotto, A. Active taste compounds in juice from oranges symptomatic for Huanglongbing (HLB) citrus greening disease. LWT Food Sci. Technol. 2018, 9, 518–525. [Google Scholar] [CrossRef]
- Scherer, R.; Rybka, A.C.P.; Ballus, C.A.; Meinhart, A.D.; Filho, J.T.; Godoy, H.T. Validation of a HPLC method for simultaneous determination of main organic acids in fruit and juices. Food Chem. 2012, 135, 150–154. [Google Scholar] [CrossRef]
- Carvalho, D.U.; Cruz, M.A.; Colombo, R.C.; Watanabe, L.S.; Tazima, Z.H.; Neves, C.S.V.J. Determination of organic acids and carbohydrates in ‘Salustiana’ orange fruit from different rootstocks. Braz. J. Food Technol. 2020, 23, e2018329. [Google Scholar] [CrossRef]
- Goldberg, I.; Rokem, J.S.; Pines, O. Organic acids: Old metabolites, new themes. J. Chem. Technol. Biotechnol. 2006, 81, 1601–1611. [Google Scholar] [CrossRef]
- Hung, W.L.; Wang, Y. Metabolite profiling of Candidatus Liberibacter infection in Hamlin sweet oranges. J. Agric. Food Chem. 2018, 66, 3983–3991. [Google Scholar] [CrossRef]
- Plotto, A.; Margaría, C.A.; Goodner, K.L.; Baldwin, E.A. Odour and flavour thresholds for key aroma components in an orange juice matrix: Esters and miscellaneous compounds. Flavour Fragr. J. 2008, 23, 398–406. [Google Scholar] [CrossRef]
- Kimball, D.A. Factors affecting the rate of maturation of citrus fruit. Proc. Fla. State Hortic. Soc. 1984, 97, 40–43. [Google Scholar]
- Pozzan, M.; Triboni, H.R. Colheita e Qualidade do Fruto. In Citros; Mattos, D., Jr., Negri, J.D., Pio, R.M., Pompeu, J., Jr., Eds.; IAC/Fundag: Campinas, Brazil, 2005; pp. 801–822. [Google Scholar]
- Okamoto, M.; Mitsuhara, I.; Ohshima, M.; Natori, S.; Ohashi, Y. Enhanced expression of an antimicrobial peptide sarcotoxin IA by GUS fusion in transgenic tobacco plants. Plant Cell Physiol. 1998, 39, 57–63. [Google Scholar] [CrossRef]
- Mitsuhara, I.; Nakajima, Y.; Natori, S.; Mitsuoka, T.; Ohashi, Y. In vitro growth inhibition of human intestinal bacteria by sarcotoxin IA, an insect bactericidal peptide. Biotechnol. Lett. 2001, 23, 569–573. [Google Scholar] [CrossRef]
- Soares, J.M.; Tanwir, S.E.; Grosser, J.W.; Dutt, M. Development of genetically modified citrus plants for the control of citrus canker and huanglongbing. Trop. Plant Pathol. 2020, 45, 237–250. [Google Scholar] [CrossRef]
- Tanwir, S.E.; Soares, J.M.; Welker, S.; Grosser, J.W.; Dutt, M. Genetically modified citrus: Current status, prospects, and future challenges. In Genetically Modified Crops; Kavi Kishor, P.B., Rajam, M.V., Pullaiah, T., Eds.; Springer Nature: Singapore, 2021; pp. 161–201. [Google Scholar] [CrossRef]
- Bernauer, T. Genes, Trade, and Regulation: The Seeds of Conflict in Food Biotechnology; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Fundo de Defesa da Citricultura, Fundecitrus. 2022–2023 Orange Crop Forecast for the São Paulo State and West-Southwest Minas Gerais Citrus Belt. Available online: https://www.fundecitrus.com.br/pes/relatorios (accessed on 2 June 2022).
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed]
- Hocquellet, A.; Toorawa, P.; Bové, J.M.; Garnier, M. Detection and identification of the two Candidatus Liberibacter species associated with citrus Huanglongbing by PCR amplification of ribossomal protein genes of the β operon. Mol. Cell. Probes 1999, 13, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Jimenez-Cuesta, M.; Cuquerella, J.; Martinez-Javega, J.M. Determination of a color index for citrus fruit degreening. Proc. Int. Soc. Citricul. 1981, 2, 750–753. [Google Scholar]
- Zhou, J.Y.; Sun, C.D.; Zhang, L.L.; Dai, X.; Xu, C.J.; Chen, K.S. Preferential accumulation of orange-colored carotenoids in Ponkan (Citrus reticulata) fruit peel following postharvest application of ethylene or ethephon. Sci. Hortic. 2010, 126, 229–235. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists, AOAC. Official Methods of Analysis of the AOAC International, 19th ed.; AOAC International: Arlington, VA, USA, 2019. [Google Scholar]
- Pauli, E.D.; Cristiano, V.; Nixdorf, S.L. Method for determination of carbohydrates employed in the selection of adulterations in coffee. Quim. Nova 2011, 34, 689–694. [Google Scholar] [CrossRef]
Source of Variance | Fruit Weight (g) | Fruit Length (mm) | Fruit Diameter (mm) | |||
CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | |
Control | 111 Bb 1 | 132 Ab | 67.4 Bc | 74.5 Aa | 65.6 Bb | 70.7 Aa |
STX-5 | 151 Aa | 138 Ba | 72.3 Aa | 68.6 Bb | 71.8 Aa | 66.0 Bb |
STX-11 | 129 Aab | 133 Ab | 68.1 Bbc | 71.7 Aab | 68.8 Aa | 70.0 Aa |
STX-12 | 143 Aa | 124 Bb | 71.7 Aab | 69.2 Ab | 71.9 Aa | 68.6 Bab |
STX-13 | 131 Aab | 135 Ab | 69.7 Aac | 70.6 Aab | 69.0 Aa | 70.2 Aa |
CV (%) | 9.11 | 3.21 | 2.54 | |||
STX | *** | ns | ns | |||
CLas | * | ns | ns | |||
STX × CLas | *** | *** | *** | |||
Fruit Shape (L/D) | Normal Seeds 2 | Aborted Seeds 2 | ||||
CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | |
Control | 1.03 Aa | 1.05 Aab | 4.5 Aa | 1.6 Bab | 4.0 Aa | 3.3 Ab |
STX-5 | 1.00 Ba | 1.09 Aa | 0.7 Bb | 4.0 Aa | 0.2 Bc | 4.0 Aab |
STX-11 | 0.98 Ba | 1.02 Abc | 0.2 Bb | 1.0 Ab | 0.1 Bc | 3.4 Ab |
STX-12 | 0.99 Aa | 1.00 Ac | 1.5 Bb | 4.5 Aa | 2.5 Bab | 6.6 Aa |
STX-13 | 1.00 Aa | 1.00 Ac | 5.7 Aa | 4.3 Aa | 1.4 Ab | 1.8 Ab |
CV (%) | 2.42 | 37.68 | 25.79 | |||
STX | *** | *** | *** | |||
CLas | *** | ns | *** | |||
STX × CLas | ** | *** | *** |
Source of Variance | Fruit Color | |||||||||
L* | a* | b* | C* | CCI | ||||||
CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | |
Control | 69.3 Bc 1 | 71.7 Aa | 8.21 Aa | 4.44 Bb | 64.0 Ab | 63.4 Ab | 64.6 Ab | 63.7 Ab | 1.24 Bb | 1.91 Ab |
STX-5 | 73.9 Aa | 72.5 Aa | 7.41 Ba | 10.3 Aa | 72.8 Aa | 72.2 Aa | 72.2 Aa | 73.0 Aa | 1.37 Ba | 2.08 Aab |
STX-11 | 71.8 Aac | 67.8 Bb | 7.12 Aa | 3.53 Bb | 69.5 Aa | 61.1 Bb | 70.1 Aa | 61.6 Bb | 1.45 Aa | 0.99 Ac |
STX-12 | 72.1 Aab | 71.8 Aa | 9.40 Aa | 10.8 Aa | 72.6 Aa | 69.0 Ba | 73.4 Aa | 70.0 Ba | 1.77 Aa | 2.19 Aa |
STX-13 | 71.2 Bbc | 73.4 Aa | 7.31 Aa | 4.79 Ab | 68.7 Aa | 69.0 Aa | 69.2 Aab | 70.3 Aa | 1.57 Aa | 1.08 Ac |
CV (%) | 2.10 | 28.09 | 3.70 | 3.73 | 31.80 | |||||
STX | *** | *** | *** | *** | * | |||||
CLas | ns | ns | *** | ** | ns | |||||
STX × CLas | *** | *** | ** | ** | * | |||||
Juice Color | ||||||||||
L* | a* | b* | C* | CCI | ||||||
CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | |
Control | 36.7 Bd | 37.9 Ab | –3.04 Aa | –4.38 Bc | 18.1 Bd | 19.7 Ac | 18.3 Be | 20.2 Ac | –4.57 Ab | –5.85 Be |
STX-5 | 38.0 Bb | 38.6 Aa | –3.57 Ac | –4.20 Bb | 18.4 Bd | 21.3 Ab | 18.8 Bd | 21.7 Ab | –5.08 Ad | –5.09 Ac |
STX-11 | 38.7 Aa | 38.6 Aa | –3.87 Ad | –4.16 Bb | 21.7 Ba | 22.2 Aa | 22.0 Ba | 22.5 Aa | –4.60 Ab | –4.84 Bb |
STX-12 | 37.8 Abc | 37.0 Bc | –3.44 Bb | –2.99 Aa | 18.9 Bc | 22.3 Aa | 19.2 Bc | 22.5 Aa | –4.80 Bc | –3.62 Aa |
STX-13 | 37.2 Bcd | 37.9 Ab | –3.07 Aa | –4.55 Bd | 19.5 Bb | 21.0 Ab | 19.8 Bb | 21.4 Ab | –4.21 Aa | –5.71 Bd |
CV (%) | 0.62 | 1.25 | 0.86 | 0.83 | 1.15 | |||||
STX | *** | *** | *** | *** | *** | |||||
CLas | ** | *** | *** | *** | *** | |||||
STX × CLas | *** | *** | *** | *** | *** |
Source of Variance | Sugars (g·L–1) | ∑Sugars | ||||||
---|---|---|---|---|---|---|---|---|
Sucrose | Glucose | Fructose | ||||||
CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | |
Control | 96.20 Bd 1 | 139.43 Aa | 32.02 Be | 53.78 Aa | 40.16 Bd | 54.66 Ab | 168.39 Be | 247.88 Aa |
STX-5 | 91.39 Be | 127.35 Ab | 40.88 Bd | 45.14 Ad | 42.72 Bc | 45.19 Ae | 174.99 Bd | 217.69 Ac |
STX-11 | 117.69 Ab | 114.71 Be | 49.77 Ab | 50.35 Ab | 54.98 Aa | 48.54 Bd | 222.45 Ab | 213.62 Bd |
STX-12 | 125.76 Aa | 122.31 Bc | 52.82 Aa | 47.56 Bc | 55.47 Aa | 55.52 Aa | 234.06 Aa | 225.40 Bb |
STX-13 | 103.99 Bc | 118.77 Ad | 44.58 Bc | 45.53 Ad | 47.95 Bb | 53.24 Ac | 196.52 Bc | 217.56 Ac |
CV (%) | 0.39 | 0.99 | 0.42 | 0.22 | ||||
STX | *** | *** | *** | *** | ||||
CLas | *** | *** | *** | *** | ||||
STX × CLas | *** | *** | *** | *** |
Source of Variance | Organic Acids (g·L–1) | ∑Organic Acids | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Citric | Malic | Succinic | Ascorbic | |||||||
CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | CLas+ | CLas− | |
Control | 19.88 Bc | 29.67 Ab 1 | 2.87 Ab | 2.22 Ab | 1.68 Ab | 1.27 Bc | 1.30 Ab | 0.98 Bc | 25.75 Bc | 34.97 Ab |
STX-5 | 20.26 Bc | 23.76 Ad | 5.32 Aa | 3.68 Ba | 2.10 Aa | 1.47 Bbc | 1.67 Ba | 1.94 Aa | 29.35 Bb | 30.87 Ac |
STX-11 | 21.33 Bb | 31.24 Aa | 6.34 Aa | 2.81 Bab | 1.92 Aab | 1.99 Aa | 1.69 Ba | 1.92 Aa | 31.29 Bab | 37.97 Aa |
STX-12 | 24.27 Aa | 22.76 Be | 5.64 Aa | 3.42 Ba | 0.91 Bc | 1.79 Aab | 1.45 ab | 1.79 Aa | 32.29 Aa | 29.78 Bc |
STX-13 | 19.02 Bd | 28.02 Ac | 6.09 Aa | 2.68 Bab | 0.47 Bd | 1.90 Aa | 1.61 Aa | 1.49 Ab | 27.20 Bc | 34.10 Ab |
CV (%) | 0.80 | 10.64 | 10.50 | 7.20 | 2.67 | |||||
STX | *** | *** | *** | *** | *** | |||||
CLas | *** | *** | *** | ns | *** | |||||
STX × CLas | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longhi, T.V.; de Carvalho, D.U.; Duin, I.M.; da Cruz, M.A.; Leite Junior, R.P. Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to ‘Candidatus Liberibacter asiaticus’. Int. J. Mol. Sci. 2022, 23, 9300. https://doi.org/10.3390/ijms23169300
Longhi TV, de Carvalho DU, Duin IM, da Cruz MA, Leite Junior RP. Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to ‘Candidatus Liberibacter asiaticus’. International Journal of Molecular Sciences. 2022; 23(16):9300. https://doi.org/10.3390/ijms23169300
Chicago/Turabian StyleLonghi, Talita Vigo, Deived Uilian de Carvalho, Izabela Moura Duin, Maria Aparecida da Cruz, and Rui Pereira Leite Junior. 2022. "Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to ‘Candidatus Liberibacter asiaticus’" International Journal of Molecular Sciences 23, no. 16: 9300. https://doi.org/10.3390/ijms23169300
APA StyleLonghi, T. V., de Carvalho, D. U., Duin, I. M., da Cruz, M. A., & Leite Junior, R. P. (2022). Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene Produces High-Quality Fruit and Shows Tolerance to ‘Candidatus Liberibacter asiaticus’. International Journal of Molecular Sciences, 23(16), 9300. https://doi.org/10.3390/ijms23169300