Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1
Abstract
:1. Introduction
2. Results
2.1. Test Stimulus-Evoked Pain Behavior following Spinal Administration of Netrin-1
2.2. Attempts to Reverse Early and Late Mechanical Hypersensitivity Induced by Netrin-1
2.3. Assessment of Ongoing Pain-Like and Anxiety-Like Behavior during Late Phase
2.4. Comparison of Pain Behavior with Discharge Rates of Medullary Pain Control Neurons
2.4.1. Acute Effect 30 Min after Administration of Netrin-1
2.4.2. Chronic Effect Three Weeks after Administration of Netrin-1
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Techniques for Spinal Drug Administrations
4.3. Behavioral Testing of Mechanical Hypersensitivity and Heat Nociception
4.4. Assessment of Ongoing Pain-Like Behavior in a Conditioned Place Preference Test
4.5. Assessment of Anxiety-Like Behavior in the Elevated plus Maze Test
4.6. Recording of Neuronal Activity in the Rostral Ventromedial Medulla (RVM)
4.7. Drugs
4.8. Course of the Study
4.9. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Colamarino, S.A.; Tessier-Lavigne, M. The role of the floor plate in axon guidance. Annu. Rev. Neurosci. 1995, 18, 497–529. [Google Scholar] [CrossRef] [PubMed]
- Keino-Masu, K.; Masu, M.; Hinck, L.; Leonardo, E.D.; Chan, S.S.; Culotti, J.G.; Tessier-Lavigne, M. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 1996, 87, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Wu, Z.; Renier, N.; Antipenko, A.; Tzvetkova-Robev, D.; Xu, Y.; Minchenko, M.; Nardi-Dei, V.; Rajashankar, K.R.; Himanen, J.; et al. Structures of netrin-1 bound to two receptors provide insight into its axon guidance mechanism. Science 2014, 344, 1275–1279. [Google Scholar] [CrossRef] [Green Version]
- Leonardo, E.D.; Hinck, L.; Masu, M.; Keino-Masu, K.; Ackerman, S.L.; Tessier-Lavigne, M. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 1997, 386, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Bu, G.; Hou, S.; Ren, D.; Wu, Y.; Shang, W.; Huang, W. Increased expression of netrin-1 and its deleted in colorectal cancer receptor in human diseased lumbar intervertebral disc compared with autopsy control. Spine 2012, 37, 2074–2081. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Yuan, X.C.; Gao, F.; Li, H.P.; Cao, J.; Liu, Y.S.; Yu, W.; Tian, B.; Meng, X.F.; Shi, J.; et al. Netrin-1 contributes to myelinated afferent fiber sprouting and neuropathic pain. Mol. Neurobiol. 2016, 53, 5640–5651. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, G.; Weng, Y.; Ding, M.; Yu, W. Netrin-1 contributes to peripheral nerve injury induced neuropathic pain via regulating phosphatidylinositol 4-kinase IIa in the spinal cord dorsal horn in mice. Neurosci. Lett. 2020, 735, 135161. [Google Scholar] [CrossRef]
- Cui, W.; Li, Y.; Wang, Z.; Song, C.; Yu, Y.; Wang, G.; Li, J.; Wang, C.; Zhang, L. Spinal caspase-6 regulates AMPA receptor trafficking and dendritic spine plasticity through netrin-1 in postoperative pain after orthopedic surgery for tibial fracture in mice. Pain 2021, 162, 124–134. [Google Scholar] [CrossRef]
- Xiao, M.; Hu, Z.; Jiang, H.; Li, C.; Guo, H.; Fang, W.; Long, X. The expression of Netrin-1 in the MIA-induced osteoarthritic temporomandibular joint in mice. Sci. Rep. 2021, 11, 15695. [Google Scholar] [CrossRef]
- Zhu, S.; Zhu, J.; Zhen, G.; Hu, Y.; An, S.; Li, Y.; Zheng, Q.; Chen, Z.; Yang, Y.; Wan, M.; et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Investig. 2019, 129, 1076–1093. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Guo, X.; Zhu, L.; Wang, J.; Li, T.; Yu, Q.; Zhang, X. Macrophage-derived netrin-1 contributes to endometriosis-associated pain. Ann. Transl. Med. 2021, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Kreß, L.; Hofmann, L.; Klein, T.; Klug, K.; Saffer, N.; Spitzel, M.; Bär, F.; Sommer, C.; Karl, F.; Üçeyler, N. Differential impact of keratinocytes and fibroblasts on nociceptor degeneration and sensitization in small fiber neuropathy. Pain 2021, 162, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Khoury, S.; Parisien, M.; Thompson, S.J.; Vachon-Presseau, E.; Roy, M.; Martinsen, A.E.; Winsvold, B.S.; HUNT All-In Pain; Mundal, I.P.; Zwart, J.A.; et al. Genome-wide analysis identifies impaired axonogenesis in chronic overlapping pain conditions. Brain 2022, 145, 1111–1123. [Google Scholar] [CrossRef] [PubMed]
- Story, G.M.; Peier, A.M.; Reeve, A.J.; Eid, S.R.; Mosbacher, J.; Hricik, T.R.; Earley, T.J.; Hergarden, A.C.; Andersson, D.A.; Hwang, S.W.; et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 2003, 112, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Jordt, S.E.; Bautista, D.M.; Chuang, H.H.; McKemy, D.D.; Zygmunt, P.M.; Högestätt, E.D.; Meng, I.D.; Julius, D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004, 427, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Shimizu, S.; Wakamori, M.; Maeda, A.; Kurosaki, T.; Takada, N.; Imoto, K.; Mori, Y. Molecular cloning and functional characterization of a novel receptor-activated TRP Ca2+ channel from mouse brain. J. Biol. Chem. 1998, 273, 10279–10287. [Google Scholar] [CrossRef] [Green Version]
- Philipp, S.; Hambrecht, J.; Braslavski, L.; Schroth, G.; Freichel, M.; Murakami, M.; Cavalié, A.; Flockerzi, V. A novel capacitative calcium entry channel expressed in excitable cells. EMBO J. 1998, 17, 4274–4282. [Google Scholar] [CrossRef]
- Koivisto, A.; Jalava, N.; Bratty, R.; Pertovaara, A. TRPA1 antagonists for pain relief. Pharmaceuticals 2018, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, A.P.; Belvisi, M.G.; Gaudet, R.; Szallasi, A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat. Rev. Drug Discov. 2022, 21, 41–59. [Google Scholar] [CrossRef]
- Ziegon, L.; Schlegel, M. Netrin-1: A modulator of macrophage driven acute and chronic inflammation. Int. J. Mol. Sci. 2021, 23, 275. [Google Scholar] [CrossRef]
- Ramkhelawon, B.; Hennessy, E.J.; Ménager, M.; Ray, T.D.; Sheedy, F.J.; Hutchison, S.; Wanschel, A.; Oldebeken, S.; Geoffrion, M.; Spiro, W.; et al. Netrin-1 promotes adipose tissue macrophage retention and insulin resistance in obesity. Nat. Med. 2014, 20, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boneschansker, L.; Nakayama, H.; Eisenga, M.; Wedel, J.; Klagsbrun, M.; Irimia, D.; Briscoe, D.M. Netrin-1 augments chemokinesis in CD4+ T cells in vitro and elicits a proinflammatory response in vivo. J. Immunol. 2016, 197, 1389–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediero, A.; Wilder, T.; Ramkhelawon, B.; Moore, K.J.; Cronstein, B.N. Netrin-1 and its receptor Unc5b are novel targets for the treatment of inflammatory arthritis. FASEB J. 2016, 30, 3835–3844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediero, A.; Ramkhelawon, B.; Wilder, T.; Purdue, P.E.; Goldring, S.R.; Dewan, M.Z.; Loomis, C.; Moore, K.J.; Cronstein, B.N. Netrin-1 is highly expressed and required in inflammatory infiltrates in wear particle-induced osteolysis. Ann. Rheum. Dis. 2016, 75, 1706–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiers, S.; Klein, R.M.; Price, T.J. Quantitative differences in neuronal subpopulations between mouse and human dorsal root ganglia demonstrated with RNAscope in situ hybridization. Pain 2020, 161, 2410–2424. [Google Scholar] [CrossRef] [PubMed]
- Tavares-Ferreira, D.; Shiers, S.; Ray, P.R.; Wangzhou, A.; Jeevakumar, V.; Sankaranarayanan, I.; Cervantes, A.M.; Reese, J.C.; Chamessian, A.; Copits, B.A.; et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 2022, 14, eabj8186. [Google Scholar] [CrossRef] [PubMed]
- Borsook, D.; Youssef, A.M.; Simons, L.; Elman, I.; Eccleston, C. When pain gets stuck: The evolution of pain chronification and treatment resistance. Pain 2018, 159, 2421–2436. [Google Scholar] [CrossRef]
- Sadler, K.E.; Moehring, F.; Shiers, S.I.; Laskowski, L.J.; Mikesell, A.R.; Plautz, Z.R.; Brezinski, A.N.; Mecca, C.M.; Dussor, G.; Price, T.J.; et al. Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci. Transl. Med. 2021, 13, eabd7702. [Google Scholar] [CrossRef]
- Riccio, A.; Li, Y.; Moon, J.; Kim, K.S.; Smith, K.S.; Rudolph, U.; Gapon, S.; Yao, G.L.; Tsvetkov, E.; Rodig, S.J.; et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 2009, 137, 761–772. [Google Scholar] [CrossRef] [Green Version]
- Riccio, A.; Li, Y.; Tsvetkov, E.; Gapon, S.; Yao, G.L.; Smith, K.S.; Engin, E.; Rudolph, U.; Bolshakov, V.Y.; Clapham, D.E. Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J. Neurosci. 2014, 34, 3653–3667. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, V. Amygdala pain mechanisms. Handb. Exp. Pharmacol. 2015, 227, 261–284. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.G.; Wang, F.D.; Sun, Z.C.; Ma, S.B.; Wang, X.; Han, W.J.; Wang, F.; Bai, Z.T.; Wu, S.X.; Freichel, M.; et al. TRPC1/4/5 channels contribute to morphine-induced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity. FASEB J. 2020, 34, 8526–8543. [Google Scholar] [CrossRef] [PubMed]
- Fields, H.L.; Basbaum, A.I.; Heinricher, M.M. Central nervous system mechanisms of pain modulation. In Wall and Melzack’s Textbook of Pain, 5th ed.; McMahon, S.B., Koltzenburg, M., Eds.; Elsevier: Beijing, China, 2006; pp. 125–142. [Google Scholar]
- Olivéras, J.L.; Montagne-Clavel, J.; Martin, G. Drastic changes of ventromedial medulla neuronal properties induced by barbiturate anesthesia. I. Comparison of the single-unit types in the same awake and pentobarbital-treated rats. Brain Res. 1991, 563, 241–250. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic pain: From mechanisms to treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef] [PubMed]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef]
- Lindblom, U.; Verrillo, R.T. Sensory functions in chronic neuralgia. J. Neurol. Neurosurg. Psychiatry 1979, 42, 422–435. [Google Scholar] [CrossRef] [Green Version]
- Carstens, E.; Klumpp, D.; Zimmermann, M. Differential inhibitory effects of medial and lateral midbrain stimulation on spinal neuronal discharges to noxious skin heating in the cat. J. Neurophysiol. 1980, 43, 332–342. [Google Scholar] [CrossRef]
- Wei, H.; Koivisto, A.; Saarnilehto, M.; Chapman, H.; Kuokkanen, K.; Hao, B.; Huang, J.L.; Wang, Y.X.; Pertovaara, A. Spinal transient receptor potential ankyrin 1 channel contributes to central pain hypersensitivity in various pathophysiological conditions in the rat. Pain 2011, 152, 582–591. [Google Scholar] [CrossRef]
- Wei, H.; Karimaa, M.; Korjamo, T.; Koivisto, A.; Pertovaara, A. Transient receptor potential ankyrin 1 ion channel contributes to guarding pain and mechanical hypersensitivity in a rat model of postoperative pain. Anesthesiology 2012, 117, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Sufka, K.J. Conditioned place preference paradigm: A novel approach for analgesic drug assessment against chronic pain. Pain 1994, 58, 355–366. [Google Scholar] [CrossRef]
- King, T.; Vera-Portocarrero, L.; Gutierrez, T.; Vanderah, T.W.; Dussor, G.; Lai, J.; Fields, H.L.; Porreca, F. Unmasking the tonic-aversive state in neuropathic pain. Nat. Neurosci. 2009, 12, 1364–1366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite-Almeida, H.; Cerqueira, J.J.; Wei, H.; Ribeiro-Costa, N.; Anjos-Martins, H.; Sousa, N.; Pertovaara, A.; Almeida, A. Differential effects of left/right neuropathy on rats’ anxiety and cognitive behavior. Pain 2012, 153, 2218–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogil, J.S. Qualitative sex differences in pain processing: Emerging evidence of a biased literature. Nat. Rev. Neurosci. 2020, 21, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G.; NC3Rs Reporting Guidelines Working Group. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [Google Scholar] [CrossRef]
- Knopp, K.L.; Stenfors, C.; Baastrup, C.; Bannon, A.W.; Calvo, M.; Caspani, O.; Currie, G.; Finnerup, N.B.; Huang, W.; Kennedy, J.D.; et al. Experimental design and reporting standards for improving the internal validity of pre-clinical studies in the field of pain: Consensus of the IMI-Europain consortium. Scand. J. Pain 2015, 7, 58–70. [Google Scholar] [CrossRef]
- Størkson, R.V.; Kjørsvik, A.; Tjølsen, A.; Hole, K. Lumbar catheterization of the spinal subarachnoid space in the rat. J. Neurosci. Methods 1996, 65, 167–172. [Google Scholar] [CrossRef]
- Abdus-Saboor, I.; Fried, N.T.; Lay, M.; Burdge, J.; Swanson, K.; Fischer, R.; Jones, J.; Dong, P.; Cai, W.; Guo, X.; et al. Development of a mouse pain scale using sub-second behavioral mapping and statistical modeling. Cell Rep. 2019, 28, 1623–1634.e4. [Google Scholar] [CrossRef] [Green Version]
- Pertovaara, A.; Kemppainen, P.; Johansson, G.; Karonen, S.L. Ischemic pain nonsegmentally produces a predominant reduction of pain and thermal sensitivity in man: A selective role for endogenous opioids. Brain Res. 1982, 251, 83–92. [Google Scholar] [CrossRef]
- Kilo, S.; Schmelz, M.; Koltzenburg, M.; Handwerker, H.O. Different patterns of hyperalgesia induced by experimental inflammation in human skin. Brain 1994, 117, 385–396. [Google Scholar] [CrossRef]
- Liu, M.G.; Chen, J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog. Neurobiol. 2014, 116, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wei, H.; Pertovaara, A.; Wang, J.; Carlson, S. Anxiety- and activity-related effects of paracetamol on healthy and neuropathic rats. Pharmacol. Res. Perspect. 2018, 6, e00367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Miller, M.; Shi, J.; Zhu, Y.; Kustov, M.; Tian, J.B.; Stevens, A.; Wu, M.; Xu, J.; Long, S.; Yang, P.; et al. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J. Biol. Chem. 2011, 286, 33436–33446. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Sagalajev, B.; Yüzer, M.A.; Koivisto, A.; Pertovaara, A. Regulation of neuropathic pain behavior by amygdaloid TRPC4/C5 channels. Neurosci. Lett. 2015, 608, 12–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Just, S.; Chenard, B.L.; Ceci, A.; Strassmaier, T.; Chong, J.A.; Blair, N.T.; Gallaschun, R.J.; Del Camino, D.; Cantin, S.; D’Amours, M.; et al. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. PLoS ONE 2018, 13, e0191225. [Google Scholar] [CrossRef]
- Han, D.W.; Kweon, T.D.; Lee, J.S.; Lee, Y.W. Antiallodynic effect of pregabalin in rat models of sympathetically maintained and sympathetic independent neuropathic pain. Yonsei Med. J. 2007, 48, 41–47. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Ailanen, L.; Morales, M.; Koivisto, A.; Pertovaara, A. Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1. Int. J. Mol. Sci. 2022, 23, 6629. https://doi.org/10.3390/ijms23126629
Wei H, Ailanen L, Morales M, Koivisto A, Pertovaara A. Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1. International Journal of Molecular Sciences. 2022; 23(12):6629. https://doi.org/10.3390/ijms23126629
Chicago/Turabian StyleWei, Hong, Liisa Ailanen, Miguel Morales, Ari Koivisto, and Antti Pertovaara. 2022. "Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1" International Journal of Molecular Sciences 23, no. 12: 6629. https://doi.org/10.3390/ijms23126629
APA StyleWei, H., Ailanen, L., Morales, M., Koivisto, A., & Pertovaara, A. (2022). Spinal TRPA1 Contributes to the Mechanical Hypersensitivity Effect Induced by Netrin-1. International Journal of Molecular Sciences, 23(12), 6629. https://doi.org/10.3390/ijms23126629