Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play
Abstract
:1. Introduction
2. Extracellular Matrix in Pulmonary Fibrosis
3. Matrix Metalloproteinases—Role in Pulmonary Fibrosis
3.1. Introduction
3.2. Structure and Classification of MMPs
3.3. Regulation of MMPs and TIMPs
3.4. Role of MMPs and TIMPs in Pulmonary Fibrosis
3.4.1. MMP-1
3.4.2. MMP-2
3.4.3. MMP-3
3.4.4. MMP-7
3.4.5. MMP-8
3.4.6. MMP-9
3.4.7. MMP-10
3.4.8. MMP-11
3.4.9. MMP-12
3.4.10. MMP-13
3.4.11. MMP-14
3.4.12. MMP-19
3.4.13. MMP-28
3.4.14. Other MMPs with Possible Involvement in Pulmonary Fibrosis
3.4.15. TIMPs in Pulmonary Fibrosis
4. EMMPRIN/CD147 and Its Role in Pulmonary Fibrosis
4.1. Introduction
4.2. Structure and Molecular Interactions of EMMPRIN/CD147
4.3. Expression of CD147
4.4. Role of CD147 in Pulmonary Fibrosis
5. Concluding Remarks and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Muñiz Ballesteros, B.; López-Herranz, M.; Lopez-De-andrés, A.; Hernandez-Barrera, V.; Jiménez-García, R.; Carabantes-Alarcon, D.; Jiménez-Trujillo, I.; de Miguel-Diez, J. Sex Differences in the Incidence and Outcomes of Patients Hospitalized by Idiopathic Pulmonary Fibrosis (IPF) in Spain from 2016 to 2019. J. Clin. Med. 2021, 10, 3474. [Google Scholar] [CrossRef] [PubMed]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, G.; Oehrle, B.; Gerckens, M.; White, E.S.; Schiller, H.B.; Eickelberg, O. The Instructive Extracellular Matrix of the Lung: Basic Composition and Alterations in Chronic Lung Disease. Eur. Respir. J. 2017, 50, 1601805. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Mih, J.D.; Shea, B.S.; Kho, A.T.; Sharif, A.S.; Tager, A.M.; Tschumperlin, D.J. Feedback Amplification of Fibrosis through Matrix Stiffening and COX-2 Suppression. J. Cell Biol. 2010, 190, 693–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinz, B. Mechanical Aspects of Lung Fibrosis: A Spotlight on the Myofibroblast. Proc. Am. Thorac. Soc. 2012, 9, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabasa, M.; Duch, P.; Jorba, I.; Giménez, A.; Lugo, R.; Pavelescu, I.; Rodríguez-Pascual, F.; Molina-Molina, M.; Xaubet, A.; Pereda, J.; et al. Epithelial Contribution to the Profibrotic Stiff Microenvironment and Myofibroblast Population in Lung Fibrosis. Mol. Biol. Cell 2017, 28, 3741–3755. [Google Scholar] [CrossRef] [PubMed]
- Puig, M.; Lugo, R.; Gabasa, M.; Giménez, A.; Velásquez, A.; Galgoczy, R.; Ramírez, J.; Gómez-Caro, A.; Busnadiego, Ó.; Rodríguez-Pascual, F.; et al. Matrix Stiffening and Β1 Integrin Drive Subtype-Specific Fibroblast Accumulation in Lung Cancer. Mol. Cancer Res. 2015, 13, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Lagares, D.; Santos, A.; Grasberger, P.E.; Liu, F.; Probst, C.K.; Rahimi, R.A.; Sakai, N.; Kuehl, T.; Ryan, J.; Bhola, P.; et al. Targeted Apoptosis of Myofibroblasts with the BH3 Mimetic ABT-263 Reverses Established Fibrosis. Sci. Transl. Med. 2017, 9, eaal3765. [Google Scholar] [CrossRef] [Green Version]
- Giménez, A.; Duch, P.; Puig, M.; Gabasa, M.; Xaubet, A.; Alcaraz, J. Dysregulated Collagen Homeostasis by Matrix Stiffening and TGF-Β1 in Fibroblasts from Idiopathic Pulmonary Fibrosis Patients: Role of FAK/Akt. Int. J. Mol. Sci. 2017, 18, 2431. [Google Scholar] [CrossRef] [Green Version]
- Galgoczy, R.; Pastor, I.; Colom, A.; Giménez, A.; Mas, F.; Alcaraz, J. A Spectrophotometer-Based Diffusivity Assay Reveals That Diffusion Hindrance of Small Molecules in Extracellular Matrix Gels Used in 3D Cultures Is Dominated by Viscous Effects. Colloids Surf. B. Biointerfaces 2014, 120, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; Lapiere, C.M. Collagenolytic Activity in Amphibian Tissues: A Tissue Culture Assay. Proc. Natl. Acad. Sci. USA 1962, 48, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Puente, X.S.; Sánchez, L.M.; Overall, C.M.; López-Otín, C. Human and Mouse Proteases: A Comparative Genomic Approach. Nat. Rev. Genet. 2003, 4, 544–558. [Google Scholar] [CrossRef]
- Wyatt, R.A.; Keow, J.Y.; Harris, N.D.; Haché, C.A.; Li, D.H.; Crawford, B.D. The Zebrafish Embryo: A Powerful Model System for Investigating Matrix Remodeling. Zebrafish 2009, 6, 347–354. [Google Scholar] [CrossRef]
- Bode, W.; Gomis-Rüth, F.X.; Stöckler, W. Astacins, Serralysins, Snake Venom and Matrix Metalloproteinases Exhibit Identical Zinc-Binding Environments (HEXXHXXGXXH and Met-Turn) and Topologies and Should Be Grouped into a Common Family, the “Metzincins”. FEBS Lett. 1993, 331, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Tay, F.R.; Yiu, C.K.Y. The Past, Present and Future Perspectives of Matrix Metalloproteinase Inhibitors. Pharmacol. Ther. 2020, 207, 107465. [Google Scholar] [CrossRef]
- Gimeno, A.; Beltrán-Debón, R.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Understanding the Variability of the S1′ Pocket to Improve Matrix Metalloproteinase Inhibitor Selectivity Profiles. Drug Discov. Today 2020, 25, 38–57. [Google Scholar] [CrossRef]
- Gall, A.L.; Ruff, M.; Kannan, R.; Cuniasse, P.; Yiotakis, A.; Dive, V.; Rio, M.C.; Basset, P.; Moras, D. Crystal Structure of the Stromelysin-3 (MMP-11) Catalytic Domain Complexed with a Phosphinic Inhibitor Mimicking the Transition-State. J. Mol. Biol. 2001, 307, 577–586. [Google Scholar] [CrossRef]
- Laronha, H.; Caldeira, J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020, 9, 1076. [Google Scholar] [CrossRef]
- Craig, V.J.; Zhang, L.; Hagood, J.S.; Owen, C.A. Matrix Metalloproteinases as Therapeutic Targets for Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2015, 53, 585–600. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Qiu, L.; Zeng, C.; Fang, Z.; Chen, S.; Song, X.; Song, H.; Zhang, G. Bioinformatic Analysis of Differentially Expressed Genes and Pathways in Idiopathic Pulmonary Fibrosis. Ann. Transl. Med. 2021, 9, 1459. [Google Scholar] [CrossRef] [PubMed]
- Checa, M.; Ruiz, V.; Montaño, M.; Velázquez-Cruz, R.; Selman, M.; Pardo, A. MMP-1 Polymorphisms and the Risk of Idiopathic Pulmonary Fibrosis. Hum. Genet. 2008, 124, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Huang, X.; Cong, P.; He, M.; Chen, A.; Wu, T.; Dai, D.; Li, W.; Gao, X.; Tian, L.; et al. Identification of Hub Genes and Pathways Associated with Idiopathic Pulmonary Fibrosis via Bioinformatics Analysis. Front. Mol. Biosci. 2021, 8, 790. [Google Scholar] [CrossRef] [PubMed]
- Gabasa, M.; Arshakyan, M.; Llorente, A.; Chuliá-Peris, L.; Pavelescu, I.; Xaubet, A.; Pereda, J.; Alcaraz, J. Interleukin-1β Modulation of the Mechanobiology of Primary Human Pulmonary Fibroblasts: Potential Implications in Lung Repair. Int. J. Mol. Sci. 2020, 21, 8417. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Crampton, S.P.; Hughes, C.C.W. Wnt Signaling Induces Matrix Metalloproteinase Expression and Regulates T Cell Transmigration. Immunity 2007, 26, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Xaubet, A.; Marin-Arguedas, A.; Lario, S.; Ancochea, J.; Morell, F.; Ruiz-Manzano, J.; Rodriguez-Becerra, E.; Rodriguez-Arias, J.M.; Iñigo, P.; Sanz, S.; et al. Transforming Growth Factor-Β1 Gene Polymorphisms Are Associated with Disease Progression in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2003, 168, 431–435. [Google Scholar] [CrossRef]
- Sueblinvong, V.; Neveu, W.A.; Neujahr, D.C.; Mills, S.T.; Rojas, M.; Roman, J.; Guidot, D.M. Aging Promotes Pro-Fibrotic Matrix Production and Increases Fibrocyte Recruitment during Acute Lung Injury. Adv. Biosci. Biotechnol. 2014, 5, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.H.; Kim, S.H.; Seo, J.Y.; Chung, H.; Kwak, H.J.; Lee, S.K.; Yoon, H.J.; Shin, D.H.; Park, S.S.; Sohn, J.W. Blockade of the Wnt/β-Catenin Pathway Attenuates Bleomycin-Induced Pulmonary Fibrosis. Tohoku J. Exp. Med. 2011, 223, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, C.M.; Dolgonos, L.; Zemans, R.L.; Young, S.K.; Robertson, J.; Briones, N.; Suzuki, T.; Campbell, M.N.; Gauldie, J.; Radisky, D.C.; et al. Matrix Metalloproteinase 3 Is a Mediator of Pulmonary Fibrosis. Am. J. Pathol. 2011, 179, 1733. [Google Scholar] [CrossRef]
- Maeda, S.; Dean, D.D.; Gomez, R.; Schwartz, Z.; Boyan, B.D. The First Stage of Transforming Growth Factor Beta1 Activation Is Release of the Large Latent Complex from the Extracellular Matrix of Growth Plate Chondrocytes by Matrix Vesicle Stromelysin-1 (MMP-3). Calcif. Tissue Int. 2002, 70, 54–65. [Google Scholar] [CrossRef]
- Heljasvaara, R.; Nyberg, P.; Luostarinen, J.; Parikka, M.; Heikkilä, P.; Rehn, M.; Sorsa, T.; Salo, T.; Pihlajaniemi, T. Generation of Biologically Active Endostatin Fragments from Human Collagen XVIII by Distinct Matrix Metalloproteases. Exp. Cell Res. 2005, 307, 292–304. [Google Scholar] [CrossRef]
- Ito, T.K.; Ishii, G.; Saito, S.; Yano, K.; Hoshino, A.; Suzuki, T.; Ochiai, A. Degradation of Soluble VEGF Receptor-1 by MMP-7 Allows VEGF Access to Endothelial Cells. Blood 2009, 113, 2363–2369. [Google Scholar] [CrossRef]
- Zhang, Z.; Garron, T.M.; Li, X.J.; Liu, Y.; Zhang, X.; Li, Y.Y.; Xu, W.S. Recombinant Human Decorin Inhibits TGF-Beta1-Induced Contraction of Collagen Lattice by Hypertrophic Scar Fibroblasts. Burns 2009, 35, 527–537. [Google Scholar] [CrossRef]
- Kristensen, J.H.; Larsen, L.; Dasgupta, B.; Brodmerkel, C.; Curran, M.; Karsdal, M.A.; Sand, J.M.B.; Willumsen, N.; Knox, A.J.; Bolton, C.E.; et al. Levels of Circulating MMP-7 Degraded Elastin Are Elevated in Pulmonary Disorders. Clin. Biochem. 2015, 48, 1083–1088. [Google Scholar] [CrossRef]
- Majewski, S.; Szewczyk, K.; Żal, A.; Białas, A.J.; Miłkowska-Dymanowska, J.; Piotrowski, W.J. Serial Measurements of Circulating KL-6, SP-D, MMP-7, CA19-9, CA-125, CCL18, and Periostin in Patients with Idiopathic Pulmonary Fibrosis Receiving Antifibrotic Therapy: An Exploratory Study. J. Clin. Med. 2021, 10, 3864. [Google Scholar] [CrossRef]
- García-de-Alba, C.; Becerril, C.; Ruiz, V.; González, Y.; Reyes, S.; García-Alvarez, J.; Selman, M.; Pardo, A. Expression of Matrix Metalloproteases by Fibrocytes: Possible Role in Migration and Homing. Am. J. Respir. Crit. Care Med. 2010, 182, 1144–1152. [Google Scholar] [CrossRef]
- García-Prieto, E.; González-López, A.; Cabrera, S.; Astudillo, A.; Gutiérrez-Fernández, A.; Fanjul-Fernandez, M.; Batalla-Solís, E.; Puente, X.S.; Fueyo, A.; López-Otín, C.; et al. Resistance to Bleomycin-Induced Lung Fibrosis in MMP-8 Deficient Mice Is Mediated by Interleukin-10. PLoS ONE 2010, 5, e13242. [Google Scholar] [CrossRef]
- Tager, A.M.; Kradin, R.L.; Lacamera, P.; Bercury, S.D.; Campanella, G.S.V.; Leary, C.P.; Polosukhin, V.; Zhao, L.H.; Sakamoto, H.; Blackwell, T.S.; et al. Inhibition of Pulmonary Fibrosis by the Chemokine IP-10/CXCL10. Am. J. Respir. Cell Mol. Biol. 2004, 31, 395–404. [Google Scholar] [CrossRef]
- Lakatos, G.; Sipos, F.; Miheller, P.; Hritz, I.; Varga, M.Z.; Juhász, M.; Molnár, B.; Tulassay, Z.; Herszényi, L. The Behavior of Matrix Metalloproteinase-9 in Lymphocytic Colitis, Collagenous Colitis and Ulcerative Colitis. Pathol. Oncol. Res. 2012, 18, 85–91. [Google Scholar] [CrossRef]
- Betsuyaku, T.; Fukuda, Y.; Parks, W.C.; Shipley, J.M.; Senior, R.M. Gelatinase B Is Required for Alveolar Bronchiolization after Intratracheal Bleomycin. Am. J. Pathol. 2000, 157, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, S.; Gaxiola, M.; Arreola, J.L.; Ramírez, R.; Jara, P.; D’Armiento, J.; Richards, T.; Selman, M.; Pardo, A. Overexpression of MMP9 in Macrophages Attenuates Pulmonary Fibrosis Induced by Bleomycin. Int. J. Biochem. Cell Biol. 2007, 39, 2324–2338. [Google Scholar] [CrossRef] [PubMed]
- Sokai, A.; Handa, T.; Tanizawa, K.; Oga, T.; Uno, K.; Tsuruyama, T.; Kubo, T.; Ikezoe, K.; Nakatsuka, Y.; Tanimura, K.; et al. Matrix Metalloproteinase-10: A Novel Biomarker for Idiopathic Pulmonary Fibrosis. Respir. Res. 2015, 16, 120. [Google Scholar] [CrossRef] [Green Version]
- Rohani, M.G.; McMahan, R.S.; Razumova, M.V.; Hertz, A.L.; Cieslewicz, M.; Pun, S.H.; Regnier, M.; Wang, Y.; Birkland, T.P.; Parks, W.C. MMP-10 Regulates Collagenolytic Activity of Alternatively Activated Resident Macrophages. J. Investig. Dermatol. 2015, 135, 2377. [Google Scholar] [CrossRef] [Green Version]
- Mukhi, S.; Brown, D.D. Transdifferentiation of Tadpole Pancreatic Acinar Cells to Duct Cells Mediated by Notch and Stromelysin-3. Dev. Biol. 2011, 351, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Rooman, I.; De Medts, N.; Baeyens, L.; Lardon, J.; De Breuck, S.; Heimberg, H.; Bouwens, L. Expression of the Notch Signaling Pathway and Effect on Exocrine Cell Proliferation in Adult Rat Pancreas. Am. J. Pathol. 2006, 169, 1206–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoyagi-Ikeda, K.; Maeno, T.; Matsui, H.; Ueno, M.; Hara, K.; Aoki, Y.; Aoki, F.; Shimizu, T.; Doi, H.; Kawai-Kowase, K.; et al. Notch Induces Myofibroblast Differentiation of Alveolar Epithelial Cells via Transforming Growth Factor-{beta}-Smad3 Pathway. Am. J. Respir. Cell Mol. Biol. 2011, 45, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.R.; Soo, J.C.; Chun, G.L.; Homer, R.J.; Elias, J.A. Transforming Growth Factor (TGF)-Beta1 Stimulates Pulmonary Fibrosis and Inflammation via a Bax-Dependent, Bid-Activated Pathway That Involves Matrix Metalloproteinase-12. J. Biol. Chem. 2007, 282, 7723–7732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, C.; Xiao, Y.; Li, K.; Wang, T.; Liang, Y.; Liao, G. MMP-12 Regulates Proliferation of Mouse Macrophages via the ERK/P38 MAPK Pathways during Inflammation. Exp. Cell Res. 2019, 378, 182–190. [Google Scholar] [CrossRef]
- Matute-Bello, G.; Wurfel, M.M.; Lee, J.S.; Park, D.R.; Frevert, C.W.; Madtes, D.K.; Shapiro, S.D.; Martin, T.R. Essential Role of MMP-12 in Fas-Induced Lung Fibrosis. Am. J. Respir. Cell Mol. Biol. 2007, 37, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, S.; Maciel, M.; Hernández-Barrientos, D.; Calyeca, J.; Gaxiola, M.; Selman, M.; Pardo, A. Delayed Resolution of Bleomycin-Induced Pulmonary Fibrosis in Absence of MMP13 (Collagenase 3). Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L961–L976. [Google Scholar] [CrossRef]
- Flechsig, P.; Hartenstein, B.; Teurich, S.; Dadrich, M.; Hauser, K.; Abdollahi, A.; Gröne, H.J.; Angel, P.; Huber, P.E. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 582–590. [Google Scholar] [CrossRef]
- Sen, A.I.; Shiomi, T.; Okada, Y.; D’Armiento, J.M. Deficiency of Matrix Metalloproteinase-13 Increases Inflammation after Acute Lung Injury. Exp. Lung Res. 2010, 36, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Nkyimbeng, T.; Ruppert, C.; Shiomi, T.; Dahal, B.; Lang, G.; Seeger, W.; Okada, Y.; D’Armiento, J.; Günther, A. Pivotal Role of Matrix Metalloproteinase 13 in Extracellular Matrix Turnover in Idiopathic Pulmonary Fibrosis. PLoS ONE 2013, 8, e73279. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, J.; Shi, L.; Ning, Y.; Zhu, Y.; Chen, S.; Yang, M.; Chen, J.; Zhou, G.-W.; Li, Q.; et al. NOGO-B Promotes EMT in Lung Fibrosis via MMP14 Mediates Free TGF-Beta1 Formation. Oncotarget 2017, 8, 71024–71037. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Fernández, A.; Soria-Valles, C.; Osorio, F.G.; Gutiérrez-Abril, J.; Garabaya, C.; Aguirre, A.; Fueyo, A.; Fernández-García, M.S.; Puente, X.S.; López-Otín, C. Loss of MT1-MMP Causes Cell Senescence and Nuclear Defects Which Can Be Reversed by Retinoic Acid. EMBO J. 2015, 34, 1875–1888. [Google Scholar] [CrossRef] [Green Version]
- Placido, L.; Romero, Y.; Maldonado, M.; Toscano-Marquez, F.; Ramírez, R.; Calyeca, J.; Mora, A.L.; Selman, M.; Pardo, A. Loss of MT1-MMP in Alveolar Epithelial Cells Exacerbates Pulmonary Fibrosis. Int. J. Mol. Sci. 2021, 22, 2923. [Google Scholar] [CrossRef]
- López, B.; González, A.; Hermida, N.; Valencia, F.; De Teresa, E.; Díez, J. Role of Lysyl Oxidase in Myocardial Fibrosis: From Basic Science to Clinical Aspects. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1–H9. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Kovkarova-Naumovski, E.; Jara, P.; Parwani, A.; Kass, D.; Ruiz, V.; Lopez-Otiń, C.; Rosas, I.O.; Gibson, K.F.; Cabrera, S.; et al. Matrix Metalloproteinase-19 Is a Key Regulator of Lung Fibrosis in Mice and Humans. Am. J. Respir. Crit. Care Med. 2012, 186, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Jara, P.; Calyeca, J.; Romero, Y.; Plácido, L.; Yu, G.; Kaminski, N.; Maldonado, V.; Cisneros, J.; Selman, M.; Pardo, A. Matrix Metalloproteinase (MMP)-19-Deficient Fibroblasts Display a Profibrotic Phenotype. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L511–L522. [Google Scholar] [CrossRef] [Green Version]
- Illman, S.A.; Keski-Oja, J.; Parks, W.C.; Lohi, J. The Mouse Matrix Metalloproteinase, Epilysin (MMP-28), Is Alternatively Spliced and Processed by a Furin-like Proprotein Convertase. Biochem. J. 2003, 375, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Manicone, A.M.; Birkland, T.P.; Lin, M.; Betsuyaku, T.; van Rooijen, N.; Lohi, J.; Keski-Oja, J.; Wang, Y.; Skerrett, S.J.; Parks, W.C. Epilysin (MMP-28) Restrains Early Macrophage Recruitment in Pseudomonas Aeruginosa Pneumonia. J. Immunol. 2009, 182, 3866–3876. [Google Scholar] [CrossRef] [Green Version]
- Gharib, S.A.; Johnston, L.K.; Huizar, I.; Birkland, T.P.; Hanson, J.; Wang, Y.; Parks, W.C.; Manicone, A.M. MMP28 Promotes Macrophage Polarization toward M2 Cells and Augments Pulmonary Fibrosis. J. Leukoc. Biol. 2014, 95, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldonado, M.; Buendía-Roldán, I.; Vicens-Zygmunt, V.; Planas, L.; Molina-Molina, M.; Selman, M.; Pardo, A. Identification of MMP28 as a Biomarker for the Differential Diagnosis of Idiopathic Pulmonary Fibrosis. PLoS ONE 2018, 13, e0203779. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Boyd, D.D. Regulation of Matrix Metalloproteinase Gene Expression. J. Cell. Physiol. 2007, 211, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Overall, C.M.; Wrana, J.L.; Sodek, J. Transcriptional and Post-Transcriptional Regulation of 72-KDa Gelatinase/Type IV Collagenase by Transforming Growth Factor-Beta 1 in Human Fibroblasts. Comparisons with Collagenase and Tissue Inhibitor of Matrix Metalloproteinase Gene Expression. J. Biol. Chem. 1991, 266, 14064–14071. [Google Scholar] [CrossRef]
- Saarialho-Kere, U.K.; Welgus, H.G.; Parks, W.C. Distinct Mechanisms Regulate Interstitial Collagenase and 92-KDa Gelatinase Expression in Human Monocytic-like Cells Exposed to Bacterial Endotoxin. J. Biol. Chem. 1993, 268, 17354–17361. [Google Scholar] [CrossRef]
- Shi, C.; Wu, L.; Lin, W.; Cai, Y.; Zhang, Y.; Hu, B.; Gao, R.; Im, H.J.; Yuan, W.; Ye, X.; et al. MiR-202-3p Regulates Interleukin-1β-Induced Expression of Matrix Metalloproteinase 1 in Human Nucleus Pulposus. Gene 2019, 687, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.J.; Zhuang, H.; Wang, G.X.; Li, Z.; Zhang, H.T.; Yu, T.Q.; Zhang, B.D. MiRNA-140 Is a Negative Feedback Regulator of MMP-13 in IL-1β-Stimulated Human Articular Chondrocyte C28/I2 Cells. Inflamm. Res. 2012, 61, 503–509. [Google Scholar] [CrossRef]
- Lou, L.; Tian, M.; Chang, J.; Li, F.; Zhang, G. MiRNA-192-5p Attenuates Airway Remodeling and Autophagy in Asthma by Targeting MMP-16 and ATG7. Biomed. Pharmacother. 2020, 122, 109692. [Google Scholar] [CrossRef]
- Rak, B.; Mehlich, D.; Garbicz, F.; Domosud, Z.; Paskal, W.; Marczewska, J.M.; Włodarski, P.K. Post-Transcriptional Regulation of MMP16 and TIMP2 Expression via MiR-382, MiR-410 and MiR-200b in Endometrial Cancer. Cancer Genom. Proteom. 2017, 14, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Asuthkar, S.; Velpula, K.K.; Chetty, C.; Gorantla, B.; Rao, J.S.; Asuthkar, S.; Velpula, K.K.; Chetty, C.; Gorantla, B.; Rao, J.S. Epigenetic Regulation of MiRNA-211 by MMP-9 Governs Glioma Cell Apoptosis, Chemosensitivity and Radiosensitivity. Oncotarget 2012, 3, 1439–1454. [Google Scholar] [CrossRef] [Green Version]
- Van Wart, H.E.; Birkedal-Hansen, H. The Cysteine Switch: A Principle of Regulation of Metalloproteinase Activity with Potential Applicability to the Entire Matrix Metalloproteinase Gene Family. Proc. Natl. Acad. Sci. USA 1990, 87, 5578–5582. [Google Scholar] [CrossRef] [Green Version]
- Fallata, A.M.; Wyatt, R.A.; Levesque, J.M.; Dufour, A.; Overall, C.M.; Crawford, B.D. Intracellular Localization in Zebrafish Muscle and Conserved Sequence Features Suggest Roles for Gelatinase A Moonlighting in Sarcomere Maintenance. Biomedicines 2019, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Hey, S.; Ratt, A.; Linder, S. There and Back Again: Intracellular Trafficking, Release and Recycling of Matrix Metalloproteinases. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119189. [Google Scholar] [CrossRef]
- Etienne-Manneville, S. Microtubules in Cell Migration. Annu. Rev. Cell Dev. Biol. 2013, 29, 471–499. [Google Scholar] [CrossRef]
- Rottner, K.; Faix, J.; Bogdan, S.; Linder, S.; Kerkhoff, E. Actin Assembly Mechanisms at a Glance. J. Cell Sci. 2017, 130, 3427–3435. [Google Scholar] [CrossRef] [Green Version]
- Linder, S. The Matrix Corroded: Podosomes and Invadopodia in Extracellular Matrix Degradation. Trends Cell Biol. 2007, 17, 107–117. [Google Scholar] [CrossRef]
- Owen, C.A.; Hu, Z.; Lopez-Otin, C.; Shapiro, S.D. Membrane-Bound Matrix Metalloproteinase-8 on Activated Polymorphonuclear Cells Is a Potent, Tissue Inhibitor of Metalloproteinase-Resistant Collagenase and Serpinase. J. Immunol. 2004, 172, 7791–7803. [Google Scholar] [CrossRef] [Green Version]
- Koo, B.H.; Kim, H.H.; Park, M.Y.; Jeon, O.H.; Kim, D.S. Membrane Type-1 Matrix Metalloprotease-Independent Activation of pro-Matrix Metalloprotease-2 by Proprotein Convertases. FEBS J. 2009, 276, 6271–6284. [Google Scholar] [CrossRef]
- Nagase, H.; Visse, R.; Murphy, G. Structure and Function of Matrix Metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De la Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Yu, W.H.; Yu, S.S.C.; Meng, Q.; Brew, K.; Woessner, J.F. TIMP-3 Binds to Sulfated Glycosaminoglycans of the Extracellular Matrix. J. Biol. Chem. 2000, 275, 31226–31232. [Google Scholar] [CrossRef] [Green Version]
- Majali-Martinez, A.; Hiden, U.; Ghaffari-Tabrizi-Wizsy, N.; Lang, U.; Desoye, G.; Dieber-Rotheneder, M. Placental Membrane-Type Metalloproteinases (MT-MMPs): Key Players in Pregnancy. Cell Adh. Migr. 2016, 10, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgunova, E.; Tuuttila, A.; Bergmann, U.; Tryggvason, K. Structural Insight into the Complex Formation of Latent Matrix Metalloproteinase 2 with Tissue Inhibitor of Metalloproteinase 2. Proc. Natl. Acad. Sci. USA 2002, 99, 7414–7419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matchett, E.F.; Wang, S.; Crawford, B.D. Paralogues of Mmp11 and Timp4 Interact during the Development of the Myotendinous Junction in the Zebrafish Embryo. J. Dev. Biol. 2019, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannandrea, M.; Parks, W.C. Diverse Functions of Matrix Metalloproteinases during Fibrosis. Dis. Model. Mech. 2014, 7, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Egeblad, M.; Werb, Z. New Functions for the Matrix Metalloproteinases in Cancer Progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar] [CrossRef]
- Dumin, J.A.; Dickeson, S.K.; Stricker, T.P.; Bhattacharyya-Pakrasi, M.; Roby, J.D.; Santoro, S.A.; Parks, W.C. Pro-Collagenase-1 (Matrix Metalloproteinase-1) Binds the Alpha(2)Beta(1) Integrin upon Release from Keratinocytes Migrating on Type I Collagen. J. Biol. Chem. 2001, 276, 29368–29374. [Google Scholar] [CrossRef] [Green Version]
- Riikonen, T.; Westermarck, J.; Koivisto, L.; Broberg, A.; Kahari, V.M.; Heino, J. Integrin Alpha 2 Beta 1 Is a Positive Regulator of Collagenase (MMP-1) and Collagen Alpha 1(I) Gene Expression. J. Biol. Chem. 1995, 270, 13548–13552. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Morodomi, T.; Nagase, H.; Enghild, J.J.; Salvesen, G. Mechanisms of Activation of Tissue Procollagenase by Matrix Metalloproteinase 3 (Stromelysin). Biochemistry 1990, 29, 10261–10270. [Google Scholar] [CrossRef]
- Rosas, I.O.; Richards, T.J.; Konishi, K.; Zhang, Y.; Gibson, K.; Lokshin, A.E.; Lindell, K.O.; Cisneros, J.; MacDonald, S.D.; Pardo, A.; et al. MMP1 and MMP7 as Potential Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. PLoS Med. 2008, 5, 0623–0633. [Google Scholar] [CrossRef] [Green Version]
- Vij, R.; Noth, I. Peripheral Blood Biomarkers in Idiopathic Pulmonary Fibrosis. Transl. Res. 2012, 159, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Selman, M.; Ruiz, V.; Cabrera, S.; Segura, L.; Ramírez, R.; Barrios, R.; Pardo, A. TIMP-1, -2, -3, and -4 in Idiopathic Pulmonary Fibrosis. A Prevailing Nondegradative Lung Microenvironment? Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L562–L574. [Google Scholar] [CrossRef]
- Herrera, I.; Cisneros, J.; Maldonado, M.; Ramírez, R.; Ortiz-Quintero, B.; Anso, E.; Chandel, N.S.; Selman, M.; Pardo, A. Matrix Metalloproteinase (MMP)-1 Induces Lung Alveolar Epithelial Cell Migration and Proliferation, Protects from Apoptosis, and Represses Mitochondrial Oxygen Consumption. J. Biol. Chem. 2013, 288, 25964–25975. [Google Scholar] [CrossRef] [Green Version]
- Weng, T.; Poth, J.M.; Karmouty-Quintana, H.; Garcia-Morales, L.J.; Melicoff, E.; Luo, F.; Chen, N.Y.; Evans, C.M.; Bunge, R.R.; Bruckner, B.A.; et al. Hypoxia-Induced Deoxycytidine Kinase Contributes to Epithelial Proliferation in Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 1402–1412. [Google Scholar] [CrossRef] [Green Version]
- Estany, S.; Vicens-Zygmunt, V.; Llatjós, R.; Montes, A.; Penín, R.; Escobar, I.; Xaubet, A.; Santos, S.; Manresa, F.; Dorca, J.; et al. Lung Fibrotic Tenascin-C Upregulation Is Associated with Other Extracellular Matrix Proteins and Induced by TGFβ1. BMC Pulm. Med. 2014, 14, 120. [Google Scholar] [CrossRef] [Green Version]
- Konishi, K.; Gibson, K.F.; Lindell, K.O.; Richards, T.J.; Zhang, Y.; Dhir, R.; Bisceglia, M.; Gilbert, S.; Yousem, S.A.; Jin, W.S.; et al. Gene Expression Profiles of Acute Exacerbations of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2009, 180, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Zuo, F.; Kaminski, N.; Eugui, E.; Allard, J.; Yakhini, Z.; Ben-Dor, A.; Lollini, L.; Morris, D.; Kim, Y.; DeLustro, B.; et al. Gene Expression Analysis Reveals Matrilysin as a Key Regulator of Pulmonary Fibrosis in Mice and Humans. Proc. Natl. Acad. Sci. USA 2002, 99, 6292–6297. [Google Scholar] [CrossRef] [Green Version]
- Kreus, M.; Lehtonen, S.; Skarp, S.; Kaarteenaho, R. Extracellular Matrix Proteins Produced by Stromal Cells in Idiopathic Pulmonary Fibrosis and Lung Adenocarcinoma. PLoS ONE 2021, 16, e0250109. [Google Scholar] [CrossRef]
- Roach, K.M.; Castells, E.; Dixon, K.; Mason, S.; Elliott, G.; Marshall, H.; Poblocka, M.A.; Macip, S.; Richardson, M.; Khalfaoui, L.; et al. Evaluation of Pirfenidone and Nintedanib in a Human Lung Model of Fibrogenesis. Front. Pharmacol. 2021, 12, 2805. [Google Scholar] [CrossRef]
- Gabasa, M.; Radisky, E.S.; Ikemori, R.; Bertolini, G.; Arshakyan, M.; Hockla, A.; Duch, P.; Rondinone, O.; Llorente, A.; Maqueda, M.; et al. MMP1 Drives Tumor Progression in Large Cell Carcinoma of the Lung through Fibroblast Senescence. Cancer Lett. 2021, 507, 1–12. [Google Scholar] [CrossRef]
- Vincenti, M.P.; Brinckerhoff, C.E. Transcriptional Regulation of Collagenase (MMP-1, MMP-13) Genes in Arthritis: Integration of Complex Signaling Pathways for the Recruitment of Gene-Specific Transcription Factors. Arthritis Res. 2002, 4, 157–164. [Google Scholar] [CrossRef]
- Segura-Valdez, L.; Pardo, A.; Gaxiola, M.; Uhal, B.D.; Becerril, C.; Selman, M. Upregulation of Gelatinases A and B, Collagenases 1 and 2, and Increased Parenchymal Cell Death in COPD. Chest 2000, 117, 684–694. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Dalal, S.S.; Chen, E.S.; Downey, R.; Schulman, L.L.; Ginsburg, M.; D’Armiento, J. Human Collagenase (Matrix Metalloproteinase-1) Expression in the Lungs of Patients with Emphysema. Am. J. Respir. Crit. Care Med. 2001, 163, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Mercer, B.A.; Kolesnikova, N.; Sonett, J.; D’Armiento, J. Extracellular Regulated Kinase/Mitogen Activated Protein Kinase Is up-Regulated in Pulmonary Emphysema and Mediates Matrix Metalloproteinase-1 Induction by Cigarette Smoke. J. Biol. Chem. 2004, 279, 17690–17696. [Google Scholar] [CrossRef] [Green Version]
- Pardo, A.; Cabrera, S.; Maldonado, M.; Selman, M. Role of Matrix Metalloproteinases in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Respir. Res. 2016, 17, 23. [Google Scholar] [CrossRef] [Green Version]
- Strongin, A.Y.; Collier, I.; Bannikov, G.; Marmer, B.L.; Grant, G.A.; Goldberg, G.I. Mechanism of Cell Surface Activation of 72-KDa Type IV Collagenase. Isolation of the Activated Form of the Membrane Metalloprotease. J. Biol. Chem. 1995, 270, 5331–5338. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Takino, T.; Okada, Y.; Cao, J.; Shinagawa, A.; Yamamoto, E.; Seiki, M. A Matrix Metalloproteinase Expressed on the Surface of Invasive Tumour Cells. Nature 1994, 370, 61–65. [Google Scholar] [CrossRef]
- Owen, C.A. Leukocyte Cell Surface Proteinases: Regulation of Expression, Functions, and Mechanisms of Surface Localization. Int. J. Biochem. Cell Biol. 2008, 40, 1246–1272. [Google Scholar] [CrossRef] [Green Version]
- Chun, H. Molecular Mechanism of Transcriptional Activation of Human Gelatinase B by Proximal Promoter. Cancer Lett. 1996, 106, 185–191. [Google Scholar] [CrossRef]
- Hrabec, E.; Strek, M.; Nowak, D.; Greger, J.; Suwalski, M.; Hrabec, Z. Activity of Type IV Collagenases (MMP-2 and MMP-9) in Primary Pulmonary Carcinomas: A Quantitative Analysis. J. Cancer Res. Clin. Oncol. 2002, 128, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, S.; Mandal, M.; Das, S.; Mandal, A.; Chakraborti, T. Regulation of Matrix Metalloproteinases: An Overview. Mol. Cell. Biochem. 2003, 253, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.; Mora, A.L.; Kapetanaki, M.; Weathington, N.; Gladwin, M.; Eickelberg, O. Aging and Lung Disease. Clinical Impact and Cellular and Molecular Pathways. Ann. Am. Thorac. Soc. 2015, 12, S222–S227. [Google Scholar] [CrossRef]
- Ruiz, V.; Ordóñez, R.M.; Berumen, J.; Ramírez, R.; Uhal, B.; Becerril, C.; Pardo, A.; Selman, M. Unbalanced Collagenases/TIMP-1 Expression and Epithelial Apoptosis in Experimental Lung Fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 285, L1026–L1036. [Google Scholar] [CrossRef] [Green Version]
- Keane, M.P.; Belperio, J.A.; Burdick, M.D.; Lynch, J.P.; Fishbein, M.C.; Strieter, R.M. ENA-78 Is an Important Angiogenic Factor in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2001, 164, 2239–2242. [Google Scholar] [CrossRef]
- Bergers, G.; Brekken, R.; McMahon, G.; Vu, T.H.; Itoh, T.; Tamaki, K.; Tanzawa, K.; Thorpe, P.; Itohara, S.; Werb, Z.; et al. Matrix Metalloproteinase-9 Triggers the Angiogenic Switch during Carcinogenesis. Nat. Cell Biol. 2000, 2, 737–744. [Google Scholar] [CrossRef]
- Nguyen, M.; Arkell, J.; Jackson, C.J. Human Endothelial Gelatinases and Angiogenesis. Int. J. Biochem. Cell Biol. 2001, 33, 960–970. [Google Scholar] [CrossRef]
- Narumiya, H.; Zhang, Y.; Fernandez-Patron, C.; Guilbert, L.J.; Davidge, S.T. Matrix Metalloproteinase-2 Is Elevated in the Plasma of Women with Preeclampsia. Hypertens. Pregnancy 2001, 20, 185–194. [Google Scholar] [CrossRef]
- Hamada, N.; Kuwano, K.; Yamada, M.; Hagimoto, N.; Hiasa, K.; Egashira, K.; Nakashima, N.; Maeyama, T.; Yoshimi, M.; Nakanishi, Y. Anti-Vascular Endothelial Growth Factor Gene Therapy Attenuates Lung Injury and Fibrosis in Mice. J. Immunol. 2005, 175, 1224–1231. [Google Scholar] [CrossRef] [Green Version]
- Chetty, C.; Lakka, S.S.; Bhoopathi, P.; Rao, J.S. MMP-2 Alters VEGF Expression via AVβ3 Integrin-Mediated PI3K/AKT Signaling in A549 Lung Cancer Cells. Int. J. Cancer 2010, 127, 1081. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, Q.; Wei, L.; Wang, Z.; Ma, W.; Liu, F.; Shen, Y.; Zhang, S.; Zhang, X.; Li, H.; et al. Chemokine (C-X-C Motif) Ligand 14 Contributes to Lipopolysaccharide-Induced Fibrogenesis in Mouse L929 Fibroblasts via Modulating PPM1A. J. Cell. Biochem. 2019, 120, 13372–13381. [Google Scholar] [CrossRef]
- Lam, A.P.; Herazo-Maya, J.D.; Sennello, J.A.; Flozak, A.S.; Russell, S.; Mutlu, G.M.; Budinger, G.R.S.; DasGupta, R.; Varga, J.; Kaminski, N.; et al. Wnt Coreceptor Lrp5 Is a Driver of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Habgood, A.N.; Tatler, A.L.; Porte, J.; Wahl, S.M.; Laurent, G.J.; John, A.E.; Johnson, S.R.; Jenkins, G. Secretory Leukocyte Protease Inhibitor Gene Deletion Alters Bleomycin-Induced Lung Injury, but Not Development of Pulmonary Fibrosis. Lab. Investig. 2016, 96, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Zheng, G.; Li, H.; Yao, X.; Hong, R.; Li, R.; Yue, W.; Chen, Y. Effects of the Tumor Suppressor PTEN on the Pathogenesis of Idiopathic Pulmonary Fibrosis in Chinese Patients. Mol. Med. Rep. 2016, 13, 2715–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeown, S.; Richter, A.G.; O’Kane, C.; McAuley, D.F.; Thickett, D.R. MMP Expression and Abnormal Lung Permeability Are Important Determinants of Outcome in IPF. Eur. Respir. J. 2009, 33, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selman, M.; Pardo, A. Role of Epithelial Cells in Idiopathic Pulmonary Fibrosis: From Innocent Targets to Serial Killers. Proc. Am. Thorac. Soc. 2006, 3, 364–372. [Google Scholar] [CrossRef]
- Richter, A.G.; McKeown, S.; Rathinam, S.; Harper, L.; Rajesh, P.; McAuley, D.F.; Heljasvaara, R.; Thickett, D.R. Soluble Endostatin Is a Novel Inhibitor of Epithelial Repair in Idiopathic Pulmonary Fibrosis. Thorax 2009, 64, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Dancer, R.C.A.; Wood, A.M.; Thickett, D.R. Metalloproteinases in Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2011, 38, 1461–1467. [Google Scholar] [CrossRef] [Green Version]
- Pardo, A.; Gibson, K.; Cisneros, J.; Richards, T.J.; Yang, Y.; Becerril, C.; Yousem, S.; Herrera, I.; Ruiz, V.; Selman, M.; et al. Up-Regulation and Profibrotic Role of Osteopontin in Human Idiopathic Pulmonary Fibrosis. PLoS Med. 2005, 2, 0891–0903. [Google Scholar] [CrossRef] [Green Version]
- Agnihotri, R.; Crawford, H.C.; Haro, H.; Matrisian, L.M.; Havrda, M.C.; Liaw, L. Osteopontin, a Novel Substrate for Matrix Metalloproteinase-3 (Stromelysin-1) and Matrix Metalloproteinase-7 (Matrilysin). J. Biol. Chem. 2001, 276, 28261–28267. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Park, P.W.; Wilson, C.L.; Parks, W.C. Matrilysin Shedding of Syndecan-1 Regulates Chemokine Mobilization and Transepithelial Efflux of Neutrophils in Acute Lung Injury. Cell 2002, 111, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Manicone, A.M.; Huizar, I.; McGuire, J.K. Matrilysin (Matrix Metalloproteinase-7) Regulates Anti-Inflammatory and Antifibrotic Pulmonary Dendritic Cells That Express CD103 (Alpha(E)Beta(7)-Integrin). Am. J. Pathol. 2009, 175, 2319–2331. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Hiramatsu, A.; Fukushima, D.; Pierschbacher, M.D.; Okada, Y. Degradation of Decorin by Matrix Metalloproteinases: Identification of the Cleavage Sites, Kinetic Analyses and Transforming Growth Factor-Beta1 Release. Biochem. J. 1997, 322 Pt 3, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Schönherr, E.; Broszat, M.; Brandan, E.; Bruckner, P.; Kresse, H. Decorin Core Protein Fragment Leu155-Val260 Interacts with TGF-Beta but Does Not Compete for Decorin Binding to Type I Collagen. Arch. Biochem. Biophys. 1998, 355, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Blobe, G.C.; Schiemann, W.P.; Lodish, H.F. Role of Transforming Growth Factor Beta in Human Disease. N. Engl. J. Med. 2000, 342, 1350–1358. [Google Scholar] [CrossRef]
- Bauer, Y.; White, E.S.; de Bernard, S.; Cornelisse, P.; Leconte, I.; Morganti, A.; Roux, S.; Nayler, O. MMP-7 Is a Predictive Biomarker of Disease Progression in Patients with Idiopathic Pulmonary Fibrosis. ERJ Open Res. 2017, 3, 00074-2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzouvelekis, A.; Herazo-Maya, J.D.; Slade, M.; Chu, J.H.; Deiuliis, G.; Ryu, C.; Li, Q.; Sakamoto, K.; Ibarra, G.; Pan, H.; et al. Validation of the Prognostic Value of MMP-7 in Idiopathic Pulmonary Fibrosis. Respirology 2017, 22, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Cabrera Cesar, E.; Lopez-Lopez, L.; Lara, E.; Hidalgo-San Juan, M.V.; Parrado Romero, C.; Palencia, J.L.R.S.; Martín-Montañez, E.; Garcia-Fernandez, M. Serum Biomarkers in Differential Diagnosis of Idiopathic Pulmonary Fibrosis and Connective Tissue Disease-Associated Interstitial Lung Disease. J. Clin. Med. 2021, 10, 3167. [Google Scholar] [CrossRef]
- Clynick, B.; Corte, T.J.; Jo, H.E.; Stewart, I.; Glaspole, I.N.; Grainge, C.; Maher, T.M.; Navaratnam, V.; Hubbard, R.; Hopkins, P.M.A.; et al. Biomarker Signatures for Progressive Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2021, 59, 2101181. [Google Scholar] [CrossRef]
- Konigsberg, I.R.; Borie, R.; Walts, A.D.; Cardwell, J.; Rojas, M.; Metzger, F.; Hauck, S.M.; Fingerlin, T.E.; Yang, I.V.; Schwartz, D.A. Molecular Signatures of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2021, 65, 430–441. [Google Scholar] [CrossRef]
- Kalafatis, D.; Löfdahl, A.; Näsman, P.; Dellgren, G.; Wheelock, Å.M.; Elowsson Rendin, L.; Sköld, M.; Westergren-Thorsson, G. Distal Lung Microenvironment Triggers Release of Mediators Recognized as Potential Systemic Biomarkers for Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2021, 22, 13421. [Google Scholar] [CrossRef]
- Khan, F.A.; Stewart, I.; Saini, G.; Robinson, K.A.; Jenkins, R.G. A Systematic Review of Blood Biomarkers with Individual Participant Data Meta-Analysis of Matrix-Metalloproteinase-7 in IPF. Eur. Respir. J. 2021, 59, 2101612. [Google Scholar] [CrossRef]
- Anacker, J.; Segerer, S.E.; Hagemann, C.; Feix, S.; Kapp, M.; Bausch, R.; Kämmerer, U. Human Decidua and Invasive Trophoblasts Are Rich Sources of Nearly All Human Matrix Metalloproteinases. Mol. Hum. Reprod. 2011, 17, 637–652. [Google Scholar] [CrossRef] [Green Version]
- Chapoval, S.P.; Lee, C.G.; Tang, C.; Keegan, A.D.; Cohn, L.; Bottomly, K.; Elias, J.A. Lung Vascular Endothelial Growth Factor Expression Induces Local Myeloid Dendritic Cell Activation. Clin. Immunol. 2009, 132, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Akhavani, M.A.; Madden, L.; Buysschaert, I.; Sivakumar, B.; Kang, N.; Paleolog, E.M. Hypoxia Upregulates Angiogenesis and Synovial Cell Migration in Rheumatoid Arthritis. Arthritis Res. Ther. 2009, 11, R64. [Google Scholar] [CrossRef] [Green Version]
- Craig, V.J.; Quintero, P.A.; Fyfe, S.E.; Patel, A.S.; Knolle, M.D.; Kobzik, L.; Owen, C.A. Profibrotic Activities for Matrix Metalloproteinase-8 during Bleomycin-Mediated Lung Injury. J. Immunol. 2013, 190, 4283–4296. [Google Scholar] [CrossRef] [Green Version]
- Hanemaaijer, R.; Sorsa, T.; Konttinen, Y.T.; Ding, Y.; Sutinen, M.; Visser, H.; Van Hinsbergh, V.W.M.; Helaakoski, T.; Kainulainen, T.; Rönkä, H.; et al. Matrix Metalloproteinase-8 Is Expressed in Rheumatoid Synovial Fibroblasts and Endothelial Cells. Regulation by Tumor Necrosis Factor-Alpha and Doxycycline. J. Biol. Chem. 1997, 272, 31504–31509. [Google Scholar] [CrossRef] [Green Version]
- Herman, M.P.; Sukhova, G.K.; Libby, P.; Gerdes, N.; Tang, N.; Horton, D.B.; Kilbride, M.; Breitbart, R.E.; Chun, M.; Schönbeck, U. Expression of Neutrophil Collagenase (Matrix Metalloproteinase-8) in Human Atheroma: A Novel Collagenolytic Pathway Suggested by Transcriptional Profiling. Circulation 2001, 104, 1899–1904. [Google Scholar] [CrossRef] [Green Version]
- Craig, V.J.; Polverino, F.; Laucho-Contreras, M.E.; Shi, Y.; Liu, Y.; Osorio, J.C.; Tesfaigzi, Y.; Pinto-Plata, V.; Gochuico, B.R.; Rosas, I.O.; et al. Mononuclear Phagocytes and Airway Epithelial Cells: Novel Sources of Matrix Metalloproteinase-8 (MMP-8) in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE 2014, 9, 97485. [Google Scholar] [CrossRef] [Green Version]
- Henry, M.T.; McMahon, K.; Mackarel, A.J.; Prikk, K.; Sorsa, T.; Maisi, P.; Sepper, R.; FitzGerald, M.X.; O’Connor, C.M. Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinase-1 in Sarcoidosis and IPF. Eur. Respir. J. 2002, 20, 1220–1227. [Google Scholar] [CrossRef] [Green Version]
- Stijn, W.; Verleden Stijn, E.; Vanaudenaerde Bart, M.; Marijke, W.; Christophe, D.; Jonas, Y.; Jana, S.; Verbeken Eric, K.; Verleden Geert, M.; Wuyts Wim, A. Multiplex Protein Profiling of Bronchoalveolar Lavage in Idiopathic Pulmonary Fibrosis and Hypersensitivity Pneumonitis. Ann. Thorac. Med. 2013, 8, 38–45. [Google Scholar] [CrossRef]
- Todd, J.L.; Vinisko, R.; Liu, Y.; Neely, M.L.; Overton, R.; Flaherty, K.R.; Noth, I.; Newby, L.K.; Lasky, J.A.; Olman, M.A.; et al. Circulating Matrix Metalloproteinases and Tissue Metalloproteinase Inhibitors in Patients with Idiopathic Pulmonary Fibrosis in the Multicenter IPF-PRO Registry Cohort. BMC Pulm. Med. 2020, 20, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Louie, M.C.; Vannella, K.M.; Wilke, C.A.; Levine, A.M.; Moore, B.B.; Shanley, T.P. New Concepts of IL-10-Induced Lung Fibrosis: Fibrocyte Recruitment and M2 Activation in a CCL2/CCR2 Axis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 300, L341–L353. [Google Scholar] [CrossRef] [Green Version]
- Suga, M.; Iyonaga, K.; Okamoto, T.; Gushima, Y.; Miyakawa, H.; Akaike, T.; Ando, M. Characteristic Elevation of Matrix Metalloproteinase Activity in Idiopathic Interstitial Pneumonias. Am. J. Respir. Crit. Care Med. 2000, 162, 1949–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemjabbar, H.; Gosset, P.; Lechapt-Zalcman, E.; Franco-Montoya, M.L.; Wallaert, B.; Harf, A.; Lafuma, C. Overexpression of Alveolar Macrophage Gelatinase B (MMP-9) in Patients with Idiopathic Pulmonary Fibrosis: Effects of Steroid and Immunosuppressive Treatment. Am. J. Respir. Cell Mol. Biol. 1999, 20, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Ram, M.; Sherer, Y.; Shoenfeld, Y. Matrix Metalloproteinase-9 and Autoimmune Diseases. J. Clin. Immunol. 2006, 26, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Overall, C.M.; López-Otín, C. Strategies for MMP Inhibition in Cancer: Innovations for the Post-Trial Era. Nat. Rev. Cancer 2002, 2, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.T. The Importance of Estimating the Therapeutic Index in the Development of Matrix Metalloproteinase Inhibitors. Cardiovasc. Res. 2006, 69, 677–687. [Google Scholar] [CrossRef]
- Gao, Q.; Meijer, M.J.W.; Kubben, F.J.G.M.; Sier, C.F.M.; Kruidenier, L.; van Duijn, W.; van den Berg, M.; van Hogezand, R.A.; Lamers, C.B.H.W.; Verspaget, H.W. Expression of Matrix Metalloproteinases-2 and -9 in Intestinal Tissue of Patients with Inflammatory Bowel Diseases. Dig. Liver Dis. 2005, 37, 584–592. [Google Scholar] [CrossRef]
- Gallea-Robache, S.; Morand, V.; Millet, S.; Bruneau, J.M.; Bhatnagar, N.; Chouaib, S.; Roman-Roman, S. A Metalloproteinase Inhibitor Blocks the Shedding of Soluble Cytokine Receptors and Processing of Transmembrane Cytokine Precursors in Human Monocytic Cells. Cytokine 1997, 9, 340–346. [Google Scholar] [CrossRef]
- Odajima, N.; Betsuyaku, T.; Nasuhara, Y.; Nishimura, M. Loss of Caveolin-1 in Bronchiolization in Lung Fibrosis. J. Histochem. Cytochem. 2007, 55, 899–909. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, M.; Fukuda, Y. Cell Proliferation during the Process of Bleomycin-Induced Pulmonary Fibrosis in Rats. Acta Pathol. Jpn. 1990, 40, 227–238. [Google Scholar] [CrossRef]
- Collins, J.F.; Orozco, C.R.; McCullough, B.; Coalson, J.J.; Johanson, W.G. Pulmonary Fibrosis with Small-Airway Disease: A Model in Nonhuman Primates. Exp. Lung Res. 1982, 3, 91–108. [Google Scholar] [CrossRef]
- Fukuda, Y.; Takemura, T.; Ferrans, V.J. Evolution of Metaplastic Squamous Cells of Alveolar Walls in Pulmonary Fibrosis Produced by Paraquat. An Ultrastructural and Immunohistochemical Study. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1989, 58, 27–43. [Google Scholar] [CrossRef]
- Molyneaux, P.L.; Willis-Owen, S.A.G.; Cox, M.J.; James, P.; Cowman, S.; Loebinger, M.; Blanchard, A.; Edwards, L.M.; Stock, C.; Daccord, C.; et al. Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2017, 195, 1640–1650. [Google Scholar] [CrossRef]
- Xu, L.; Bian, W.; Gu, X.H.; Shen, C. Genetic Polymorphism in Matrix Metalloproteinase-9 and Transforming Growth Factor-Β1 and Susceptibility to Combined Pulmonary Fibrosis and Emphysema in a Chinese Population. Kaohsiung J. Med. Sci. 2017, 33, 124–129. [Google Scholar] [CrossRef]
- Dayer, C.; Stamenkovic, I. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation. J. Biol. Chem. 2015, 290, 13763–13778. [Google Scholar] [CrossRef] [Green Version]
- Perng, D.W.; Chang, K.T.; Su, K.C.; Wu, Y.C.; Chen, C.S.; Hsu, W.H.; Tsai, C.M.; Lee, Y.C. Matrix Metalloprotease-9 Induces Transforming Growth Factor-β(1) Production in Airway Epithelium via Activation of Epidermal Growth Factor Receptors. Life Sci. 2011, 89, 204–212. [Google Scholar] [CrossRef]
- Pardo, A.; Selman, M.; Kaminski, N. Approaching the Degradome in Idiopathic Pulmonary Fibrosis. Int. J. Biochem. Cell Biol. 2008, 40, 1141–1155. [Google Scholar] [CrossRef]
- Espindola, M.S.; Habiel, D.M.; Coelho, A.L.; Stripp, B.; Parks, W.C.; Oldham, J.; Martinez, F.J.; Noth, I.; Lopez, D.; Mikels-Vigdal, A.; et al. Differential Responses to Targeting Matrix Metalloproteinase 9 in Idiopathic Pulmonary Fibrosis. Am. J. Respir. Crit. Care Med. 2021, 203, 458–470. [Google Scholar] [CrossRef]
- Ma, J.Y.; Mercer, R.R.; Barger, M.; Schwegler-Berry, D.; Scabilloni, J.; Ma, J.K.; Castranova, V. Induction of Pulmonary Fibrosis by Cerium Oxide Nanoparticles. Toxicol. Appl. Pharmacol. 2012, 262, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Scabilloni, J.F.; Wang, L.; Antonini, J.M.; Roberts, J.R.; Castranova, V.; Mercer, R.R. Matrix Metalloproteinase Induction in Fibrosis and Fibrotic Nodule Formation Due to Silica Inhalation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 288, 709–717. [Google Scholar] [CrossRef]
- Krampert, M.; Bloch, W.; Sasaki, T.; Bugnon, P.; Rülicke, T.; Wolf, E.; Aumailley, M.; Parks, W.C.; Werner, S. Activities of the Matrix Metalloproteinase Stromelysin-2 (MMP-10) in Matrix Degradation and Keratinocyte Organization in Wounded Skin. Mol. Biol. Cell 2004, 15, 5242–5254. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Irigoyen, O.; Carotti, S.; Latasa, M.U.; Uriarte, I.; Fernández-Barrena, M.G.; Elizalde, M.; Urtasun, R.; Vespasiani-Gentilucci, U.; Morini, S.; Banales, J.M.; et al. Matrix Metalloproteinase-10 Expression Is Induced during Hepatic Injury and Plays a Fundamental Role in Liver Tissue Repair. Liver Int. 2014, 34, e257–e270. [Google Scholar] [CrossRef]
- Koller, F.L.; Dozier, E.A.; Nam, K.T.; Swee, M.; Birkland, T.P.; Parks, W.C.; Fingleton, B. Lack of MMP10 Exacerbates Experimental Colitis and Promotes Development of Inflammation-Associated Colonic Dysplasia. Lab. Investig. 2012, 92, 1749–1759. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Fujii, Y.; Ohuchi, E.; Yamamoto, E.; Okada, Y. Activation of the Precursor of Human Stromelysin 2 and Its Interactions with Other Matrix Metalloproteinases. Eur. J. Biochem. 1998, 253, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Cho, W.S.; Han, B.S.; Cho, M.; Kim, S.Y.; Yi, J.Y.; Ahn, B.; Kim, S.H.; Jeong, J. Transient Pulmonary Fibrogenic Effect Induced by Intratracheal Instillation of Ultrafine Amorphous Silica in A/J Mice. Toxicol. Lett. 2008, 182, 97–101. [Google Scholar] [CrossRef]
- Ishikawa, F.; Miyoshi, H.; Nose, K.; Shibanuma, M. Transcriptional Induction of MMP-10 by TGF-β, Mediated by Activation of MEF2A and Downregulation of Class IIa HDACs. Oncogene 2009, 29, 909–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, M.Y.; Birkland, T.P.; Howe, J.D.; Rowan, A.D.; Fidock, M.; Parks, W.C.; Gavrilovic, J. Macrophage Migration and Invasion Is Regulated by MMP10 Expression. PLoS ONE 2013, 8, e63555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, D.; Weiss, S.J. Furin-Dependent Intracellular Activation of the Human Stromelysin-3 Zymogen. Nature 1995, 375, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Basset, P.; Bellocq, J.P.; Wolf, C.; Stoll, I.; Hutin, P.; Limacher, J.M.; Podhajcer, O.L.; Chenard, M.P.; Rio, M.C.; Chambon, P. A Novel Metalloproteinase Gene Specifically Expressed in Stromal Cells of Breast Carcinomas. Nature 1990, 348, 699–704. [Google Scholar] [CrossRef]
- Belaaouaj, A.; Shipley, J.M.; Kobayashi, D.K.; Zimonjic, D.B.; Popescu, N.; Silverman, G.A.; Shapiro, S.D. Human Macrophage Metalloelastase. Genomic Organization, Chromosomal Location, Gene Linkage, and Tissue-Specific Expression. J. Biol. Chem. 1995, 270, 14568–14575. [Google Scholar] [CrossRef] [Green Version]
- Qu, P.; Du, H.; Wang, X.; Yan, C. Matrix Metalloproteinase 12 Overexpression in Lung Epithelial Cells Plays a Key Role in Emphysema to Lung Bronchioalveolar Adenocarcinoma Transition. Cancer Res. 2009, 69, 7252–7261. [Google Scholar] [CrossRef] [Green Version]
- Brusselle, G.G. Matrix Metalloproteinase 12, Asthma, and COPD. N. Engl. J. Med. 2009, 361, 2664–2665. [Google Scholar] [CrossRef]
- Chen, Y.E. MMP-12, an Old Enzyme Plays a New Role in the Pathogenesis of Rheumatoid Arthritis? Am. J. Pathol. 2004, 165, 1069–1070. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, T.R.; Gieseck, R.L.; Acciani, T.H.; Hart, K.M.; Cheever, A.W.; Mentink-Kane, M.M.; Vannella, K.M.; Wynn, T.A. Enhanced Protection from Fibrosis and Inflammation in the Combined Absence of IL-13 and IFN-γ. J. Pathol. 2016, 239, 344–354. [Google Scholar] [CrossRef] [Green Version]
- Sand, J.M.; Larsen, L.; Hogaboam, C.; Martinez, F.; Han, M.L.; Larsen, M.R.; Nawrocki, A.; Zheng, Q.; Karsdal, M.A.; Leeming, D.J. MMP Mediated Degradation of Type IV Collagen Alpha 1 and Alpha 3 Chains Reflects Basement Membrane Remodeling in Experimental and Clinical Fibrosis—Validation of Two Novel Biomarker Assays. PLoS ONE 2013, 8, e84934. [Google Scholar] [CrossRef]
- Granata, S.; Santoro, G.; Masola, V.; Tomei, P.; Sallustio, F.; Pontrelli, P.; Accetturo, M.; Antonucci, N.; Carratú, P.; Lupo, A.; et al. In Vitro Identification of New Transcriptomic and MiRNomic Profiles Associated with Pulmonary Fibrosis Induced by High Doses Everolimus: Looking for New Pathogenetic Markers and Therapeutic Targets. Int. J. Mol. Sci. 2018, 19, 1250. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Wu, Z.; Bai, D.; Tang, R.; Phan, S. Matrix Metalloproteinase-12 (MMP12) Inhibits Myofibroblast Differentiation and Lung Fibrosis. FASEB J. 2015, 29, 411.6. [Google Scholar] [CrossRef]
- Ortiz, L.A.; Lasky, J.; Gozal, E.; Ruiz, V.; Lungarella, G.; Cavarra, E.; Brody, A.R.; Friedman, M.; Pardo, A.; Selman, M. Tumor Necrosis Factor Receptor Deficiency Alters Matrix Metalloproteinase 13/Tissue Inhibitor of Metalloproteinase 1 Expression in Murine Silicosis. Am. J. Respir. Crit. Care Med. 2012, 163, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Uchinami, H.; Seki, E.; Brenner, D.A.; D’Armiento, J. Loss of MMP 13 Attenuates Murine Hepatic Injury and Fibrosis during Cholestasis. Hepatology 2006, 44, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Knäuper, V.; Will, H.; López-Otin, C.; Smith, B.; Atkinson, S.J.; Stanton, H.; Hembry, R.M.; Murphy, G. Cellular Mechanisms for Human Procollagenase-3 (MMP-13) Activation: Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. J. Biol. Chem. 1996, 271, 17124–17131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallowfield, J.A.; Mizuno, M.; Kendall, T.J.; Constandinou, C.M.; Benyon, R.C.; Duffield, J.S.; Iredale, J.P. Scar-Associated Macrophages Are a Major Source of Hepatic Matrix Metalloproteinase-13 and Facilitate the Resolution of Murine Hepatic Fibrosis. J. Immunol. 2007, 178, 5288–5295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Alvarez, J.; Ramirez, R.; Checa, M.; Nuttall, R.K.; Sampieri, C.L.; Edwards, D.R.; Selman, M.; Pardo, A. Tissue Inhibitor of Metalloproteinase-3 Is up-Regulated by Transforming Growth Factor-Beta1 in Vitro and Expressed in Fibroblastic Foci in Vivo in Idiopathic Pulmonary Fibrosis. Exp. Lung Res. 2009, 32, 201–214. [Google Scholar] [CrossRef]
- Cabrera, S.; Selman, M.; Lonzano-Bolaños, A.; Konishi, K.; Richards, T.J.; Kaminski, N.; Pardo, A. Gene Expression Profiles Reveal Molecular Mechanisms Involved in the Progression and Resolution of Bleomycin-Induced Lung Fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 304, L593–L601. [Google Scholar] [CrossRef]
- Amar, S.; Smith, L.; Fields, G.B. Matrix Metalloproteinase Collagenolysis in Health and Disease. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1940–1951. [Google Scholar] [CrossRef]
- Rowe, R.G.; Keena, D.; Sabeh, F.; Willis, A.L.; Weiss, S.J. Pulmonary Fibroblasts Mobilize the Membrane-Tethered Matrix Metalloprotease, MT1-MMP, to Destructively Remodel and Invade Interstitial Type I Collagen Barriers. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L683–L692. [Google Scholar] [CrossRef] [Green Version]
- Mu, D.; Cambier, S.; Fjellbirkeland, L.; Baron, J.L.; Munger, J.S.; Kawakatsu, H.; Sheppard, D.; Courtney Broaddus, V.; Nishimura, S.L. The Integrin Avβ8 Mediates Epithelial Homeostasis through MT1-MMP–Dependent Activation of TGF-Β1. J. Cell Biol. 2002, 157, 493. [Google Scholar] [CrossRef] [Green Version]
- Sabeh, F.; Ota, I.; Holmbeck, K.; Birkedal-Hansen, H.; Soloway, P.; Balbin, M.; Lopez-Otin, C.; Shapiro, S.; Inada, M.; Krane, S.; et al. Tumor Cell Traffic through the Extracellular Matrix Is Controlled by the Membrane-Anchored Collagenase MT1-MMP. J. Cell Biol. 2004, 167, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Itoh, Y. Membrane-Type Matrix Metalloproteinases: Their Functions and Regulations. Matrix Biol. 2015, 44–46, 207–223. [Google Scholar] [CrossRef]
- Zigrino, P.; Brinckmann, J.; Niehoff, A.; Lu, Y.; Giebeler, N.; Eckes, B.; Kadler, K.E.; Mauch, C. Fibroblast-Derived MMP-14 Regulates Collagen Homeostasis in Adult Skin. J. Investig. Dermatol. 2016, 136, 1575–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, A.L.; Rojas, M.; Pardo, A.; Selman, M. Emerging Therapies for Idiopathic Pulmonary Fibrosis, a Progressive Age-Related Disease. Nat. Rev. Drug Discov. 2017, 16, 755–772. [Google Scholar] [CrossRef] [Green Version]
- Pendás, A.M.; Knäuper, V.; Puente, X.S.; Llano, E.; Mattei, M.G.; Apte, S.; Murphy, G.; López-Otín, C. Identification and Characterization of a Novel Human Matrix Metalloproteinase with Unique Structural Characteristics, Chromosomal Location, and Tissue Distribution. J. Biol. Chem. 1997, 272, 4281–4286. [Google Scholar] [CrossRef] [Green Version]
- Stracke, J.O.; Hutton, M.; Stewart, M.; Pendá, A.M.; Smith, B.; Ló Pez-Otin, C.; Murphy, G.; Knä, V. Biochemical Characterization of the Catalytic Domain of Human Matrix Metalloproteinase 19. Evidence for a Role as a Potent Basement Membrane Degrading Enzyme. J. Biol. Chem. 2000, 275, 14809–14816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suomela, S.; Kariniemi, A.L.; Impola, U.; Karvonen, S.L.; Snellman, E.; Uurasmaa, T.; Peltonen, J.; Saarialho-Kere, U. Matrix Metalloproteinase-19 Is Expressed by Keratinocytes in Psoriasis. Acta Derm. Venereol. 2003, 83, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.Q.; Popova, S.N.; Brown, E.R.S.; Barsyte-Lovejoy, D.; Navab, R.; Shih, W.; Li, M.; Lu, M.; Jurisica, I.; Penn, L.Z.; et al. Integrin Alpha 11 Regulates IGF2 Expression in Fibroblasts to Enhance Tumorigenicity of Human Non-Small-Cell Lung Cancer Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 11754–11759. [Google Scholar] [CrossRef] [Green Version]
- Wilborn, J.; Crofford, L.J.; Burdick, M.D.; Kunkel, S.L.; Strieter, R.M.; Peters-Golden, M. Cultured Lung Fibroblasts Isolated from Patients with Idiopathic Pulmonary Fibrosis Have a Diminished Capacity to Synthesize Prostaglandin E2 and to Express Cyclooxygenase-2. J. Clin. Investig. 1995, 95, 1861–1868. [Google Scholar] [CrossRef] [Green Version]
- Mauch, S.; Kolb, C.; Kolb, B.; Sadowski, T.; Sedlacek, R. Matrix Metalloproteinase-19 Is Expressed in Myeloid Cells in an Adhesion-Dependent Manner and Associates with the Cell Surface. J. Immunol. 2002, 168, 1244–1251. [Google Scholar] [CrossRef] [Green Version]
- Gabasa, M.; Royo, D.; Molina-Molina, M.; Roca-Ferrer, J.; Pujols, L.; Picado, C.; Xaubet, A.; Pereda, J. Lung Myofibroblasts Are Characterized by Down-Regulated Cyclooxygenase-2 and Its Main Metabolite, Prostaglandin E2. PLoS ONE 2013, 8, e65445. [Google Scholar] [CrossRef]
- Beck, I.M.; Rückert, R.; Brandt, K.; Mueller, M.S.; Sadowski, T.; Brauer, R.; Schirmacher, P.; Mentlein, R.; Sedlacek, R. MMP19 Is Essential for T Cell Development and T Cell-Mediated Cutaneous Immune Responses. PLoS ONE 2008, 3, e2343. [Google Scholar] [CrossRef]
- Maldonado, M.; Salgado-Aguayo, A.; Herrera, I.; Cabrera, S.; Ortíz-Quintero, B.; Staab-Weijnitz, C.A.; Eickelberg, O.; Ramírez, R.; Manicone, A.M.; Selman, M.; et al. Upregulation and Nuclear Location of MMP28 in Alveolar Epithelium of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2018, 59, 77–86. [Google Scholar] [CrossRef]
- Werner, S.R.; Mescher, A.L.; Neff, A.W.; King, M.W.; Chaturvedi, S.; Duffin, K.L.; Harty, M.W.; Smith, R.C. Neural MMP-28 Expression Precedes Myelination during Development and Peripheral Nerve Repair. Dev. Dyn. 2007, 236, 2852–2864. [Google Scholar] [CrossRef]
- Lohi, J.; Wilson, C.L.; Roby, J.D.; Parks, W.C. Epilysin, a Novel Human Matrix Metalloproteinase (MMP-28) Expressed in Testis and Keratinocytes and in Response to Injury. J. Biol. Chem. 2001, 276, 10134–10144. [Google Scholar] [CrossRef]
- Jian, P.; Yanfang, T.; Zhuan, Z.; Jian, W.; Xueming, Z.; Jian, N. MMP28 (Epilysin) as a Novel Promoter of Invasion and Metastasis in Gastric Cancer. BMC Cancer 2011, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Momohara, S.; Okamoto, H.; Komiya, K.; Ikari, K.; Takeuchi, M.; Tomatsu, T.; Kamatani, N.; Clark, I.M. Matrix Metalloproteinase 28/Epilysin Expression in Cartilage from Patients with Rheumatoid Arthritis and Osteoarthritis: Comment on the Article by Kevorkian et Al. Arthritis Rheum. 2004, 50, 4074–4075. [Google Scholar] [CrossRef]
- Manicone, A.M.; Gharib, S.A.; Gong, K.Q.; Eddy, W.E.; Long, M.E.; Frevert, C.W.; Altemeier, W.A.; Parks, W.C.; Houghton, A.M.G. Matrix Metalloproteinase-28 Is a Key Contributor to Emphysema Pathogenesis. Am. J. Pathol. 2017, 187, 1288. [Google Scholar] [CrossRef] [Green Version]
- Illman, S.A.; Lehti, K.; Keski-Oja, J.; Lohi, J. Epilysin (MMP-28) Induces TGF-Beta Mediated Epithelial to Mesenchymal Transition in Lung Carcinoma Cells. J. Cell Sci. 2006, 119, 3856–3865. [Google Scholar] [CrossRef] [Green Version]
- Song, E.; Ouyang, N.; Hörbelt, M.; Antus, B.; Wang, M.; Exton, M.S. Influence of Alternatively and Classically Activated Macrophages on Fibrogenic Activities of Human Fibroblasts. Cell. Immunol. 2000, 204, 19–28. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, Q.; Xu, B.; Liu, J.; Shi, L.; Zhu, D.; Wu, C.; Jiang, J. MT2-MMP Expression Associates with Tumor Progression and Angiogenesis in Human Lung Cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 3469. [Google Scholar]
- Ito, E.; Yana, I.; Fujita, C.; Irifune, A.; Takeda, M.; Madachi, A.; Mori, S.; Hamada, Y.; Kawaguchi, N.; Matsuura, N. The Role of MT2-MMP in Cancer Progression. Biochem. Biophys. Res. Commun. 2010, 393, 222–227. [Google Scholar] [CrossRef]
- Paye, A.; Truong, A.; Yip, C.; Cimino, J.; Blacher, S.; Munaut, C.; Cataldo, D.; Foidart, J.M.; Maquoi, E.; Collignon, J.; et al. EGFR Activation and Signaling in Cancer Cells Are Enhanced by the Membrane-Bound Metalloprotease MT4-MMP. Cancer Res. 2014, 74, 6758–6770. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Weber, C.R.; Sohail, A.; Bernardo, M.M.; Toth, M.; Zhao, H.; Turner, J.R.; Fridman, R. MMP25 (MT6-MMP) Is Highly Expressed in Human Colon Cancer, Promotes Tumor Growth, and Exhibits Unique Biochemical Properties. J. Biol. Chem. 2007, 282, 21998–22010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.C.; Wang, P.X.; Zhang, G.; Ezura, Y.; Fini, M.E.; Birk, D.E. Collagen Fibril Growth during Chicken Tendon Development: Matrix Metalloproteinase-2 and Its Activation. Cell Tissue Res. 2009, 336, 79–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okimoto, R.A.; Breitenbuecher, F.; Olivas, V.R.; Wu, W.; Gini, B.; Hofree, M.; Asthana, S.; Hrustanovic, G.; Flanagan, J.; Tulpule, A.; et al. Inactivation of Capicua Drives Cancer Metastasis. Nat. Genet. 2017, 49, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Z.; Wang, X.; Yu, X.; Zhang, Y.; Qin, L. MMP16 Promotes Tumor Metastasis and Indicates Poor Prognosis in Hepatocellular Carcinoma. Oncotarget 2017, 8, 72197–72204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Mustafa, A.; Yerzhan, A.; Merzhakupova, D.; Yerlan, P.; Orakov, A.N.; Wang, X.; Huang, Y.; Miao, L. Nuclear Matrix Metalloproteinases: Functions Resemble the Evolution from the Intracellular to the Extracellular Compartment. Cell Death Discov. 2017, 3, 17036. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, H.; Wang, Y.; Lin, Y.; Tan, Y.; Fang, X.; Zheng, L. Non-Small Cell Lung Cancer Invasion and Metastasis Promoted by MMP-26. Mol. Med. Rep. 2011, 4, 1201–1209. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Xiao, A.Z.; Newcomer, R.G.; Park, H.I.; Kang, T.; Chung, L.W.K.; Swanson, M.G.; Zhau, H.E.; Kurhanewicz, J.; Sang, Q.X.A. Activation of Pro-Gelatinase B by Endometase/Matrilysin-2 Promotes Invasion of Human Prostate Cancer Cells. J. Biol. Chem. 2003, 278, 15056–15064. [Google Scholar] [CrossRef] [Green Version]
- Chaillan, F.A.; Rivera, S.; Marchetti, E.; Jourquin, J.; Werb, Z.; Soloway, P.D.; Khrestchatisky, M.; Roman, F.S. Involvement of Tissue Inhibition of Metalloproteinases-1 in Learning and Memory in Mice. Behav. Brain Res. 2006, 173, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Caterina, J.J.; Yamada, S.; Caterina, N.C.M.; Longenecker, G.; Holmbäck, K.; Shi, J.; Yermovsky, A.E.; Engler, J.A.; Birkedal-Hansen, H. Inactivating Mutation of the Mouse Tissue Inhibitor of Metalloproteinases-2(Timp-2) Gene Alters ProMMP-2 Activation. J. Biol. Chem. 2000, 275, 26416–26422. [Google Scholar] [CrossRef] [Green Version]
- Koskivirta, I.; Kassiri, Z.; Rahkonen, O.; Kiviranta, R.; Oudit, G.Y.; McKee, T.D.; Kytö, V.; Saraste, A.; Jokinen, E.; Liu, P.P.; et al. Mice with Tissue Inhibitor of Metalloproteinases 4 (Timp4) Deletion Succumb to Induced Myocardial Infarction but Not to Cardiac Pressure Overload. J. Biol. Chem. 2010, 285, 24487–24493. [Google Scholar] [CrossRef] [Green Version]
- Leco, K.J.; Waterhouse, P.; Sanchez, O.H.; Gowing, K.L.M.; Poole, A.R.; Wakeham, A.; Mak, T.W.; Khokha, R. Spontaneous Air Space Enlargement in the Lungs of Mice Lacking Tissue Inhibitor of Metalloproteinases-3 (TIMP-3). J. Clin. Investig. 2001, 108, 817–829. [Google Scholar] [CrossRef]
- Kim, K.H.; Burkhart, K.; Chen, P.; Frevert, C.W.; Randolph-Habecker, J.; Hackman, R.C.; Soloway, P.D.; Madtes, D.K. Tissue Inhibitor of Metalloproteinase-1 Deficiency Amplifies Acute Lung Injury in Bleomycin-Exposed Mice. Am. J. Respir. Cell Mol. Biol. 2012, 33, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.E.; Huizar, I.; Bench, E.M.; Sussman, S.W.; Wang, Y.; Khokha, R.; Parks, W.C. Tissue Inhibitor of Metalloproteinases 3 Regulates Resolution of Inflammation Following Acute Lung Injury. Am. J. Pathol. 2010, 176, 64–73. [Google Scholar] [CrossRef]
- Tan, S.Z.; Liu, C.H.; Zhang, W.; Lu, X.; Ye, W.C.; Cai, Z.Z.; Liu, P. Feature Changes of MMP-2/9 Activities and TIMP-1/2 Protein Expressions during the Progression of Pulmonary Fibrosis in Rats. Zhong Xi Yi Jie He Xue Bao 2006, 4, 402–407. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.M.; Wang, G.L.; Wang, X.B.; Liu, L.; Zhang, Q.; Yin, Y.; Wang, Q.Y.; Kang, J.; Hou, G. GHK Peptide Inhibits Bleomycin-Induced Pulmonary Fibrosis in Mice by Suppressing TGFβ1/Smad-Mediated Epithelial-to-Mesenchymal Transition. Front. Pharmacol. 2017, 8, 904. [Google Scholar] [CrossRef] [Green Version]
- Zuo, W.; Zhao, J.; Huang, J.; Zhou, W.; Lei, Z.; Huang, Y.; Huang, Y.; Li, H. Effect of Bosentan Is Correlated with MMP-9/TIMP-1 Ratio in Bleomycin-induced Pulmonary Fibrosis. Biomed. Rep. 2017, 6, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; He, Z.; Gao, Y.; Zheng, R.; Zhang, X.; Zhao, L.; Tan, M. Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-Β1/Smad-Mediated Epithelial to Mesenchymal Transition. Front. Pharmacol. 2016, 7, 430. [Google Scholar] [CrossRef] [Green Version]
- Madtes, D.K.; Elston, A.L.; Kaback, L.A.; Clark, J.G. Selective Induction of Tissue Inhibitor of Metalloproteinase-1 in Bleomycin-Induced Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2012, 24, 599–607. [Google Scholar] [CrossRef]
- Ramos, C.; Montaño, M.; García-Alvarez, J.; Ruiz, V.; Uhal, B.D.; Selman, M.; Pardo, A. Fibroblasts from Idiopathic Pulmonary Fibrosis and Normal Lungs Differ in Growth Rate, Apoptosis, and Tissue Inhibitor of Metalloproteinases Expression. Am. J. Respir. Cell Mol. Biol. 2001, 24, 591–598. [Google Scholar] [CrossRef] [Green Version]
- Pardo, A.; Selman, M.; Ramirez, R.; Ramos, C.; Montano, M.; Stricklin, G.; Raghu, G. Production of Collagenase and Tissue Inhibitor of Metalloproteinases by Fibroblasts Derived from Normal and Fibrotic Human Lungs. Chest 1992, 102, 1085–1089. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Stetler-Stevenson, W.G.; Fleming, M.V.; Fishback, N.; Koss, M.N.; Liotta, L.A.; Ferrans, V.J.; Travis, W.D. Immunohistochemical Study of Metalloproteinases and Their Tissue Inhibitors in the Lungs of Patients with Diffuse Alveolar Damage and Idiopathic Pulmonary Fibrosis. Am. J. Pathol. 1996, 149, 1241. [Google Scholar] [PubMed]
- Menou, A.; Duitman, J.W.; Crestani, B. The Impaired Proteases and Anti-Proteases Balance in Idiopathic Pulmonary Fibrosis. Matrix Biol. 2018, 68–69, 382–403. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, T.; Kanekura, T.; Yamaoka, A.; Ozawa, M.; Miyazawa, S.; Muramatasu, T. Basigin, a New, Broadly Distributed Member of the Immunoglobulin Superfamily, Has Strong Homology with Both the Immunoglobulin V Domain and the β-Chain of Major Histocompatibility Complex Class II Antigen. J. Biochem. 1990, 107, 316–323. [Google Scholar] [CrossRef]
- Biswas, C. Collagenase Stimulation in Cocultures of Human Fibroblasts and Human Tumor Cells. Cancer Lett. 1984, 24, 201–207. [Google Scholar] [CrossRef]
- Biswas, C.; Zhang, Y.; DeCastro, R.; Guo, H.; Nakamura, T.; Kataoka, H.; Nabeshima, K. The Human Tumor Cell-Derived Collagenase Stimulatory Factor (Renamed EMMPRIN) Is a Member of the Immunoglobulin Superfamily. Cancer Res. 1995, 55, 434–439. [Google Scholar]
- Kaname, T.; Miyauchi, T.; Kuwano, A.; Matsuda, Y.; Muramatsu, T.; Kajii, T. Mapping Basigin (BSG), a Member of the Immunoglobulin Superfamily, to 19p13.3. Cytogenet. Genome Res. 1993, 64, 195–197. [Google Scholar] [CrossRef]
- Grass, G.D.; Toole, B.P. How, with Whom and When: An Overview of CD147-Mediated Regulatory Networks Influencing Matrix Metalloproteinase Activity. Biosci. Rep. 2015, 36, e00283. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Vetrivel, U.; Parameswaran, S.; Subramanian, K.K. Structural Insights on Druggable Hotspots in CD147: A Bull’s Eye View. Life Sci. 2019, 224, 76–87. [Google Scholar] [CrossRef]
- Sameshima, T.; Nabeshima, K.; Toole, B.P.; Yokogami, K.; Okada, Y.; Goya, T.; Koono, M.; Wakisaka, S. Glioma Cell Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) (CD147) Stimulates Production of Membrane-Type Matrix Metalloproteinases and Activated Gelatinase A in Co-Cultures with Brain-Derived Fibroblasts. Cancer Lett. 2000, 157, 177–184. [Google Scholar] [CrossRef]
- Yang, N.; Higuchi, O.; Ohashi, K.; Nagata, K.; Wada, A.; Kangawa, K.; Nishida, E.; Mizuno, K. Cofilin Phosphorylation by LIM-Kinase 1 and Its Role in Rac-Mediated Actin Reorganization. Nature 1998, 393, 809–812. [Google Scholar] [CrossRef]
- Guindolet, D.; Gabison, E.E. Role of CD147 (EMMPRIN/Basigin) in Tissue Remodeling. Anat. Rec. 2020, 303, 1584–1589. [Google Scholar] [CrossRef]
- Liao, C.-G.; Kong, L.-M.; Song, F.; Xing, J.-L.; Wang, L.-X.; Sun, Z.-J.; Tang, H.; Yao, H.; Zhang, Y.; Wang, L.; et al. Characterization of Basigin Isoforms and the Inhibitory Function of Basigin-3 in Human Hepatocellular Carcinoma Proliferation and Invasion. Mol. Cell. Biol. 2011, 31, 2591–2604. [Google Scholar] [CrossRef] [Green Version]
- Gabison, E.E.; Hoang-Xuan, T.; Mauviel, A.; Menashi, S. EMMPRIN/CD147, an MMP Modulator in Cancer, Development and Tissue Repair. Biochimie 2005, 87, 361–368. [Google Scholar] [CrossRef]
- Yan, L.; Zucker, S.; Toole, B.P. Roles of the Multifunctional Glycoprotein, Emmprin (Basigin; CD147), in Tumour Progression. Thromb. Haemost. 2005, 93, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.L.; Hu, T.; Du, J.M.; Ding, J.P.; Yang, X.M.; Zhang, J.; Yang, B.; Shen, X.; Zhang, Z.; Zhong, W.D.; et al. Crystal Structure of HAb18G/CD147: Implications for Immunoglobulin Superfamily Homophilic Adhesion. J. Biol. Chem. 2008, 283, 18056–18065. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Huang, W.; Lin, P.; Wu, B.; Fu, Z.G.; Shen, H.M.; Jing, L.; Liu, Z.Y.; Zhou, Y.; Meng, Y.; et al. N-Linked Glycosylation at Asn152 on CD147 Affects Protein Folding and Stability: Promoting Tumour Metastasis in Hepatocellular Carcinoma. Sci. Rep. 2016, 6, 35210. [Google Scholar] [CrossRef] [Green Version]
- Papadimitropoulou, A.; Mamalaki, A. The Glycosylated IgII Extracellular Domain of EMMPRIN Is Implicated in the Induction of MMP-2. Mol. Cell. Biochem. 2013, 379, 107–113. [Google Scholar] [CrossRef]
- Tang, W.; Chang, S.B.; Hemler, M.E. Links between CD147 Function, Glycosylation, and Caveolin-1. Mol. Biol. Cell 2004, 15, 4043–4050. [Google Scholar] [CrossRef]
- Chow, A.K.; Cena, J.; El-Yazbi, A.F.; Crawford, B.D.; Holt, A.; Cho, W.J.; Daniel, E.E.; Schulz, R. Caveolin-1 Inhibits Matrix Metalloproteinase-2 Activity in the Heart. J. Mol. Cell. Cardiol. 2007, 42, 896–901. [Google Scholar] [CrossRef]
- Belton, R.J.; Chen, L.; Mesquita, F.S.; Nowak, R.A. Basigin-2 Is a Cell Surface Receptor for Soluble Basigin Ligand. J. Biol. Chem. 2008, 283, 17805–17814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel Grass, G.; Bratoeva, M.; Toole, B.P. Regulation of Invadopodia Formation and Activity by CD147. J. Cell Sci. 2012, 125, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Knutti, N.; Kuepper, M.; Friedrich, K. Soluble Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, EMN) Regulates Cancer-Related Cellular Functions by Homotypic Interactions with Surface CD147. FEBS J. 2015, 282, 4187–4200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Ungern-Sternberg, S.N.I.; Zernecke, A.; Seizer, P. Extracellular Matrix Metalloproteinase Inducer EMMPRIN (CD147) in Cardiovascular Disease. Int. J. Mol. Sci. 2018, 19, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, C.; Longatto-Filho, A.; Simões, K.; Jacob, C.E.; Bresciani, C.J.C.; Zilberstein, B.; Cecconello, I.; Alves, V.A.F.; Schmitt, F.; Baltazar, F. The Prognostic Value of CD147/EMMPRIN Is Associated with Monocarboxylate Transporter 1 Co-Expression in Gastric Cancer. Eur. J. Cancer 2009, 45, 2418–2424. [Google Scholar] [CrossRef] [PubMed]
- Toole, B.P. The CD147-HYALURONAN Axis in Cancer. Anat. Rec. 2020, 303, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, V.; Constant, S.; Bukrinsky, M. Dealing with the Family: CD147 Interactions with Cyclophilins. Immunology 2006, 117, 301–309. [Google Scholar] [CrossRef]
- Takahashi, M.; Suzuki, S.; Ishikawa, K. Cyclophilin A-EMMPRIN Interaction Induces Invasion of Head and Neck Squamous Cell Carcinoma. Oncol. Rep. 2012, 27, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhai, Q.; Bharadwaj, U.; Wang, M.; Li, F.; Fisher, W.E.; Chen, C.; Yao, Q. Cyclophilin A Is Overexpressed in Human Pancreatic Cancer Cells and Stimulates Cell Proliferation through CD147. Cancer 2006, 106, 2284–2294. [Google Scholar] [CrossRef]
- Pushkarsky, T.; Yurchenko, V.; Vanpouille, C.; Brichacek, B.; Vaisman, I.; Hatakeyama, S.; Nakayama, K.I.; Sherry, B.; Bukrinsky, M.I. Cell Surface Expression of CD147/EMMPRIN Is Regulated by Cyclophilin 60. J. Biol. Chem. 2005, 280, 27866–27871. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wu, J.; Song, F.; Tang, J.; Wang, S.J.; Yu, X.L.; Chen, Z.N.; Jiang, J.L. Extracellular Membrane-Proximal Domain of HAb18G/CD147 Binds to Metal Ion-Dependent Adhesion Site (MIDAS) Motif of Integrin Β1 to Modulate Malignant Properties of Hepatoma Cells. J. Biol. Chem. 2012, 287, 4759–4772. [Google Scholar] [CrossRef] [Green Version]
- Khayati, F.; Pérez-Cano, L.; Maouche, K.; Sadoux, A.; Boutalbi, Z.; Podgorniak, M.-P.; Maskos, U.; Setterblad, N.; Janin, A.; Calvo, F.; et al. EMMPRIN/CD147 Is a Novel Coreceptor of VEGFR-2 Mediating Its Activation by VEGF. Oncotarget 2015, 6, 9766–9780. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhao, P.; Xu, X.L.; Cai, L.; Song, Z.S.; Cao, D.Y.; Tao, K.S.; Zhou, W.P.; Chen, Z.N.; Dou, K.F. Annexin A2 Promotes the Migration and Invasion of Human Hepatocellular Carcinoma Cells In Vitro by Regulating the Shedding of CD147-Harboring Microvesicles from Tumor Cells. PLoS ONE 2013, 8, e67268. [Google Scholar] [CrossRef]
- Priglinger, C.S.; Szober, C.M.; Priglinger, S.G.; Merl, J.; Euler, K.N.; Kernt, M.; Gondi, G.; Behler, J.; Geerlof, A.; Kampik, A.; et al. Galectin-3 Induces Clustering of CD147 and Integrin-Β1 Transmembrane Glycoprotein Receptors on the RPE Cell Surface. PLoS ONE 2013, 8, e70011. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Zhang, X.; Zeng, W.; Su, J.; Yang, K.; Lu, L.; Lim, C.B.; Tang, W.; Wu, L.; Zhao, S.; et al. TRAF6 Regulates Melanoma Invasion and Metastasis through Ubiquitination of Basigin. Oncotarget 2016, 7, 7179–7192. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Liao, L.; Chen, C.; Zeng, W.; Liu, S.; Su, J.; Zhao, S.; Chen, M.; Kuang, Y.; Chen, X.; et al. CD147 Mediates Chemoresistance in Breast Cancer via ABCG2 by Affecting Its Cellular Localization and Dimerization. Cancer Lett. 2013, 337, 285–292. [Google Scholar] [CrossRef]
- Kong, L.M.; Liao, C.G.; Fei, F.; Guo, X.; Xing, J.L.; Chen, Z.N. Transcription Factor Sp1 Regulates Expression of Cancer-Associated Molecule CD147 in Human Lung Cancer. Cancer Sci. 2010, 101, 1463–1470. [Google Scholar] [CrossRef]
- Polette, M.; Gilles, C.; Marchand, V.; Lorenzato, M.; Toole, B.; Tournier, J.M.; Zucker, S.; Birembaut, P. Tumor Collagenase Stimulatory Factor (TCSF) Expression and Localization in Human Lung and Breast Cancers. J. Histochem. Cytochem. 1997, 45, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Caudroy, S.; Polette, M.; Tournier, J.M.; Burlet, H.; Toole, B.; Zucker, S.; Birembaut, P. Expression of the Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) and the Matrix Metalloproteinase-2 in Bronchopulmonary and Breast Lesions. J. Histochem. Cytochem. 1999, 47, 1575–1580. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Sato, M.; Senoo, H.; Ishikawa, K. Direct Cell-Cell Interaction Enhances pro-MMP-2 Production and Activation in Co-Culture of Laryngeal Cancer Cells and Fibroblasts: Involvement of EMMPRIN and MT1-MMP. Exp. Cell Res. 2004, 293, 259–266. [Google Scholar] [CrossRef]
- Taylor, P.M.; Woodfield, R.J.; Hodgkin, M.N.; Pettitt, T.R.; Martin, A.; Kerr, D.J.; Wakelam, M.J.O. Breast Cancer Cell-Derived EMMPRIN Stimulates Fibroblast MMP2 Release through a Phospholipase A(2) and 5-Lipoxygenase Catalyzed Pathway. Oncogene 2002, 21, 5765–5772. [Google Scholar] [CrossRef] [Green Version]
- Nabeshima, K.; Suzumiya, J.; Nagano, M.; Ohshima, K.; Toole, B.P.; Tamura, K.; Iwasaki, H.; Kikuchi, M. Emmprin, a Cell Surface Inducer of Matrix Metalloproteinases (MMPs), Is Expressed in T-Cell Lymphomas. J. Pathol. 2004, 202, 341–351. [Google Scholar] [CrossRef]
- Jiang, J.L.; Zhou, Q.; Yu, M.K.; Ho, L.S.; Chen, Z.N.; Chan, H.C. The Involvement of HAb18G/CD147 in Regulation of Store-Operated Calcium Entry and Metastasis of Human Hepatoma Cells. J. Biol. Chem. 2001, 276, 46870–46877. [Google Scholar] [CrossRef] [Green Version]
- Van Den Oord, J.J.; Paemen, L.; Opdenakker, G.; De Wolf-Peeters, C. Expression of Gelatinase B and the Extracellular Matrix Metalloproteinase Inducer EMMPRIN in Benign and Malignant Pigment Cell Lesions of the Skin. Am. J. Pathol. 1997, 151, 665. [Google Scholar]
- Kim, H.S.; Kim, H.J.; Lee, M.R.; Han, I. EMMPRIN Expression Is Associated with Metastatic Progression in Osteosarcoma. BMC Cancer 2021, 21, 1059. [Google Scholar] [CrossRef] [PubMed]
- Savarese-Brenner, B.; Heugl, M.; Rath, B.; Schweizer, C.; Obermayr, E.; Stickler, S.; Hamilton, G. MUC1 and CD147 Are Promising Markers for the Detection of Circulating Tumor Cells in Small Cell Lung Cancer. Anticancer Res. 2022, 42, 429–439. [Google Scholar] [CrossRef]
- Betsuyaku, T.; Tanino, M.; Nagai, K.; Nasuhara, Y.; Nishimura, M.; Senior, R.M. Extracellular Matrix Metalloproteinase Inducer Is Increased in Smokers’ Bronchoalveolar Lavage Fluid. Am. J. Respir. Crit. Care Med. 2012, 168, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Major, T.C.; Liang, L.; Lu, X.; Rosebury, W.; Bocan, T.M.A. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) Is Induced upon Monocyte Differentiation and Is Expressed in Human Atheroma. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1200–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foda, H.D.; Rollo, E.E.; Drews, M.; Conner, C.; Appelt, K.; Shalinsky, D.R.; Zucker, S. Ventilator-Induced Lung Injury Upregulates and Activates Gelatinases and EMMPRIN: Attenuation by the Synthetic Matrix Metalloproteinase Inhibitor, Prinomastat (AG3340). Am. J. Respir. Cell Mol. Biol. 2001, 25, 717–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinale, F.G.; Coker, M.L.; Heung, L.J.; Bond, B.R.; Gunasinghe, H.R.; Etoh, T.; Goldberg, A.T.; Zellner, J.L.; Crumbley, A.J. A Matrix Metalloproteinase Induction/Activation System Exists in the Human Left Ventricular Myocardium and Is Upregulated in Heart Failure. Circulation 2000, 102, 1944–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Q.W.; Kadomatsu, K.; Uchimura, K.; Muramatsu, T. Embigin/Basigin Subgroup of the Immunoglobulin Superfamily: Different Modes of Expression during Mouse Embryogenesis and Correlated Expression with Carbohydrate Antigenic Markers. Dev. Growth Differ. 1998, 40, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kanekura, T.; Kanzaki, T. Expression of Basigin in Human Fetal, Infantile and Adult Skin and in Basal Cell Carcinoma. J. Cutan. Pathol. 2001, 28, 184–190. [Google Scholar] [CrossRef]
- Igakura, T.; Kadomatsu, K.; Kaname, T.; Muramatsu, H.; Fan, Q.W.; Miyauchi, T.; Toyama, Y.; Kuno, N.; Yuasa, S.; Takahashi, M.; et al. A Null Mutation in Basigin, an Immunoglobulin Superfamily Member, Indicates Its Important Roles in Peri-Implantation Development and Spermatogenesis. Dev. Biol. 1998, 194, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Bremnes, R.M.; Dønnem, T.; Al-Saad, S.; Al-Shibli, K.; Andersen, S.; Sirera, R.; Camps, C.; Marinez, I.; Busund, L.T. The Role of Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-Small Cell Lung Cancer. J. Thorac. Oncol. 2011, 6, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Ju, D.; Zhang, D.W.; Li, H.; Kong, L.M.; Guo, Y.; Li, C.; Wang, X.L.; Chen, Z.N.; Bian, H. Activation of TGF-Β1-CD147 Positive Feedback Loop in Hepatic Stellate Cells Promotes Liver Fibrosis. Sci. Rep. 2015, 5, 16552. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lu, Y.; Qiu, S.; Chen, Z.N.; Fan, Z. A Novel Role of EMMPRIN/CD147 in Transformation of Quiescent Fibroblasts to Cancer-Associated Fibroblasts by Breast Cancer Cells. Cancer Lett. 2013, 335, 380. [Google Scholar] [CrossRef] [Green Version]
- Guillot, S.; Delaval, P.; Brinchault, G.; Caulet-Maugendre, S.; Depince, A.; Lena, H.; Delatour, B.; Lagente, V.; Martin-Chouly, C. Increased Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) Expression in Pulmonary Fibrosis. Exp. Lung Res. 2006, 32, 81–97. [Google Scholar] [CrossRef]
- Betsuyaku, T.; Kadomatsu, K.; Griffin, G.L.; Muramatsu, T.; Senior, R.M. Increased Basigin in Bleomycin-Induced Lung Injury. Am. J. Respir. Cell Mol. Biol. 2003, 28, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Hasaneen, N.A.; Cao, J.; Pulkoski-Gross, A.; Zucker, S.; Foda, H.D. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) Promotes Lung Fibroblast Proliferation, Survival and Differentiation to Myofibroblasts. Respir. Res. 2016, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Huet, E.; Vallée, B.; Szul, D.; Verrecchia, F.; Mourah, S.; Jester, J.V.; Hoang-Xuan, T.; Menashi, S.; GaMson, E.E. Extracellular Matrix Metalloproteinase Inducer/CD147 Promotes Myofibroblast Differentiation by Inducing Alpha-Smooth Muscle Actin Expression and Collagen Gel Contraction: Implications in Tissue Remodeling. FASEB J. 2008, 22, 1144–1154. [Google Scholar] [CrossRef]
- Woods, E.L.; Grigorieva, I.V.; Midgley, A.C.; Brown, C.V.M.; Lu, Y.A.; Phillips, A.O.; Bowen, T.; Meran, S.; Steadman, R. CD147 Mediates the CD44s-Dependent Differentiation of Myofibroblasts Driven by Transforming Growth Factor-β 1. J. Biol. Chem. 2021, 297, 100987. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.D.; Zhang, M.Y.; Chen, Y.T.; Yao, H.; Zhang, Q.; Wang, W.J.; Fu, D.F.; Wei, R.J.; Zhang, J.Y.; Li, Y.; et al. Generation and Characterization of Fibroblast-Specific Basigin Knockout Mice. Mol. Biotechnol. 2019, 61, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.-j.; Zhang, K.; Chen, L.-n.; Miao, J.-l.; Yao, M.; Ren, Y.; Fu, Z.-g.; Chen, Z.-n.; Zhu, P. Enhancement of CD147 on M1 Macrophages Induces Differentiation of Th17 Cells in the Lung Interstitial Fibrosis. Biochim. Biophys. Acta 2014, 1842, 1770–1782. [Google Scholar] [CrossRef] [Green Version]
- Barth, K.; Bläsche, R.; Kasper, M. Lack of Evidence for Caveolin-1 and CD147 Interaction before and after Bleomycin-Induced Lung Injury. Histochem. Cell Biol. 2006, 126, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yu, F.; Lu, Y.Z.; Cheng, P.P.; Liang, L.M.; Wang, M.; Chen, S.J.; Huang, Y.; Song, L.J.; He, X.L.; et al. Crosstalk between Pleural Mesothelial Cell and Lung Fibroblast Contributes to Pulmonary Fibrosis. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118806. [Google Scholar] [CrossRef] [PubMed]
MMP | Substrate Classification [11] | Structure (N-Terminal Left, C-Terminal Right) | Role in PF | References |
---|---|---|---|---|
MMP-1 | Collagenase-1 | SP-ProP(SH)-CatZn2+-H-PEX | Unclear | [21,22,23,24] |
MMP-2 | Gelatinase A | SP-ProP(SH)-Cat(Fn-Fn-Fn)Zn2+-H-PEX | Profibrotic | [25,26,27,28] |
MMP-3 | Stromelysin-1 | SP-ProP(SH)-CatZn2+-H-PEX | Profibrotic | [29,30,31] |
MMP-7 | Matrilysin-1 | SP-ProP(SH)-CatZn2+ | Profibrotic and Antifibrotic | [32,33,34,35] |
MMP-8 | Collagenase-2 | SP-ProP(SH)-CatZn2+-H-PEX | Profibrotic | [36,37,38] |
MMP-9 | Gelatinase B | SP-ProP(SH)-Cat(Fn-Fn-Fn)Zn2+-H-PEX | Unclear | [39,40,41] |
MMP-10 | Stromelysin-2 | SP-ProP(SH)-CatZn2+-H-PEX | Unclear | [42,43] |
MMP-11 | Stromelysin-3 | SP-ProP(SH)Fu-CatZn2+-H-PEX | Profibrotic | [44,45,46] |
MMP-12 | Macrophage metalloelastase (Others) | SP-ProP(SH)-CatZn2+-H-PEX | Profibrotic | [47,48,49] |
MMP-13 | Collagenase-3 | SP-ProP(SH)-CatZn2+-H-PEX | Unclear | [50,51,52,53] |
MMP-14 | MT1-MMP | SP-ProP(SH)Fu-CatZn2+-H-PEX -TM-Cy | Unclear | [54,55,56] |
MMP-15 | MT2-MMP | SP-ProP(SH)Fu-CatZn2+-H-PEX -TM-Cy | Unknown | |
MMP-16 | MT3-MMP | SP-ProP(SH)Fu-CatZn2+-H-PEX -TM-Cy | Unknown | |
MMP-17 | MT4-MMP | SP-ProP(SH)Fu-CatZn2+-H-PEX -GPI | Unknown | |
MMP-19 | Others | SP-ProP(SH)-CatZn2+-H-PEX | Antifibrotic | [57,58,59] |
MMP-20 | Others | SP-ProP(SH)-CatZn2+-H-PEX | Unknown | |
MMP-21 | Others | SP-ProP(SH)VnFu-CatZn2+-H-PEX | Unknown | |
MMP-23 | Others | N-II-ProP(SH)Fu-Cat-CA-IgG-Like | Unknown | |
MMP-24 | MT5-MMP | SP-ProP(SH)Fu-CatZn2+-H-PEX-TM-Cy | Unknown | |
MMP-25 | MT6-MMP | SP-ProP(SH)Fu-CatZn2+-H-PEX-GPI | Unknown | |
MMP-26 | Matrilysin 2 | SP-ProP(SH)-CatZn2+ | Unknown | |
MMP-27 | Others | SP-ProP(SH)-CatZn2+-H-PEX | Unknown | |
MMP-28 | Others | SP-ProP(SH)Fu-CatZn2+-H-PEX | Profibrotic | [60,61,62,63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuliá-Peris, L.; Carreres-Rey, C.; Gabasa, M.; Alcaraz, J.; Carretero, J.; Pereda, J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int. J. Mol. Sci. 2022, 23, 6894. https://doi.org/10.3390/ijms23136894
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. International Journal of Molecular Sciences. 2022; 23(13):6894. https://doi.org/10.3390/ijms23136894
Chicago/Turabian StyleChuliá-Peris, Lourdes, Cristina Carreres-Rey, Marta Gabasa, Jordi Alcaraz, Julián Carretero, and Javier Pereda. 2022. "Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play" International Journal of Molecular Sciences 23, no. 13: 6894. https://doi.org/10.3390/ijms23136894
APA StyleChuliá-Peris, L., Carreres-Rey, C., Gabasa, M., Alcaraz, J., Carretero, J., & Pereda, J. (2022). Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. International Journal of Molecular Sciences, 23(13), 6894. https://doi.org/10.3390/ijms23136894