A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius
Abstract
:1. Introduction
2. Taxonomy of the Genus Carassius
3. Early Cytogenetic Studies of Carassius Karyotypes
4. Synergy of Conventional Chromosome Banding and Ribosomal Fluorescent In Situ Hybridization
5. Asexuality, Unisexuality, and Sexuality
6. Tell Me Your Ploidy and I Will Tell You Who You Are: Variability in Ploidy Levels and Chromosome Numbers
7. Fluorescent In Situ Hybridization vs. Cryptic Interspecies Hybridization
8. Equilibrium between Quantitative Gynogenesis and Qualitative Sexuality (Red Queen Hypothesis)
9. Dual Mode of Sex Determination
10. Perspective of a Future Research
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMA | Chromomycin A |
DAPI | 4’,6-diamidino-2-phenylindole |
FISH | Fluorescent in situ hybridization |
GISH | Genomic in situ hybridization |
NOR | Nucleolar organizer region |
rDNA | Ribosomal DNA |
SNPs | Single Nucleotide Polymorphisms |
Specific Terms | |
BIOTYPE | A summary term for Carassius individuals with a certain ploidy level or reproduction mode (e.g., diploid, triploid, sexual, gynogenetic biotype). Based on sequencing data, it is possible to classify each biotype into separate mitochondrial taxa |
COMPLEX | An evolutionary group of related taxa involving all possible biotypes, hybrids, non-specific genotypes assigned to them due to morphological and genetic similarities between each other |
FORM | A low taxonomic unit within a species or biotype with unified morphological traits. Often varying in body colour, shape, fin length etc. (e.g., Carassius domesticated form, Carassius xantic form) |
HOLOTYPE | A single physical example (or illustration) of an organism, known to have been used when the species (or lower-ranked taxon) was formally described. It is either the single such physical example or one of several such, but explicitly designated as the holotype |
HYBRID SPECIES | Hybridization gives rise to novel allelic combinations that contribute to the spread and maintenance of stabilized hybrid lineages generally recognized as species. The process of hybrid species formation is a hybrid speciation |
HYBRID | In the strict sense, a hybrid is the first offspring resulting from the reproduction of two or more distinct species. When hybrids mate with parental species the resulting offspring is called backcross |
NEOTYPE | A specimen later selected to serve as the single type specimen when an original holotype has been lost or destroyed or where the original author never cited a specimen |
SPECIES | A basic (basal) taxon of hierarchical systematic classification defined as a related group of organisms of the same history able to cross between each other (but usually they are not able to cross between another species) |
TAXON | (in plural TAXA) A group of one or more populations of an organism or organisms which form a taxonomic unit |
References
- Yang, L.; Mayden, R.L.; Sado, T.; He, S.; Saitoh, K.; Miya, M. Molecular phylogeny of the fishes traditionally referred to Cyprinini sensu stricto (Teleostei: Cypriniformes). Zool. Scr. 2010, 39, 527–550. [Google Scholar] [CrossRef]
- Hosoya, K. Cyprinidae. In Fishes Japan with Pict. Keys to Species; Nakabō, T., Ed.; Tokai University Press: Tokyo, Japan, 2002; pp. 253–254. (In Japanese) [Google Scholar]
- Kalous, L.; Bohlen, J.; Rylková, K.; Petrtýl, M. Hidden diversity within the Prussian carp and designation of a neotype for Carassius gibelio (Teleostei: Cyprinidae). Ichthyol. Explor. Freshwaters 2012, 23, 11–18. [Google Scholar]
- Baruš, V.; Oliva, O. Mihulovci (Petromyzontes) a Ryby (Osteichthyes); Academia: Prague, Czech Republic, 1995; p. 623. [Google Scholar]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Kottelat: Cornol, Switzerland; Freyhof: Berlin, Germany, 2007; p. 646. [Google Scholar]
- Makino, S. A Karyological Study of Gold-fish of Japan. Cytologia 1941, 12, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Ojima, Y.; Hitotsumachi, S. Cytogenetic studies in lower vertebrates. IV. a note on the chromosomes of the carp (Cyprinus carpio) in comparison with those of the funa and the goldfish (Carassius auratus). Jpn. J. Genet. 1967, 42, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Ojima, Y.; Takai, A. Further cytogenetical studies on the origin of the gold-fish. Proc. Japan Acad. Ser. B Phys. Biol. Sci. 1979, 55, 346–350. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, S.Y.; Luo, J.; Murphy, R.W.; Du, R.; Wu, S.F.; Zhu, C.L.; Li, Y.; Poyarkov, A.D.; Nguyen, S.N.; et al. Quaternary palaeoenvironmental oscillations drove the evolution of the eurasian Carassius auratus complex (cypriniformes, cyprinidae). J. Biogeogr. 2012, 39, 2264–2278. [Google Scholar] [CrossRef]
- Rylková, K.; Kalous, L.; Bohlen, J.; Lamatsch, D.K.; Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus Carassius (Teleostei: Cyprinidae) with focus on natural and anthropogenic arrivals in Europe. Aquaculture 2013, 380–383, 13–20. [Google Scholar] [CrossRef]
- Cheng, L.; Lu, C.; Wang, L.; Li, C.; Yu, X. Coexistence of three divergent mtdna lineages in northeast asia provides new insights into phylogeography of goldfish (Carssius auratus). Animals 2020, 10, 1785. [Google Scholar] [CrossRef]
- Takada, M.; Tachihara, K.; Kon, T.; Yamamoto, G.; Iguchi, K.; Miya, M.; Nishida, M. Biogeography and evolution of the Carassius auratus-complex in East Asia. BMC Evol. Biol. 2010, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, G.; Takada, M.; Iguchi, K.; Nishida, M. Genetic constitution and phylogenetic relationships of Japanese crucian carps (Carassius). Ichthyol. Res. 2010, 57, 215–222. [Google Scholar] [CrossRef]
- Iguchi, K.; Yamamoto, G.; Matsubara, N.; Nishida, M. Morphological and genetic analysis of fish of a Carassius complex (Cyprinidae) in Lake Kasumigaura with reference to the taxonomic status of two all-female triploid morphs. Biol. J. Linn. Soc. 2003, 79, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Berg, L.S. Über Carassius carassius und C. gibelio. Zool. Anz. 1932, 98, 15–18. [Google Scholar]
- Kalous, L.; Knytl, M. Karyotype diversity of the offspring resulting from reproduction experiment between diploid male and triploid female of silver Prussian carp, Carassius gibelio (Cyprinidae, Actinopterygii). Folia Zool. 2011, 60, 115–121. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Gui, J.F. Genetic Evidence for Gonochoristic Reproduction in Gynogenetic Silver Crucian Carp (Carassius auratus gibelio Bloch) as Revealed by RAPD Assays. J. Mol. Evol. 2000, 51, 498–506. [Google Scholar] [CrossRef]
- Wen, M.; Feron, R.; Pan, Q.; Guguin, J.; Jouanno, E.; Herpin, A.; Klopp, C.; Cabau, C.; Zahm, M.; Parrinello, H.; et al. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genom. 2020, 21, 1–12. [Google Scholar] [CrossRef]
- Balon, E.K. About the oldest domesticates among fishes. J. Fish Biol. 2004, 65, 1–27. [Google Scholar] [CrossRef]
- Hänfling, B.; Bolton, P.; Harley, M.; Carvalho, G.R.; Hanfling, B.; Bolton, P.; Harley, M.; Carvalho, G.R. A molecular approach to detect hybridisation between crucian carp (Carassius carassius) and non-indigenous carp species (Carassius spp. and Cyprinus carpio). Freshw. Biol. 2005, 50, 403–417. [Google Scholar] [CrossRef]
- Knytl, M.; Kalous, L.; Symonová, R.; Rylková, K.; Ráb, P. Chromosome Studies of European Cyprinid Fishes: Cross-Species Painting Reveals Natural Allotetraploid Origin of a Carassius Female with 206 Chromosomes. Cytogenet. Genome Res. 2013, 139, 276–283. [Google Scholar] [CrossRef]
- Paepke, H.-J. Bloch’s Fish Collection in the Museum fur Naturkunde der Humboldt-Universitat zu Berlin: An Illustrated Catalog and Historical Account. Thesis Zoologicae 31, ARG Gantner Verlag KG, Lund, Sweden, 1999. [Google Scholar]
- Sakai, H.; Iguchi, K.; Yamazaki, Y.; Sideleva, V.G.; Goto, A. Morphological and mtDNA sequence studies on three crucian carps (Carassius: Cyprinidae) including a new stock from the Ob river system, Kazakhstan. J. Fish Biol. 2009, 74, 1756–1773. [Google Scholar] [CrossRef]
- Makino, S. Notes on the chromosomes of some fresh-water Teleosts. Jpn. J. Genet. 1934, 9, 100–103. [Google Scholar]
- Cherfas, N.B. Natural triploidy in females of the unisexual form of silver crucian carp (Carassius auratus gibelio Bloch). Genetika 1966, 5, 16–24. [Google Scholar]
- Knytl, M.; Fornaini, N.R. Measurement of Chromosomal Arms and FISH Reveal Complex Genome Architecture and Standardized Karyotype of Model Fish, Genus Carassius. Cells 2021, 10, 2343. [Google Scholar] [CrossRef] [PubMed]
- Zan, R.G.; Song, Z. Analysis and comparison between the karyotypes of Cyprinus carpio and Carassius auratus as well as Aristichthys nobilis and Hypophthalmichthys molitrix. Acta Genet. Sin. 1980, 7, 72–77. [Google Scholar]
- Zan, R.G. Studies of sex chromosomes and C-banding karyotypes of two forms of Carassius auratus in Kunming Lake. Acta Genet. Sin. 1982, 9, 32–39. [Google Scholar]
- Wang, R.F.; Shi, L.M.; He, W.S. A Comparative Study of the Ag-NORS of Carassius auratus from Different Geographic Districts. Zool. Res. 1988, 9, 165–169. [Google Scholar]
- Wang, R.F.; Shi, L.M.; He, W.S. The karyotype of Carassius auratus from ER hai Lake. Zool. Res. 1989, 10, 169–170. [Google Scholar]
- Kobayasi, H.; Ochi, H.; Takeuchi, N. Chromosome studies of the silver crucian carps (Carassius auratus gibelio) from the valley of the Amur river, and their progenies. Jpn. Women’s Univ. 1973, 20, 83–88. [Google Scholar]
- Sofradžija, A.; Berberović, L.; Hadžiselimović, R. Hromosomske garniture karaša (Carassius carassius) i babuške (Carassius auratus gibelio). Ichthyologia 1978, 10, 135–148. [Google Scholar]
- Peňáz, M.; Rab, P.; Prokeš, M. Cytological Analysis, Gynogenesis and Early Development of Carassius auratus gibelio. In Acta Scientiarum Naturalium Academiae Scientiarum Bohemoslovacae, Brno. Nova Series; Academia: Prague, Czech Republic, 1979; pp. 1–33. [Google Scholar]
- Vujosevic, M.; Zivkovic, C.; Desanka, R.; Jurisic, S.; Cakic, P. The chromosomes of 9 fish species from Dunav basin in Yugoslavia. Ichthyologia 1983, 15, 29–40. [Google Scholar]
- Mayr, B.; Ráb, P.; Kalat, M. NORs and counterstain-enhanced fluorescence studies in Cyprinidae of different ploidy level. Genetica 1986, 69, 111–118. [Google Scholar] [CrossRef]
- Fister, S.; Soldatovic, B. Karyotype analysis of a gynogenetic population of Carassius auratus gibelio Bloch (Cyprinidae) from Pancevacki Rit [Yugoslavia]. Acta Vet. 1989, 39, 259–267. [Google Scholar]
- Fan, Z.; Shen, J. Studies on the evolution of bisexual reproduction in crucian carp (Carassius auratus gibelio Bloch). Aquaculture 1990, 84, 235–244. [Google Scholar] [CrossRef]
- Boron, A. Karyotypes of diploid and triploid silver crucian carp Carassius auratus gibelio (Bloch). Cytobios 1994, 80, 117–124. [Google Scholar]
- Zhou, L.; Gui, J.F. Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica 2002, 115, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Boroń, A.; Szlachciak, J.; Juchno, D.; Grabowska, A.; Jagusztyn, B.; Porycka, K. Karyotype, morphology, and reproduction ability of the Prussian carp, Carassius gibelio (Actinopterygii: Cypriniformes: Cyprinidae), from unisexual and bisexual populations in Poland. Acta Ichthyol. Piscat. 2011, 41, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Kobayasi, H.; Kawashima, Y.; Takeuchi, N. Comparative Chromosome Studies in the Genus Carassius, Especially with a Finding of Polyploidy in the Ginbuna (C. auratus langsdorfii). Jpn. J. Ichthyol. 1970, 17, 153–160. [Google Scholar] [CrossRef]
- Kobayasi, H.; Ochi, H.; Takeuchi, N. Chromosome studies in the genus Carassius: Comparison of C. auratus grandoculis, C. auratus buergeri, and C. auratus langsdorfii. Jpn. J. Ichthyol. 1973, 20, 6. [Google Scholar] [CrossRef]
- Muramoto, J.A. Note on Triploidy of the Funa. Proc. Jpn. Acad. 1975, 51, 583–587. [Google Scholar] [CrossRef]
- Kobayasi, H.; Nakano, K.; Nakamura, M. On the hybrids, 4n Ginbuna (Carassius auratus langsdorfii) x Kinbuna (C. auratus subsp.), and their chromosomes. Bull. Jpn. Soc. Sci. Fish. 1977, 43, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Kalous, L.; Šlechtová, V.; Bohlen, J.; Petrtýl, M.; Švátora, M. First European record of Carassius langsdorfii from the Elbe basin. J. Fish Biol. 2007, 70, 132–138. [Google Scholar] [CrossRef]
- Ojima, Y.; Hitotsumachi, S.; Makino, S. Cytogenetic Studies in Lower Vertebrates. I A Preliminary Report on the Chromosomes of the Funa (Carassius auratus) and Gold-fish (A Revised Study). Proc. Jpn. Acad. 1966, 42, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Ueda, T.; Ojima, Y. Differential Chromosomal Characteristics in the Funa Subspecies (Carassius). Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1978, 54, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Ojima, Y.; Yamano, T. The assignment of the nucleolar organizer in the chromosomes of the funa (Carassius, cyprinidae, pisces). Proc. Jpn. Acad. Ser. B 1980, 56, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Knytl, M.; Kalous, L.; Rab, P. Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae). Comp. Cytogenet. 2013, 7, 205–213. [Google Scholar] [CrossRef]
- Spoz, A.; Boron, A.; Porycka, K.; Karolewska, M.; Ito, D.; Abe, S.; Kirtiklis, L.; Juchno, D. Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes. Comp. Cytogenet. 2014, 8, 233–248. [Google Scholar] [CrossRef]
- Xiao, J.; Zou, T.; Chen, Y.; Chen, L.; Liu, S.; Tao, M.; Zhang, C.; Zhao, R.; Zhou, Y.; Long, Y.; et al. Coexistence of diploid, triploid and tetraploid crucian carp (Carassius auratus) in natural waters. BMC Genet. 2011, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.F.; Wang, Z.W.; Zhou, L.; Jiang, L.; Zhang, X.J.; Apalikova, O.V.; Brykov, V.A.; Gui, J.F. High male incidence and evolutionary implications of triploid form in northeast Asia Carassius auratus complex. Mol. Phylogenet. Evol. 2013, 66, 350–359. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Zhou, G.; Zhang, X.; Luo, C.; Feng, H.; He, X.; Zhu, G.; Yang, H. The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture 2001, 192, 171–186. [Google Scholar] [CrossRef]
- Shao, G.M.; Li, X.Y.; Wang, Y.; Wang, Z.W.; Li, Z.; Zhang, X.J.; Zhou, L.; Gui, J.F. Whole genome incorporation and epigenetic stability in a newly synthetic allopolyploid of gynogenetic gibel carp. Genome Biol. Evol. 2018, 10, 2394–2407. [Google Scholar] [CrossRef]
- Ohno, S. Evolution by Gene Duplication; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar] [CrossRef] [Green Version]
- Takai, A.; Ojima, Y. The assignment of the nucleolus organizer regions in the chromosomes of the carp, the funa and their hybrids (Cyprinidae, Pisces). Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1982, 58, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Knytl, M.; Smolík, O.; Kubíčková, S.; Tlapáková, T.; Evans, B.J.; Krylov, V. Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS ONE 2017, 12, e0177087. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, M.d.B.; Ráb, P.; Ezaz, T.; Bertollo, L.A.C.; Lavoué, S.; de Oliveira, E.A.; Sember, A.; Molina, W.F.; de Souza, F.H.S.; Majtánová, Z.; et al. Deciphering the evolutionary history of arowana fishes (Teleostei, osteoglossiformes, osteoglossidae): Insight from comparative cytogenomics. Int. J. Mol. Sci. 2019, 20, 4296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, W.F.; Costa, G.W.; Cunha, I.M.; Bertollo, L.A.; Ezaz, T.; Liehr, T.; Cioffi, M.B. Molecular cytogenetic analysis in freshwater prawns of the genus macrobrachium (Crustacea: Decapoda: Palaemonidae). Int. J. Mol. Sci. 2020, 21, 2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenjundaeng, P.; Supiwong, W.; Sassi, F.M.; Bertollo, L.A.; Rab, P.; Kretschmer, R.; Tanomtong, A.; Suwannapoom, C.; Reungsing, M.; De Bello Cioffi, M. Chromosomes of asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus osteochilus (cyprinidae, labeoninae, “osteochilini”). Genet. Mol. Biol. 2020, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Rovatsos, M.; Schillaci, O.; Dumas, F. Evolutionary insight on localization of 18S, 28S rDNA genes on homologous chromosomes in Primates genomes. Comp. Cytogenet. 2018, 12, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Milioto, V.; Vlah, S.; Mazzoleni, S.; Rovatsos, M.; Dumas, F. Chromosomal Localization of 18S-28S rDNA and (TTAGGG)n Sequences in Two South African Dormice of the Genus Graphiurus (Rodentia: Gliridae). Cytogenet. Genome Res. 2019, 158, 145–151. [Google Scholar] [CrossRef]
- Scardino, R.; Milioto, V.; Proskuryakova, A.A.; Serdyukova, N.A.; Perelman, P.L.; Dumas, F. Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes 2020, 11, 383. [Google Scholar] [CrossRef] [Green Version]
- Sember, A.; Pelikánová, Š.; de Bello Cioffi, M.; Šlechtová, V.; Hatanaka, T.; Do Doan, H.; Knytl, M.; Ráb, P. Taxonomic Diversity Not Associated with Gross Karyotype Differentiation: The Case of Bighead Carps, Genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae). Genes 2020, 11, 479. [Google Scholar] [CrossRef]
- Kostmann, A.; Augstenová, B.; Frynta, D.; Kratochvíl, L.; Rovatsos, M. Cytogenetically elusive sex chromosomes in scincoidean lizards. Int. J. Mol. Sci. 2021, 22, 8670. [Google Scholar] [CrossRef]
- Sumida, M.; Kato, Y.; Kurabayashi, A. Sequencing and analysis of the internal transcribed spacers (ITSs) and coding regions in the EcoR I fragment of the ribosomal DNA of the Japanese pond frog Rana nigromaculata. Genes Genet. Syst. 2004, 79, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Knytl, M.; Kalous, L.; Rylková, K.; Choleva, L.; Merilä, J.; Ráb, P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: A threat for the threatened crucian carp, C. carassius, L. PLoS ONE 2018, 13, e0190924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.P.; Ma, D.M.; Gui, J.F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosom. Res. 2006, 14, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Fujitani, H. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi). Genes Genet. Syst. 1998, 73, 9–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Murakami, M.; Fujimoto, T.; Yamaha, E.; Arai, K. Genetic characterization of the progeny of a pair of the tetraploid silver crucian carp Carassius auratus langsdorfii. Fish. Sci. 2013, 79, 935–941. [Google Scholar] [CrossRef]
- Zhu, H.P.; Gui, J.F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture 2007, 265, 109–117. [Google Scholar] [CrossRef]
- Lu, M.; Wang, Z.W.; Hu, C.J.; Zhou, L.; Gui, J.F. Genetic identification of a newly synthetic allopolyploid strain with 206 chromosomes in polyploid gibel carp. Aquac. Res. 2018, 49, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hubbs, C.L.; Hubbs, L.C. Apparent Parthenogenesis in Nature, in a Form of Fish of Hybrid Origin. Science 1932, 76, 628–630. [Google Scholar] [CrossRef]
- Neaves, W.B.; Baumann, P. Unisexual reproduction among vertebrates. Trends Genet. 2011, 27, 81–88. [Google Scholar] [CrossRef]
- Jiang, Y.G.; Liang, S.C.; Chen, B.D.; Yu, H.X.; Shan, S.X.; Yang, D.; Lin, S.; Shen, G.; Chen, B.D.; Liang, S.C.; et al. Biological effect of heterologous sperm on gynogenetic offspring in Carassius auratus gibelio. Acta Hydrobiol. Sin. 1983, 8, 1–16. [Google Scholar]
- Yi, M.S.; Li, Y.Q.; Liu, J.D.; Zhou, L.; Yu, Q.X.; Gui, J.F. Molecular cytogenetic detection of paternal chromosome fragments in allogynogenetic gibel carp, Carassius auratus gibelio Bloch. Chromosom. Res. 2003, 11, 665–671. [Google Scholar] [CrossRef]
- Gui, J.; Zhou, L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci. China Life Sci. 2010, 53, 409–415. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, M.; Zhou, L.; Li, Z.; Liu, Z.; Li, X.Y.; Liu, X.L.; Liu, W.; Gui, J.F. Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci. Rep. 2015, 5, 10898. [Google Scholar] [CrossRef]
- Yamashita, M.; Jiang, J.; Onozato, H.; Nakanishi, T.; Nagahama, Y. A Tripolar Spindle Formed at Meiosis I Assures the Retention of the Original Ploidy in the Gynogenetic Triploid Crucian Carp, Ginbuna Carassius auratus langsdorfii. (fish oocytes/gynogenesis/meiosis/spindle formation/histone H1 kinase). Dev. Growth Differ. 1993, 35, 631–636. [Google Scholar] [CrossRef]
- Toth, B.; Varkonyi, E.; Hidas, A.; Edvine Meleg, E.; Varadi, L. Genetic analysis of offspring from intra- and interspecific crosses of Carassius auratus gibelio by chromosome and RAPD analysis. J. Fish Biol. 2005, 66, 784–797. [Google Scholar] [CrossRef]
- Flajšhans, M.; Rodina, M.; Halačka, K.; Vetešník, L.; Gela, D.; Lusková, V.; Lusk, S. Characteristics of sperm of polyploid Prussian carp Carassius gibelio. J. Fish Biol. 2008, 73, 323–328. [Google Scholar] [CrossRef]
- Chiarelli, B.; Ferrantelli, O.; Cucchi, C. The caryotype of some teleostea fish obtained by tissue culture in vitro. Experientia 1969, 25, 426–427. [Google Scholar] [CrossRef]
- Raicu, P.; Taisescu, E.; Banarescu, P. Carassius carassius and Carassius auratus, a pair of diploid and tetraploid representative species (Pices, Cyprinidae). Cytologia 1981, 46, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Gui, J.F.; Liang, S.C.; Zhu, L.F.; Jiang, Y.G. Discovery of two different reproductive development modes of the eggs of artificial multiple tetraploid allogynogenetic Silver crucian carp. Chin. Sci. Bull. 1993, 38, 332–337. [Google Scholar]
- Lamatsch, D.; Stöck, M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In Lost Sex; Schöne, I., Martens, K., van Dijk, P., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 399–432. [Google Scholar]
- Linhart, O.; Flajšhans, M.; Kvasnička, P. Induced triploidy in the common carp (Cyprinus carpio L.): A comparison of two methods. Aquat. Living Resour. 1991, 4, 139–145. [Google Scholar] [CrossRef]
- Prokešová, Š.; Ghaibour, K.; Liška, F.; Klein, P.; Fenclová, T.; Štiavnická, M.; Hošek, P.; Žalmanová, T.; Hošková, K.; Řimnáčová, H.; et al. Acute low-dose bisphenol S exposure affects mouse oocyte quality. Reprod. Toxicol. 2020, 93, 19–27. [Google Scholar] [CrossRef]
- Eng, W.H.; Ho, W.S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Seroussi, E.; Knytl, M.; Pitel, F.; Elleder, D.; Krylov, V.; Leroux, S.; Morisson, M.; Yosefi, S.; Miyara, S.; Ganesan, S.; et al. Avian Expression Patterns and Genomic Mapping Implicate Leptin in Digestion and TNF in Immunity, Suggesting That Their Interacting Adipokine Role Has Been Acquired Only in Mammals. Int. J. Mol. Sci. 2019, 20, 4489. [Google Scholar] [CrossRef] [Green Version]
- Knytl, M.; Tlapakova, T.; Vankova, T.; Krylov, V. Silurana Chromosomal Evolution: A New Piece to the Puzzle. Cytogenet. Genome Res. 2018, 156, 223–228. [Google Scholar] [CrossRef]
- Lampert, K.P.; Schartl, M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 2901–2909. [Google Scholar] [CrossRef] [Green Version]
- Li, J.T.; Wang, Q.; Huang Yang, M.D.; Li, Q.S.; Cui, M.S.; Dong, Z.J.; Wang, H.W.; Yu, J.H.; Zhao, Y.J.; Yang, C.R.; et al. Parallel subgenome structure and divergent expression evolution of allo-tetraploid common carp and goldfish. Nat. Genet. 2021, 53, 1493–1503. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.Y.; Xu, W.J.; Wang, K.; Wu, B.; Xu, M.; Chen, Y.; Miao, L.j.; Wang, Z.W.; Li, Z.; et al. Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat. Ecol. Evol. 2022. [Google Scholar] [CrossRef]
- Haynes, G.D.; Gongora, J.; Gilligan, D.M.; Grewe, P.; Moran, C.; Nicholas, F.W. Cryptic hybridization and introgression between invasive Cyprinid species Cyprinus carpio and Carassius auratus in Australia: Implications for invasive species management. Anim. Conserv. 2012, 15, 83–94. [Google Scholar] [CrossRef]
- Wouters, J.; Janson, S.; Lusková, V.; Olsén, K.H. Molecular identification of hybrids of the invasive gibel carp Carassius auratus gibelio and crucian carp Carassius carassius in Swedish waters. J. Fish Biol. 2012, 80, 2595–2604. [Google Scholar] [CrossRef]
- Papoušek, I.; Vetešník, L.; Halačka, K.; Lusková, V.; Humpl, M.; Mendel, J. Identification of natural hybrids of gibel carp Carassius auratus gibelio (Bloch) and crucian carp Carassius carassius (L.) from lower Dyje River floodplain (Czech Republic). J. Fish Biol. 2008, 72, 1230–1235. [Google Scholar] [CrossRef]
- Smartt, J. A possible genetic basis for species replacement: Preliminary results of interspecific hybridisation between native crucian carp Carassius carassius (L.) and introduced goldfish Carassius auratus (L.). Aquat. Invasions 2007, 2, 59–62. [Google Scholar] [CrossRef]
- Mezhzherin, S.V.; Kokodii, S.V.; Kulish, A.V.; Verlatii, D.B.; Fedorenko, L.V. Hybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybridsHybridization of crucian carp Carassius carassius (Linnaeus, 1758) in Ukrainian reservoirs and the genetic structure of hybrids. Cytol. Genet. 2012, 46, 28–35. [Google Scholar] [CrossRef]
- Targueta, C.P.; Krylov, V.; Nondilo, T.E.; Lima, J.; Lourenço, L.B. Sex chromosome evolution in frogs—Helpful insights from chromosome painting in the genus Engystomops. Heredity 2021, 126, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Knytl, M.; Fornaini, N.R.; Bergelová, B.; Gvoždík, V.; Černohorská, H.; Kubíčková, S.; Fokam, E.B.; Evans, B.J.; Krylov, V. Divergent Subgenome Evolution in the Allotetraploid Frog Xenopus Calcaratus. PREPRINT, Version 2, available at Research Square. pp. 1–30. Available online: https://www.researchsquare.com/article/rs-1690259/v2 (accessed on 9 June 2022). [CrossRef]
- Perdikaris, C.; Ergolavou, A.; Gouva, E.; Nathanailides, C.; Chantzaropoulos, A.; Paschos, I. Carassius gibelio in Greece: The dominant naturalised invader of freshwaters. Rev. Fish Biol. Fish. 2012, 22, 17–27. [Google Scholar] [CrossRef]
- Elgin, E.; Tunna, H.; Jackson, L. First confirmed records of Prussian carp, Carassius gibelio (Bloch, 1782) in open waters of North America. BioInvasions Rec. 2014, 3, 275–282. [Google Scholar] [CrossRef]
- Khosravi, M.; Abdoli, A.; Tajbakhsh, F.; Ahmadzadeh, F.; Nemati, H.; Kiabi, B.H. An Effort toward Species Delimitation in the Genus Carassius (Cyprinidae) using Morphology and the Related Challenges: A Case Study from Inland Waters of Iran. J. Ichthyol. 2022, 62, 185–194. [Google Scholar] [CrossRef]
- Sayer, C.D.; Copp, G.H.; Emson, D.; Godard, M.J.; Ziȩba, G.; Wesley, K.J. Towards the conservation of crucian carp Carassius carassius: Understanding the extent and causes of decline within part of its native English range. J. Fish Biol. 2011, 79, 1608–1624. [Google Scholar] [CrossRef]
- Tarkan, A.S.; Gaygusuz, Ö.; Gürsoy Gaygusuz, Ç.; Saç, G.; Copp, G.H. Circumstantial evidence of gibel carp, Carassius gibelio, reproductive competition exerted on native fish species in a mesotrophic reservoir. Fish. Manag. Ecol. 2012, 19, 167–177. [Google Scholar] [CrossRef]
- Lively, C.M.; Craddock, C.; Vrijenhoek, R.C. Red Queen hypothesis supported by parasitism in sexual and clonal fish. Nature 1990, 344, 864–866. [Google Scholar] [CrossRef]
- Daněk, T.; Kalous, L.; Veselý, T.; Krásová, E.; Reschová, S.; Rylková, K.; Kulich, P.; Petrtýl, M.; Pokorová, D.; Knytl, M. Massive mortality of Prussian carp Carassius gibelio in the upper Elbe basin associated with herpesviral hematopoietic necrosis (CyHV-2). Dis. Aquat. Organ. 2012, 102, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Boitard, P.M.; Baud, M.; Labrut, S.; de Boisséson, C.; Jamin, M.; Bigarré, L. First detection of Cyprinid Herpesvirus 2 (CyHV-2) in goldfish (Carassius auratus) in France. J. Fish Dis. 2016, 39, 673–680. [Google Scholar] [CrossRef]
- Ito, T.; Kurita, J.; Haenen, O. Importation of CyHV-2-infected goldfish into the Netherlands. Dis. Aquat. Organ. 2017, 126, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, P.; Zhou, Y.; Wang, K.; Geng, Y.; Lai, W.; Huang, X.; Chen, D.; Guo, H.; Fang, J.; Chen, Z.; et al. First report of Cyprinid herpesvirus 2 outbreak in cultured gibel carp, Carassius auratus gibelio at low temperature. J. World Aquac. Soc. 2020, 51, 1208–1220. [Google Scholar] [CrossRef]
- Thangaraj, R.S.; Nithianantham, S.R.; Dharmaratnam, A.; Kumar, R.; Pradhan, P.K.; Thangalazhy Gopakumar, S.; Sood, N. Cyprinid herpesvirus-2 (CyHV-2): A comprehensive review. Rev. Aquac. 2021, 13, 796–821. [Google Scholar] [CrossRef]
- Hakoyama, H.; Nishimura, T.; Matsubara, N.; Iguchi, K. Difference in parasite load and nonspecific immune reaction between sexual and gynogenetic forms of Carassius auratus. Biol. J. Linn. Soc. 2001, 72, 401–407. [Google Scholar] [CrossRef]
- Devlin, R.H.; Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208, 191–364. [Google Scholar] [CrossRef]
- Yamamoto, T.O.; Kajishima, T. Sex hormone induction of sex reversal in the goldfish and evidence for male heterogamity. J. Exp. Zool. 1968, 168, 215–221. [Google Scholar] [CrossRef]
- Goto-Kazeto, R.; Abe, Y.; Masai, K.; Yamaha, E.; Adachi, S.; Yamauchi, K. Temperature-dependent sex differentiation in goldfish: Establishing the temperature-sensitive period and effect of constant and fluctuating water temperatures. Aquaculture 2006, 254, 617–624. [Google Scholar] [CrossRef]
- Li, X.Y.; Gui, J.F. Diverse and variable sex determination mechanisms in vertebrates. Sci. China Life Sci. 2018, 61, 1503–1514. [Google Scholar] [CrossRef]
- Rissanen, E.; Tranberg, H.K.; Sollid, J.; Nilsson, G.E.; Nikinmaa, M. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius). J. Exp. Biol. 2006, 209, 994–1003. [Google Scholar] [CrossRef] [Green Version]
- Yadrenkina, E.N. Appearance of hermaphrodite individuals in the crucian population (Carassius auratus, Cyprinidae) during the regression phase of the water level in Chany Lake (Western Siberia). Limnology 2020, 21, 287–295. [Google Scholar] [CrossRef]
- Burke, J.M.; Arnold, M.L. Genetics and the Fitness of Hybrids. Annu. Rev. Genet. 2001, 35, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Nolte, A.W.; Tautz, D. Understanding the onset of hybrid speciation. Trends Genet. 2010, 26, 54–58. [Google Scholar] [CrossRef]
- Janko, K.; Pačes, J.; Wilkinson-Herbots, H.; Costa, R.J.; Roslein, J.; Drozd, P.; Iakovenko, N.; Rídl, J.; Hroudová, M.; Kočí, J.; et al. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 2018, 27, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Mallet, J. Hybrid speciation. Nature 2007, 446, 279–283. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, X.L.; Zhu, Y.J.; Zhang, J.; Ding, M.; Wang, M.T.; Wang, Z.W.; Li, Z.; Zhang, X.J.; Zhou, L.; et al. Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity 2018, 121, 64–74. [Google Scholar] [CrossRef]
- Cauret, C.M.S.; Gansauge, M.T.; Tupper, A.S.; Furman, B.L.S.; Knytl, M.; Song, X.Y.; Greenbaum, E.; Meyer, M.; Evans, B.J. Developmental Systems Drift and the Drivers of Sex Chromosome Evolution. Mol. Biol. Evol. 2020, 37, 799–810. [Google Scholar] [CrossRef]
- Furman, B.L.S.; Cauret, C.M.S.; Knytl, M.; Song, X.Y.; Premachandra, T.; Ofori-Boateng, C.; Jordan, D.C.; Horb, M.E.; Evans, B.J. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 2020, 16, e1009121. [Google Scholar] [CrossRef]
- Song, X.Y.; Furman, B.L.S.; Premachandra, T.; Knytl, M.; Cauret, C.M.S.; Wasonga, D.V.; Measey, J.; Dworkin, I.; Evans, B.J. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Philos. Trans. R. Soc. B Biol. Sci. 2021, 376, 20200095. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Ito, M. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef] [Green Version]
- Meccariello, A.; Salvemini, M.; Primo, P.; Hall, B.; Koskinioti, P.; Dalíková, M.; Gravina, A.; Gucciardino, M.A.; Forlenza, F.; Gregoriou, M.E.; et al. Maleness-on-the-Y (MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science 2019, 365, 1457–1460. [Google Scholar] [CrossRef]
- Rossi, A.; Kontarakis, Z.; Gerri, C.; Nolte, H.; Hölper, S.; Krüger, M.; Stainier, D.Y. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 2015, 524, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Qi, Y.; Liang, Q.; Song, J.; Liu, J.; Li, W.; Shu, Y.; Tao, M.; Zhang, C.; Qin, Q.; et al. Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci. China Life Sci. 2019, 62, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Liu, W.; Chai, J.; Lu, B.; Murphy, R.W.; Luo, J. CRISPR/Cas9 application for gene copy fate survey of polyploid vertebrates. Front. Genet. 2018, 9, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copp, G.H.; Warrington, S.; Wesley, K.J. Management of an ornamental pond as a conservation site for a threatened native fish species, crucian carp Carassius carassius. Hydrobiologia 2008, 597, 149–155. [Google Scholar] [CrossRef]
Species, Ploidy, and Karyotype | Sex | Locality | Reference |
---|---|---|---|
Carassius auratus (goldfish) | |||
(-a) | F | China | [27,28] |
(-a) | NA | China | [29] |
(-a) | NA | China | [30] |
Carassius gibelio | |||
F | Belarus | [25] | |
() | NA | River Amur | [31] |
F | Bosnia | [32] | |
(-) | F | Czechoslovakia | [33] |
(-) | F | Yugoslavia | [34] |
F | Czechia | [35] | |
(-a) | NA | NA | [29] |
(-) | F | Yugoslavia | [36] |
() | F, M | China | [37] |
(-a) | F | Poland | [38] |
(-) | M | China | [39] |
(-) | F | ||
(-) | F | ||
(-) | F | Poland | [40] |
(-) | M | ||
(-) | F | Czechia | [21] |
Carassius langsdorfii | |||
() | F, M | ||
() | F | Japan | [41] |
() | F | ||
() | F | Japan | [42] |
() | F, M | ||
() | F | Japan | [43] |
() | M | ||
() | F | Japan | [44] |
() | F | ||
F | Czechia | [45] | |
Carassius cuvieri | |||
() | F, M | Japan | [46] |
() | F, M | Japan | [43] |
() | F, M | Japan | [47] |
(-a) | F, M | Japan | [48] |
Carassius buergeri | |||
() | F, M | Japan | [42] |
() | F | ||
(-a) | F, M | Japan | [48] |
Carassius grandoculis | |||
() | F, M | Japan | [42] |
(-a) | F, M | Japan | [48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knytl, M.; Forsythe, A.; Kalous, L. A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius. Int. J. Mol. Sci. 2022, 23, 8095. https://doi.org/10.3390/ijms23158095
Knytl M, Forsythe A, Kalous L. A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius. International Journal of Molecular Sciences. 2022; 23(15):8095. https://doi.org/10.3390/ijms23158095
Chicago/Turabian StyleKnytl, Martin, Adrian Forsythe, and Lukáš Kalous. 2022. "A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius" International Journal of Molecular Sciences 23, no. 15: 8095. https://doi.org/10.3390/ijms23158095
APA StyleKnytl, M., Forsythe, A., & Kalous, L. (2022). A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius. International Journal of Molecular Sciences, 23(15), 8095. https://doi.org/10.3390/ijms23158095