Unraveling the DNA Methylation in the rDNA Foci in Mutagen-Induced Brachypodium distachyon Micronuclei
Abstract
:1. Introduction
2. Results
2.1. The Presence of rDNA Signals in MH-Induced B. distachyon Micronuclei
2.2. The Presence of 5S and/or 35S rDNA and 5mC Signals in B. distachyon Micronuclei
2.3. Differences in DNA Methylation of 5S and 35S rDNA Foci in B. distachyon Micronuclei
3. Discussion
4. Materials and Methods
4.1. Plant Material, Mutagenic Treatment, and Slide Preparation
4.2. Immunodetection of 5-Methylcytosine
4.3. Probes Labeling and FISH Procedure
4.4. Image Acquisition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feitoza, L.; Guerra, M. Different types of plants chromatin-associated with modified histones H3 and H4 and methylated DNA. Genetica 2011, 139, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, X.; Singh, P.; Cui, Y.; Zimmerli, L.; Wu, K. Chromatin modifications and remodeling in plant abiotic stress responses. Biochim. Biophys. Acta—Gene Regul. Mech. 2012, 1819, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Braszewska-Zalewska, A.; Tylikowska, M.; Kwasniewska, J.; Szymanowska-Pulka, J. Epigenetic chromatin modifications in barley after mutagenic treatment. J. Appl. Genet. 2014, 55, 449–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, N.; Giri, S.K.; Singh, G.; Gill, R.; Kuma, A. Epigenetic regulation of heat and cold stress responses in crop plants. Plant Gene 2022, 11, 933. [Google Scholar] [CrossRef]
- Pandey, G.; Sharma, N.; Sahu, P.P.; Prasad, M. Chromatin-Based Epigenetic Regulation of Plant Abiotic Stress Response. Curr. Genet. 2016, 17, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Jovtchev, G.; Stergios, M.; Schubert, I. A comparison of N-methyl-N-nitrosourea-induced chromatid aberrations and micronuclei in barley meristems using FISH techniques. Mutat. Res. 2002, 517, 47–51. [Google Scholar] [CrossRef]
- Kwasniewska, J.; Bara, A.W. Plant Cytogenetics in the Micronuclei Investigation—The Past, Current Status, and Perspectives. Int. J. Mol. Sci. 2022, 23, 1306. [Google Scholar] [CrossRef]
- De Marco, A.; De Simone, C.; Reglione, M.; Lorenzoni, P. Influence of soil characteristics on the clastogenic activity of maleic hydrazide in root tips of Vicia faba. Mutat. Res. /Genet. Toxicol. 1995, 344, 5–12. [Google Scholar] [CrossRef]
- Marcano, L.; Carruyo, L.; Campo, A.D.; Montiel, X. Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environ. Res. 2004, 94, 221–226. [Google Scholar] [CrossRef]
- Juchimiuk-Kwasniewska, J.; Brodziak, L.; Maluszynska, J. FISH in an analysis of gamma ray-induced micronuclei formation in barley. J. Appl. Genet. 2011, 52, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Kus, A.; Kwasniewska, J.; Szymanowska-Pulka, J.; Hasterok, R. Dissecting the chromosomal composition of mutagen-induced micronuclei in Brachypodium distachyon using multicolor FISH. Ann. Bot. 2018, 122, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bara, A.W.; Braszewska, A.; Kwasniewska, J. DNA Methylation—An Epigenetic Mark in Mutagen-Treated Brachypodium distachyon Cells. Plants 2021, 10, 1408. [Google Scholar] [CrossRef] [PubMed]
- Fimognari, C.; Sauer-Nehls, S.; Braselmann, H.; Nusse, M. Analysis of radiation-induced micronuclei by FISH using a combination of painting and centromeric DNA probes. Mutagenesis 1997, 12, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leach, N.T.; Jackson-Cook, C. The application of spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) technology to determine the chromosomal content(s) of micronuclei. Mutat. Res. 2001, 495, 11–19. [Google Scholar] [CrossRef]
- Chung, H.W.; Kang, S.J.; Kim, S.Y. A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1,2,4-benzenetriol. Mutat. Res. 2002, 516, 49–56. [Google Scholar] [CrossRef]
- Norppa, H.; Falck, G.C. What do human micronuclei contain? Mutagenesis 2003, 18, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Puerto, S.; Surralles, J.; Ramirez, M.J.; Creus, A.; Marcos, R. Equal induction and persistence of chromosome aberrations involving chromosomes with heterogeneous lengths and gene densities. Cytogenet. Cell Genet. 1999, 87, 62–68. [Google Scholar] [CrossRef]
- Fauth, E.; Scherthan, H.; Zankl, H. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C– and diethylstilboestrol-induced micronuclei. Mutagenesis 2000, 15, 459–467. [Google Scholar] [CrossRef] [Green Version]
- Kus, A.; Kwasniewska, J.; Hasterok, R. Brachypodium distachyon—A useful model for classifying mutagen-induced micronuclei using multicolor FISH. PLoS ONE 2017, 12, e0170618. [Google Scholar] [CrossRef] [Green Version]
- Juchimiuk, J.; Hering, B.; Maluszynska, J. Multicolour FISH in an analysis of chromosome aberrations induced by N-nitroso-N-methylurea and maleic hydrazide in barley cells. J. Appl. Genet. 2007, 48, 99–106. [Google Scholar] [CrossRef]
- Huang, J.; Ma, L.; Yang, F.; Fei, S.Z.; Li, L. 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS ONE 2008, 3, e2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchurikov, N.A.; Fedoseeva, D.M.; Sosin, D.V.; Snezhkina, A.V.; Melnikova, N.V.; Kudryavtseva, A.V.; Kravatsky, Y.V.; Kretova, O.V. Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation. J. Mol. Cell Biol. 2015, 7, 366–382. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.J.; Neary, G.J.; Williamson, F.S. The relative biological efficiency of single doses of fast neutrons and gamma-rays on Vicia faba roots and the effect of oxygen: Part II. Chromosome damage: The production of micronuclei. Int. J. Radiat. Biol. 1959, 3, 216–229. [Google Scholar] [CrossRef]
- Guttenbach, M.; Schmid, M. Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte cultures. Exp. Cell Res. 1994, 211, 127–132. [Google Scholar] [CrossRef]
- Hovhannisyan, G.; Aroutiounian, R.; Liehr, T. Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C. J. Histochem. Cytochem. 2012, 60, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, A.T. Chromosome aberrations: Past, present and future. Mutat. Res. 2002, 504, 3–16. [Google Scholar] [CrossRef]
- Kus, A.; Szymanowska-Pułka, J.; Kwasniewska, J.; Hasterok, R. Detecting Brachypodium distachyon Chromosomes Bd4 and Bd5 in MH- and X-Ray-Induced Micronuclei Using mcFISH. Int. J. Mol. Sci. 2019, 20, 2848. [Google Scholar] [CrossRef] [Green Version]
- Borowska, N.; Idziak, D.; Hasterok, R. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment. Chromosome Res. 2011, 19, 955–967. [Google Scholar] [CrossRef] [Green Version]
- Kwasniewska, J.; Jaskowiak, J. Transcriptional activity of rRNA genes in barley cells after mutagenic treatment. PLoS ONE 2016, 11, e0156865. [Google Scholar] [CrossRef]
- Kwasniewska, J.; Grabowska, M.; Kwasniewski, M.; Kolano, B. Comet-FISH with rDNA probes for the analysis of mutagen-induced DNA damage in plant cells. Environ. Mol. Mutagen. 2012, 53, 369–375. [Google Scholar] [CrossRef]
- Kwasniewska, J.; Mikolajczyk, A. Influence of the Presence of B Chromosomes on DNA Damage in Crepis capillaris. PLoS ONE 2014, 9, e87337. [Google Scholar] [CrossRef] [PubMed]
- Rapp, A.; Bock, C.; Dittmar, H.; Greulich, K.O. UV-A breakage sensitivity of human chromosomes as measured by comet-FISH depends on gene density and not on the chromosomes size. J. Photochem. Photobiol. 2000, 56, 109–117. [Google Scholar] [CrossRef]
- Vaillant, I.; Paszkowski, J. Role of histone and DNA methylation in gene regulation. Curr. Opin. Plant Biol. 2007, 10, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Casacuberta, J.M.; Santiago, N. Plant LTR-retrotransposons and MITEs: Control of transposition and impact on the evolution of plant genes and genomes. Gene 2003, 311, 1–11. [Google Scholar] [CrossRef]
- Zhang, X.; Yazaki, J.; Sundaresan, A.; Cokus, S.; Chan, S.W.-L.; Chen, H.; Henderson, I.R.; Shinn, P.; Pellegrini, M.; Jacobsen, S.E.; et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006, 126, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Lind, M.I.; Spagopoulou, F. Evolutionary consequences of epigenetic inheritance. Heredity 2018, 121, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Thiebaut, F.; Hemerly, A.S.; Ferreira, P.C.G. A Role for Epigenetic Regulation in the Adaptation and Stress Responses of Non-model Plants. Front. Plant Sci. 2019, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Akhter, Z.; Bi, Z.; Ali, K.; Sun, C.; Fiaz, S.; Haider, F.U.; Bai, J. In Response to Abiotic Stress, DNA Methylation Confers EpiGenetic Changes in Plants. Plants 2021, 10, 1096. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Xia, H.; Wei, H.; Lou, Q.; Li, M.; Li, T.; Luo, L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci. Rep. 2017, 7, 39843. [Google Scholar] [CrossRef]
- Raju, S.K.K.; Shao, M.R.; Sanchez, R.; Xu, Y.Z.; Sandhu, A.; Graef, G.; Mackenzie, S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol. J. 2018, 16, 1836–1847. [Google Scholar] [CrossRef] [Green Version]
- Kundariya, H.; Yang, X.; Morton, K.; Sanchez, R.; Axtell, M.J.; Hutton, S.F.; Fromm, M.; Mackenzie, S.A. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat. Commun. 2020, 11, 5343. [Google Scholar] [CrossRef] [PubMed]
- Slotkin, R.K. Plant epigenetics: From genotype to phenotype and back again. Genome Biol. 2016, 17, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sestakova, S.; Salek, C.; Remesova, H. DNA methylation validation methods: A coherent review with practical comparison. Biol. Proced. Online 2019, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Matzke, M.A.; Mosher, R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014, 15, 394–408. [Google Scholar] [CrossRef]
- Cremonini, R.; Ruffini Castiglione, M.; Grif, V.G.; Kotseruba, V.V.; Punina, E.O.; Rodionov, A.V.; Muravenko, O.V.; Popov, K.V.; Samatadze, T.E.; Zelenin, A.V. Chromosome banding and DNA methylation patterns, chromatin organisation and nuclear DNA content in Zingeria biebersteiniana. Biol. Plant. 2003, 46, 543–550. [Google Scholar] [CrossRef]
- Suzuki, G.; Shiomi, M.; Morihana, S.; Yamamoto, M.; Mukai, Y. DNA methylation and histone modification in onion chromosomes. Genes Genetic Syst. 2010, 85, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Gernand, D.; Rutten, T.; Varshney, A.; Rubtsova, M.; Prodanovic, S.; Brüß, C.; Kumlehn, J.; Matzk, F.; Houben, A. Uniparental Chromosome Elimination at Mitosis and Interphase in Wheat and Pearl Millet Crosses Involves Micronucleus Formation, Progressive Heterochromatinization, and DNA Fragmentation. Plant Cell 2005, 17, 2431–2438. [Google Scholar] [CrossRef] [Green Version]
- Goday, C.; Ruiz, M.F. Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies. J. Cell. Sci. 2002, 115, 4765–4775. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Mochizuki, K.; Gorovsky, M.A. Histone H3 lysine 9 methylation is required for DNA elimination in developing macronuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 2004, 10, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Vongs, A.; Kakutani, T.; Martienssen, R.A.; Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 1993, 260, 1926–1928. [Google Scholar] [CrossRef]
- Mathieu, O.; Yasushi, Y.; Sugiura, M.; Picard, G.; Tourmente, S. 5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis. Plant J. 2002, 29, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Fauth, E.; Zankl, H. Comparison of spontaneous and idoxyuridine-induced micronuclei by chromosome painting. Mutat. Res. 1999, 440, 147–156. [Google Scholar] [CrossRef]
- Kovarik, A.; Matyasek, R.; Leitch, A.; Gazdova, B.; Fulnecek, J.; Bezdek, M. Variability in CNG methylation in higher plant genomes. Gene 1997, 204, 25–33. [Google Scholar] [CrossRef]
- Kovarik, A.; Koukalova, B.; Lim, K.Y.; Matyasek, R.; Lichtenstein, C.P.; Leitch, A.R.; Bezdek, M. Comparative analysis of DNA methylation in tobacco heterochromatic sequences. Chromosome Res. 2000, 8, 527–541. [Google Scholar] [CrossRef]
- Chen, Z.J.; Pikaard, C.S. Epigenetic silencing of RNA polymerase I transcription: A role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 1997, 11, 2124–2136. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.; Hasterok, R. BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2007, 2, 88–98. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bara-Halama, A.W.; Idziak-Helmcke, D.; Kwasniewska, J. Unraveling the DNA Methylation in the rDNA Foci in Mutagen-Induced Brachypodium distachyon Micronuclei. Int. J. Mol. Sci. 2022, 23, 6797. https://doi.org/10.3390/ijms23126797
Bara-Halama AW, Idziak-Helmcke D, Kwasniewska J. Unraveling the DNA Methylation in the rDNA Foci in Mutagen-Induced Brachypodium distachyon Micronuclei. International Journal of Molecular Sciences. 2022; 23(12):6797. https://doi.org/10.3390/ijms23126797
Chicago/Turabian StyleBara-Halama, Adrianna W., Dominika Idziak-Helmcke, and Jolanta Kwasniewska. 2022. "Unraveling the DNA Methylation in the rDNA Foci in Mutagen-Induced Brachypodium distachyon Micronuclei" International Journal of Molecular Sciences 23, no. 12: 6797. https://doi.org/10.3390/ijms23126797
APA StyleBara-Halama, A. W., Idziak-Helmcke, D., & Kwasniewska, J. (2022). Unraveling the DNA Methylation in the rDNA Foci in Mutagen-Induced Brachypodium distachyon Micronuclei. International Journal of Molecular Sciences, 23(12), 6797. https://doi.org/10.3390/ijms23126797