The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae)
Abstract
:1. Introduction
2. Results
2.1. Chromosome Number
2.2. Number and Localisation of rDNA Loci
2.3. Molecular Phylogenetic Analysis of nrITS
2.4. Inferences of the Patterns of Chromosome Number Evolution
2.5. Evolutionary Patterns of the rDNA Loci Chromosomal Organisation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. DNA Amplification and Sequencing
4.3. Sequence Alignment and Phylogenetic Analyses
4.4. Chromosome Preparation and Fluorescence In Situ Hybridisation
4.5. Inferences of the Patterns of Evolution of Chromosome Number and rDNA Loci Number and Localisation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayot Carbonero, C.; Carbonero, F.; Smith, L.M.J.; Brown, T.A. Phylogenetic characterisation of Onobrychis species with special focus on the forage crop Onobrychis viciifolia Scop. Genet. Res. Crop Evol. 2012, 59, 1777–1788. [Google Scholar] [CrossRef]
- Hayot Carbonero, C.; Mueller-Harvey, I.; Brown, T.A.; Smith, L. Sainfoin (Onobrychis viciifolia): A beneficial forage legume. Plant Genet. Resour. 2011, 9, 70–85. [Google Scholar] [CrossRef]
- Yildiz, B.; Çiplak, B.; Aktoklu, E. Fruit morphology of sections of the genus Onobrychis Miller (Fabaceae) and its phylogenetic implications. Isr. J. Plant Sci. 1999, 47, 269–282. [Google Scholar] [CrossRef]
- Sirjaev, G.I. Onobrychis Generis Revisio Critica. Pars Prima; Faculte’ des Sciences de I’Universite Masaryk: Brno, Czech Republic, 1925; p. 195. [Google Scholar]
- Amirahmadi, A.; Kazempour-Osaloo, S.; Kaveh, A.; Maassoumi, A.A.; Naderi, R. The phylogeny and new classification of the genus Onobrychis (Fabaceae-Hedysareae): Evidence from molecular data. Plant Syst. Evol. 2016, 302, 1445–1456. [Google Scholar] [CrossRef]
- Mohsen, H.H.S.; Nasab, M.Z. Cytotaxonomy of some Onobrychis (Fabaceae) species and populations in Iran. Caryologia 2010, 63, 18–31. [Google Scholar] [CrossRef]
- Abou-El-Enain, M.M. Chromosomal criteria and their phylogenetic implications in the genus Onobrychis Mill. sect. Lophobrychis (Leguminosae), with special reference to Egyptian species. Bot. J. Linn. Soc. 2002, 139, 409–414. [Google Scholar] [CrossRef]
- Akçelik, S.E.; Avd1, S.; Uzun, S.; Sancak, C. Karyotype analysis of some Onobrychis (sainfoin) species in Turkey. Arch. Biol. Sci. 2012, 64, 567–571. [Google Scholar] [CrossRef]
- Hoşgören, H. Total numbers of chromosome numbers in species of Onobrychis Miller (Fabaceae) in Southeastern Anatholia region. Biotechnol. Biotechnol. Equip. 2006, 20, 57–61. [Google Scholar] [CrossRef]
- Ranjbar, M.; Hajmoradi, F.; Karamian, R. An overview on cytogenetics of the genus Onobrychis (Fabaceae) with special reference to O. sect. Hymenobrychis from Iran. Caryologia 2012, 65, 187–198. [Google Scholar] [CrossRef]
- Borowska-Zuchowska, N.; Senderowicz, M.; Trunova, D.; Kolano, B. Tracing the evolution of the angiosperm genome from the cytogenetic point of view. Plants 2022, 11, 784. [Google Scholar] [CrossRef]
- Escudero, M.; Wendel, J.F. The grand sweep of chromosomal evolution in angiosperms. New Phytol. 2020, 228, 805–808. [Google Scholar] [CrossRef]
- Mandáková, T.; Lysak, M.A. Post-polyploid diploidization and diversification through dysploid changes. Curr. Opin. Plant Biol. 2018, 42, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.; Torices, R.; Loureiro, J. The evolution of haploid chromosome numbers in the sunflower family. Genome Biol. Evol. 2016, 8, 3516–3528. [Google Scholar] [CrossRef] [PubMed]
- Pellicer, J.; Kelly, L.J.; Leitch, I.J.; Zomlefer, W.B.; Fay, M.F. A universe of dwarfs and giants: Genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol. 2014, 201, 1484–1497. [Google Scholar] [CrossRef] [PubMed]
- Senderowicz, M.; Nowak, T.; Rojek-Jelonek, M.; Bisaga, M.; Papp, L.; Weiss-Schneeweiss, H.; Kolano, B. Descending dysploidy and bidirectional changes in genome size accompanied Crepis (Asteraceae) evolution. Genes 2021, 12, 1436. [Google Scholar] [CrossRef] [PubMed]
- Weiss-Schneeweiss, H.; Stuessy, T.F.; Villaseñor, J.L. Chromosome numbers, karyotypes, and evolution in Melampodium (Asteraceae). Int. J. Plant Sci. 2009, 170, 1168–1182. [Google Scholar] [CrossRef]
- Kolano, B.; Siwinska, D.; McCann, J.; Weiss-Schneeweiss, H. The evolution of genome size and rDNA in diploid species of Chenopodium s.l. (Amaranthaceae). Bot. J. Linn. Soc. 2015, 179, 218–235. [Google Scholar] [CrossRef]
- Lusinska, J.; Betekhtin, A.; Lopez-Alvarez, D.; Catalan, P.; Jenkins, G.; Wolny, E.; Hasterok, R. Comparatively barcoded chromosomes of Brachypodium perennials tell the story of their karyotype structure and evolution. Int. J. Mol. Sci. 2019, 20, 5557. [Google Scholar] [CrossRef]
- Waminal, N.E.; Pellerin, R.J.; Kang, S.-H.; Kim, H.H. Chromosomal mapping of tandem repeats revealed massive chromosomal rearrangements and insights into Senna tora dysploidy. Front. Plant Sci. 2021, 12, 629898. [Google Scholar] [CrossRef]
- Garcia, S.; Kovařík, A.; Leitch, A.R.; Garnatje, T. Cytogenetic features of rRNA genes across land plants: Analysis of the Plant rDNA database. Plant J. 2017, 89, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Jang, T.-S.; McCann, J.; Parker, J.S.; Takayama, K.; Hong, S.-P.; Schneeweiss, G.M.; Weiss-Schneeweiss, H. rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS ONE 2016, 11, e0167177. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-I.; Chung, M.-C.; Kuo, H.-C.; Wang, C.-N.; Lee, Y.-C.; Lin, C.-Y.; Jiang, H.; Yeh, C.-H. The evolution of genome size and distinct distribution patterns of rDNA in Phalaenopsis (Orchidaceae). Bot. J. Linn. Soc. 2017, 185, 65–80. [Google Scholar] [CrossRef]
- Garcia, S.; Panero, J.L.; Siroky, J.; Kovarik, A. Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Plant Biol. 2010, 10, 176. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Gálvez, F.; Gras, A.; Kovařík, A.; Garnatje, T. Plant rDNA database: Update and new features. Database 2014, 2014, bau063. [Google Scholar] [CrossRef]
- Hasterok, R.; Wolny, E.; Hosiawa, M.; Kowalczyk, M.; Kulak-Ksiazczyk, S.; Ksiazczyk, T.; Heneen, W.K.; Maluszynska, J. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 2006, 97, 205–216. [Google Scholar] [CrossRef]
- Maragheh, F.P.; Janus, D.; Senderowicz, M.; Haliloglu, K.; Kolano, B. Karyotype analysis of eight cultivated Allium species. J. Appl. Genet. 2019, 60, 1–11. [Google Scholar] [CrossRef]
- Moreno, R.; Castro, P.; Vrána, J.; Kubaláková, M.; Cápal, P.; García, V.; Gil, J.; Millán, T.; Doležel, J. Integration of genetic and cytogenetic maps and identification of sex chromosome in garden asparagus (Asparagus officinalis L.). Front. Plant Sci. 2018, 9, 1068. [Google Scholar] [CrossRef]
- Yurkevich, O.Y.; Samatadze, T.E.; Selyutina, I.Y.; Romashkina, S.I.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Molecular cytogenetics of eurasian species of the genus Hedysarum L. (Fabaceae). Plants 2021, 10, 89. [Google Scholar] [CrossRef]
- Volkov, R.; Medina, F.; Zentgraf, U.; Hemleben, V. Organization and molecular evolution of rDNA nucleolar dominance and nucleolus structure. In Progress in Botany; Esser, K., Luttge, U., Beyschlag, W., Murata, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 65, pp. 106–146. [Google Scholar]
- Alvarez, I.; Wendel, J.F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 2003, 29, 417–434. [Google Scholar] [CrossRef]
- Feliner, G.N.; Rossello, J.A. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogenet. Evol. 2007, 44, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Ataei, N.; Schneeweiss, G.M.; García, M.A.; Krug, M.; Lehnert, M.; Valizadeh, J.; Quandt, D. A multilocus phylogeny of the non-photosynthetic parasitic plant Cistanche (Orobanchaceae) refutes current taxonomy and identifies four major morphologically distinct clades. Mol. Phylogenet. Evol. 2020, 151, 106898. [Google Scholar] [CrossRef] [PubMed]
- Kolano, B.; McCann, J.; Oskędra, M.; Chrapek, M.; Rojek, M.; Nobis, A.; Weiss-Schneeweiss, H. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa 2019, 392, 163–185. [Google Scholar] [CrossRef]
- Costa, L.; Jimenez, H.; Carvalho, R.; Carvalho-Sobrinho, J.; Escobar, I.; Souza, G. Divide to conquer: Evolutionary history of Allioideae tribes (Amaryllidaceae) is linked to distinct trends of karyotype evolution. Front. Plant Sci. 2020, 11, 320. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.-S.; Emadzade, K.; Parker, J.; Temsch, E.M.; Leitch, A.R.; Speta, F.; Weiss-Schneeweiss, H. Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae). BMC Evol. Biol. 2013, 13, 136. [Google Scholar] [CrossRef]
- Arslan, E.; Ertuğrul, K.; Tugay, O.; Dural, H. Karyological studies of the genus Onobrychis Mill. and the related genera Hedysarum L. and Sartoria Boiss. & Heldr. (Fabaceae, Hedysareae) from Turkey. Caryologia 2012, 65, 11–17. [Google Scholar] [CrossRef]
- Fonseca, A.; Ferraz, M.E.; Pedrosa-Harand, A. Speeding up chromosome evolution in Phaseolus: Multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 2016, 125, 413–421. [Google Scholar] [CrossRef]
- Maxted, N.; Callimassia, M.A.; Bennett, M.D. Cytotaxonomic studies of Eastern Mediterranean Vicia species (Leguminosae). Plant Syst. Evol. 1991, 177, 221–234. [Google Scholar] [CrossRef]
- Tanaka, H.; Chotekajorn, A.; Kai, S.; Ishigaki, G.; Hashiguchi, M.; Akashi, R. Determination of genome size, chromosome number, and genetic variation using inter-simple sequence repeat markers in Lotus spp. Cytologia 2016, 81, 95–102. [Google Scholar] [CrossRef]
- Sader, M.A.; Amorim, B.S.; Costa, L.; Souza, G.; Pedrosa-Harand, A. The role of chromosome changes in the diversification of Passiflora L. (Passifloraceae). Syst. Biodivers. 2019, 17, 7–21. [Google Scholar] [CrossRef]
- Kliphuis, E. In IOPB chromosome number reports LVI. Taxon 1977, 26, 257–274. [Google Scholar]
- Sepet, H.; Emre, İ.; Kiran, Y.; Kursat, M.; Sahin, A. Karyological studies on eight species of Onobrychis genus in Turkey. Biologia 2011, 66, 996–1002. [Google Scholar] [CrossRef]
- Kozuharov, S.I.; Kuzmanov, B.A.; Markova, T. In IOPB chromosome number reports XXXVI. Taxon 1972, 21, 333–346. [Google Scholar]
- Karamian, R.; Ranjbar, M.; Hadadi, A. Chromosome number reports in five Onobrychis species (O. sect. Onobrychis, Fabaceae) in Iran. J. Cell Mol. Res. 2011, 3, 92–814. [Google Scholar] [CrossRef]
- Rosato, M.; Moreno-Saiz, J.C.; Galián, J.A.; Rosselló, J.A. Evolutionary site-number changes of ribosomal DNA loci during speciation: Complex scenarios of ancestral and more recent polyploid events. AoB PLANTS 2015, 7, plv135. [Google Scholar] [CrossRef] [PubMed]
- Rostovtseva, T.S. Chromosome numbers of some plant species from the south of Siberia. Bot. Zhurnal 1977, 62, 1034–1042. [Google Scholar]
- Rice, A.; Glick, L.; Abadi, S.; Einhorn, M.; Kopelman, N.M.; Salman-Minkov, A.; Mayzel, J.; Chay, O.; Mayrose, I. The Chromosome Counts Database (CCDB)—A community resource of plant chromosome numbers. New Phytol. 2015, 206, 19–26. [Google Scholar] [CrossRef]
- Chuxanova, N.A. Chromosome numbers of some species of Leguminosae Juss. indigenous to the U.S.S.R. Bot. Zhurnal 1967, 52, 1124–1131. [Google Scholar]
- Goldblatt, P.; Johnson, D.E. Index to Plant Chromosome Numbers (IPCN). Available online: http://ccdb.tau.ac.il/Angiosperms/Leguminosae/Onobrychis/Onobrychis%20grandis%20Lipsky/ (accessed on 23 April 2022).
- Lifante, Z.D.; Martin, R.P. Chromosome numbers of plants collected during Iter Mediterraneum V in Morocco. Bocconea 2013, 26, 151–172. [Google Scholar] [CrossRef]
- Ornduff, R. Index to Plant Chromosome Numbers for 1965; International Bureau for Plant Taxonomy and Nomenclature: Bratislava, Slovakia, 1967. [Google Scholar]
- Gadnidze, R.I.; Gviniashvili, T.N.; Danelia, I.M.; Churadze, M.V. Chromosome numbers of the species of the Georgian flora. Bot. Zhurnal 1998, 83, 143–147. [Google Scholar]
- Natarajan, G. IOPB chromosome number reports. Taxon 1978, 27, 519–535. [Google Scholar]
- Magulaev, A.Y. Chromosome numbers, distribution and some taxonomic problems of Onobrychis species of subgenus Hymenobrychis (Fabaceae) from the northern Caucasus. Bot. Zhurnal 1995, 80, 55–59. [Google Scholar]
- Kozuharov, S.I.; Petrova, A.V.; Markova, T. IOPB chromosome number reports XL. Taxon 1973, 22, 285–291. [Google Scholar]
- Greimler, J.; Temsch, E.M.; Xue, Z.; Weiss-Schneeweiss, H.; Volkova, P.; Peintinger, M.; Wasowicz, P.; Shang, H.; Schanzer, I.; Chiapella, J.O. Genome size variation in Deschampsia cespitosa sensu lato (Poaceae) in Eurasia. Plant Syst. Evol. 2022, 308, 9. [Google Scholar] [CrossRef]
- Jang, T.-S.; Parker, J.S.; Emadzade, K.; Temsch, E.M.; Leitch, A.R.; Weiss-Schneeweiss, H. Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the monocot Prospero. Front. Plant Sci. 2018, 9, 433. [Google Scholar] [CrossRef]
- Kolano, B.; Saracka, K.; Broda-Cnota, A.; Maluszynska, J. Localization of ribosomal DNA and CMA3/DAPI heterochromatin in cultivated and wild Amaranthus species. Sci. Hortic. 2013, 164, 249–255. [Google Scholar] [CrossRef]
- Lewke Bandara, N.; Papini, A.; Mosti, S.; Brown, T.; Smith, L.M.J. A phylogenetic analysis of genus Onobrychis and its relationships within the tribe Hedysareae (Fabaceae). Turk. J. Bot. 2013, 37, 981–992. [Google Scholar] [CrossRef]
- Amirahmadi, A.; Kazempour Osaloo, S.; Moein, F.; Kaveh, A.; Maassoumi, A.A. Molecular systematics of the tribe Hedysareae (Fabaceae) based on nrDNA ITS and plastid trnL-F and matK sequences. Plant Syst. Evol. 2014, 300, 729–747. [Google Scholar] [CrossRef]
- Meyer, R.S.; Purugganan, M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013, 14, 840–852. [Google Scholar] [CrossRef]
- Milla, R.; Osborne, C.P.; Turcotte, M.M.; Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 2015, 30, 463–469. [Google Scholar] [CrossRef]
- Weiss-Schneeweiss, H.; Blöch, C.; Turner, B.; Villaseñor, J.L.; Stuessy, T.F.; Schneeweiss, G.M. The promiscuous and the chaste: Frequent allopolyploid speciation and its genomic consequences in American daisies (Melampodium sect. Melampodium; Asteraceae). Evolution 2012, 66, 211–228. [Google Scholar] [CrossRef]
- Sochorová, J.; Coriton, O.; Kuderová, A.; Lunerová, J.; Chèvre, A.-M.; Kovařík, A. Gene conversion events and variable degree of homogenization of rDNA loci in cultivars of Brassica napus. Ann. Bot. 2016, 119, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Soltis, D.E.; Soltis, P.S. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 1999, 14, 348–352. [Google Scholar] [CrossRef]
- Koch, M.A.; Dobeš, C.; Mitchell-Olds, T. Multiple hybrid formation in natural populations: Concerted evolution of the Internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol. Biol. Evol. 2003, 20, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Krak, K.; Vít, P.; Belyayev, A.; Douda, J.; Hreusová, L.; Mandák, B. Allopolyploid origin of Chenopodium album s. str. (Chenopodiaceae): A molecular and cytogenetic insight. PLoS ONE 2016, 11, e0161063. [Google Scholar] [CrossRef]
- Mas de Xaxars, G.; Garnatje, T.; Pellicer, J.; Siljak-Yakovlev, S.; Vallès, J.; Garcia, S. Impact of dysploidy and polyploidy on the diversification of high mountain Artemisia (Asteraceae) and allies. Alp. Bot. 2016, 126, 35–48. [Google Scholar] [CrossRef]
- Aparicio, A.; Escudero, M.; Valdés-Florido, A.; Pachón, M.; Rubio, E.; Albaladejo, R.G.; Martín-Hernanz, S.; Pradillo, M. Karyotype evolution in Helianthemum (Cistaceae): Dysploidy, achiasmate meiosis and ecological specialization in H. squamatum, a true gypsophile. Bot. J. Linn. Soc. 2019, 191, 484–501. [Google Scholar] [CrossRef]
- Chiarini, F.E.; Santiñaque, F.F.; Urdampilleta, J.D.; Las Peñas, M.L. Genome size and karyotype diversity in Solanum sect. Acanthophora (Solanaceae). Plant Syst. Evol. 2014, 300, 113–125. [Google Scholar] [CrossRef]
- Lan, T.; Albert, V.A. Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol. 2011, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Senderowicz, M.; Nowak, T.; Weiss-Schneeweiss, H.; Papp, L.; Kolano, B. Molecular and cytogenetic analysis of rDNA evolution in Crepis sensu lato. Int. J. Mol. Sci. 2022, 23, 3643. [Google Scholar] [CrossRef]
- Roa, F.; Guerra, M. Non-random distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet. Genome Res. 2015, 146, 243–249. [Google Scholar] [CrossRef]
- Książczyk, T.; Zwierzykowska, E.; Molik, K.; Taciak, M.; Krajewski, P.; Zwierzykowski, Z. Genome-dependent chromosome dynamics in three successive generations of the allotetraploid Festuca pratensis × Lolium perenne hybrid. Protoplasma 2015, 252, 985–996. [Google Scholar] [CrossRef] [PubMed]
- Li, K.P.; Wu, Y.X.; Zhao, H.; Wang, Y.; Lü, X.M.; Wang, J.M.; Xu, Y.; Li, Z.Y.; Han, Y.H. Cytogenetic relationships among Citrullus species in comparison with some genera of the tribe Benincaseae (Cucurbitaceae) as inferred from rDNA distribution patterns. BMC Evol. Biol. 2016, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.; Vargas, P.; Luceño, M.; Cuadrado, Á. Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of nrDNA (5S, 45S) and trnL–trnF sequence analysis. Plant Syst. Evol. 2010, 289, 223–235. [Google Scholar] [CrossRef]
- Vozárová, R.; Macková, E.; Vlk, D.; Řepková, J. Variation in ribosomal DNA in the genus Trifolium (Fabaceae). Plants 2021, 10, 1771. [Google Scholar] [CrossRef]
- Iovene, M.; Grzebelus, E.; Carputo, D.; Jiang, J.; Simon, P.W. Major cytogenetic landmarks and karyotype analysis in Daucus carota and other Apiaceae. Am. J. Bot. 2008, 95, 793–804. [Google Scholar] [CrossRef]
- Belyayev, A. Bursts of transposable elements as an evolutionary driving force. J. Evol. Biol. 2014, 27, 2573–2584. [Google Scholar] [CrossRef]
- Kalendar, R.; Raskina, O.; Belyayev, A.; Schulman, A.H. Long tandem arrays of Cassandra retroelements and their role in genome dynamics in plants. Int. J. Mol. Sci. 2020, 21, 2931. [Google Scholar] [CrossRef]
- Raskina, O.; Barber, J.C.; Nevo, E.; Belyayev, A. Repetitive DNA and chromosomal rearrangements: Speciation-related events in plant genomes. Cytogenet. Genome Res. 2008, 120, 351–357. [Google Scholar] [CrossRef]
- Thomas, H.M.; Harper, J.A.; Morgan, W.G. Gross chromosome rearrangements are occurring in an accession of the grass Lolium rigidum. Chromosome Res. 2001, 9, 585–590. [Google Scholar] [CrossRef]
- Goffová, I.; Fajkus, J. The rDNA loci-Intersections of replication, transcription, and repair pathways. Int. J. Mol. Sci. 2021, 22, 1302. [Google Scholar] [CrossRef]
- Lan, H.; Chen, C.-L.; Miao, Y.; Yu, C.-X.; Guo, W.-W.; Xu, Q.; Deng, X.-X. Fragile sites of ‘Valencia’ sweet orange (Citrus sinensis) chromosomes are related with active 45s rDNA. PLoS ONE 2016, 11, e0151512. [Google Scholar] [CrossRef]
- Kolano, B.; McCann, J.; Orzechowska, M.; Siwinska, D.; Temsch, E.; Weiss-Schneeweiss, H. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Mol. Phylogenet. Evol. 2016, 100, 109–123. [Google Scholar] [CrossRef] [PubMed]
- Mlinarec, J.; Šatović, Z.; Malenica, N.; Ivančić-Baće, I.; Besendorfer, V. Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: Evidence for their common genome origin. Ann. Bot. 2012, 110, 703–712. [Google Scholar] [CrossRef]
- Weiss-Schneeweiss, H.; Emadzade, K.; Jang, T.S.; Schneeweiss, G.M. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet. Genome Res. 2013, 140, 137–150. [Google Scholar] [CrossRef]
- Grossheim, A.A. Onobrychis (Leguminosae). In Flora of the U.S.S.R.; Komarov, V.L., Shishkin, B.K., Bobrov, E.G., Eds.; Israel Program for Scientific Translation: Jerusalem, Israel, 1972; Volume 13, pp. 244–281. [Google Scholar]
- Rechinger, K.H. Hedysareae. In Flora Iranica; Rechinger, K.H., Ed.; Akademische Druck: Graz, Austria, 1984; Volume 157, pp. 387–463. [Google Scholar]
- Emadzade, K.; Jang, T.-S.; Macas, J.; Kovařík, A.; Novák, P.; Parker, J.; Weiss-Schneeweiss, H. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Ann. Bot. 2014, 114, 1597–1608. [Google Scholar] [CrossRef] [PubMed]
- Venora, G.; Blangiforti, S.; Frediani, M.; Maggini, F.; Gelati, M.T.; Castiglione, M.R.; Cremonini, R. Nuclear DNA contents, rDNAs, chromatin organization, and karyotype evolution in Vicia sect, faba. Protoplasma 2000, 213, 118–125. [Google Scholar] [CrossRef]
- Löytynoja, A.; Goldman, N. WebPRANK: A phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinform. 2010, 11, 579. [Google Scholar] [CrossRef]
- Collingridge, P.W.; Kelly, S. MergeAlign: Improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments. BMC Bioinform. 2012, 13, 117. [Google Scholar] [CrossRef] [Green Version]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4, A Graphical Viewer of Phylogenetic Trees. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 5 November 2021).
- Hasterok, R.; Draper, J.; Jenkins, G. Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res. 2004, 12, 397–403. [Google Scholar] [CrossRef]
- Gerlach, W.L.; Dyer, T.A. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 1980, 8, 4851–4865. [Google Scholar] [CrossRef] [PubMed]
- Unfried, I.; Gruendler, P. Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 1990, 18, 4011. [Google Scholar] [CrossRef]
- Jenkins, G.; Hasterok, R. BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2007, 2, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Glick, L.; Mayrose, I. ChromEvol: Assessing the pattern of chromosome number evolution and the inference of polyploidy along a phylogeny. Mol. Biol. Evol. 2014, 31, 1914–1922. [Google Scholar] [CrossRef] [PubMed]
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Version 3.70. Available online: http://www.mesquiteproject.org (accessed on 23 November 2021).
Taxon | 2n | rDNA Loci Number and Localisation * | ||
---|---|---|---|---|
35S rDNA | 5S rDNA | |||
Subgenus Onobrychis | ||||
O. alba subsp. laconica | 14 | 2I | 1T, 1I | |
O. caput-galli | 14 | 1T | 1I | |
O. crista-galli | 16 | 3T | 2I | |
O. gracilis | 14 | 1I | 2I | |
O. humilis | 14 | - | - | - |
O. iberica | 16 | 1I | 1T | |
O. megataphros | 14 | 2I | 2I | |
O. persica | 16 | 2T | 1I, 1T | |
O. stenorhiza | 14 | - | - | - |
O. supina | 14 | 1I | 2I | |
O. altissima | 28 | - | - | - |
O. biebersteinii | 28 | 2T | 2T, 2I | |
O. viciifolia 1 | 28 | 2T | 2T, 2I | |
O. viciifolia 2 | 28 | 2T | 2T, 2I | |
O. transcausica | 28 | 2T | 2T, 2I | |
O. arenaria | 28 | 2T | 2T, 2I | |
O. inermis | 28 | 2T | 2T, 2I | |
O. cyri | 28 | 2T | 2T, 2I | |
SubgenusSisyrosema | ||||
O. chorossanica | 16 | 1I | 1T | |
O. grandis | 14 | 1I | 1I | |
O. gaubae | 16 | - | - | - |
O. hypargyrea | 14 | 1I | 1I | |
O. kachetica | 16 | 1I | 1T | |
O. michauxii | 16 | - | - | - |
O. sintenisii | 16 | 1I | 1T | |
O. vassilczenkoi | 16 | 1I | 1T | |
O. vaginalis | 16 | 2I | 1T | |
O. radiata | 16 | 1I | 1T | |
O. ptolemaica | 14 | 1I | 1T | |
O. subacaulis | 32 | 1T | 2T, 1I |
Species | USDA * Collection Number | Voucher | GeneBank Accession |
---|---|---|---|
O. biebersteinii Sirj. | PI 227377 | KTU154634 | OP288059 |
O. viciifolia Scop. (1) | PI 1705831 # | KTU154645 | OP288048 |
O. viciifolia Scop. (2) | PI 200872 | KTU154636 | OP288055 |
O. transcaucasica Grossh. | PI 273771 # | KTU154640 | OP288065 |
O. arenaria (Kit.) DC. | PI 273743 # | KTU154639 | OP288054 |
O. megataphros | PI 301107 | - | OP288064 |
O. supina (Vill.) DC. | PI 383721 | KTU154646 | OP288047 |
O. alba (Waldst. & Kit.) Desv. subsp. laconica (Boiss.) Hayek | W6 19337 | KTU154647 | OP288049 |
O. inermis Steven | W617870 | KTU154654 | OP288053 |
O. cyri Grossh. | W6 17800 | KTU154635 | OP288070 |
O. altissima Grossh. | PI 325448 | - | OP288067 |
O. humilis (Loefl.) G. Lopez | PI 319054 | - | OP288046 |
O. stenorhiza D.C | PI 319056 | - | OP288066 |
O. gracilis Besser | W6 19496 | KTU154642 | OP288050 |
O. caput-galli (L.) Lam. | PI 205304 | KTU154659 | OP288056 |
O. persica Sirj. & Rech.f. | PI 380946 | KTU154638 | OP288071 |
O. crista-galli (L.) Lam. | PI 227040 | KTU154651 | OP288068 |
O. iberica Grossh. | PI 219602 | - | OP288058 |
O. sintenisii Bornm. | PI 314100 | KTU154632 | OP288057 |
O. vassilczenkoi Grossh. | PI 678913 | KTU154641 | OP288063 |
O. vaginalis C.A. Mey. | PI 325444 | KTU154633 | OP288051 |
O. chorossanica Bunge ex Boiss. | PI 314160 | KTU154658 | OP288061 |
O. kachetica Boiss. & Buhse | PI 314469 | KTU154649 | OP288062 |
O. radiata (Desf.) M. Bieb. | W6 24111 | KTU154650 | OP288074 |
O. michauxii D.C. | PI 380945 | - | OP288060 |
O. ptolemaica (Delile) DC. | PI 215344 | KTU154655 | OP288073 |
O. hyparygera Boiss. | PI 383719 | KTU154644 | OP288052 |
O. grandis Lipsky | PI 440568 | KTU154653 | OP288072 |
O. subacaulis Boiss. | PI 219930 | KTU154643 | OP288075 |
O. gaubae Bornm. | PI 380931 | - | OP288069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yucel, G.; Betekhtin, A.; Cabi, E.; Tuna, M.; Hasterok, R.; Kolano, B. The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae). Int. J. Mol. Sci. 2022, 23, 11033. https://doi.org/10.3390/ijms231911033
Yucel G, Betekhtin A, Cabi E, Tuna M, Hasterok R, Kolano B. The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae). International Journal of Molecular Sciences. 2022; 23(19):11033. https://doi.org/10.3390/ijms231911033
Chicago/Turabian StyleYucel, Gulru, Alexander Betekhtin, Evren Cabi, Metin Tuna, Robert Hasterok, and Bozena Kolano. 2022. "The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae)" International Journal of Molecular Sciences 23, no. 19: 11033. https://doi.org/10.3390/ijms231911033
APA StyleYucel, G., Betekhtin, A., Cabi, E., Tuna, M., Hasterok, R., & Kolano, B. (2022). The Chromosome Number and rDNA Loci Evolution in Onobrychis (Fabaceae). International Journal of Molecular Sciences, 23(19), 11033. https://doi.org/10.3390/ijms231911033