Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax Gourd (Benincasa hispida)
Abstract
:1. Introduction
2. Results
2.1. Soluble Sugar Content and SSC of SL-7 and XDJQ-1
2.2. BhSSC2.1 Mapping and Candidate Gene Screening
2.3. BSA-Seq Verification of BhSSC2.1 Localisation
2.4. Real-Time Fluorescence Quantitative Expression Analysis
2.5. Gene Sequence Analysis
2.6. Development of InDel Markers for Molecular Marker-Assisted Breeding
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Measurement of SSC in Wax Gourd Flesh
4.3. Determination of Glucose, Fructose, and Sucrose
4.4. DNA Extraction
4.5. QTL Analysis
4.6. BSA Location
4.7. Candidate Gene Predictive Analysis
4.8. RNA Extraction and Candidate Gene Cloning and Sequencing
4.9. RT-qPCR Analysis of Candidate Genes
4.10. Molecular Marker Development
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mi, B.B.; Xie, L.L.; Xiao, W.; Xiong, D.Z.; Zhang, Z.Q.; Wang, R.H.; Zhou, H.Q. Genetic Law of Fruit and Seed Traits of Wax Gourd and Path Analysis of Single Fruit Weight. Acta Hortic. Sin. 2021, 48, 2414–2426. [Google Scholar] [CrossRef]
- Hu, Q.M.; Wang, H.P.; Jiang, B.; Zhu, H.Y.; He, X.M.; Song, P.Y.; Song, J.P.; Yang, S.; Shen, J.J.; Li, Z.; et al. Genome wide simple sequence repeats development and theirapplication in genetic diversity analysis in wax gourd (Benincasa hispida). Plant Breed 2022, 141, 108–118. [Google Scholar] [CrossRef]
- Song, W.C.; Chen, Z.M.; He, L.; Feng, Q.; Zhang, H.R.; Du, G.L.; Shi, C.; Wang, S. Comparative Chloroplast Genome Analysis of Wax Gourd (Benincasa hispida) with Three Benincaseae Species, Revealing Evolutionary Dynamic Patterns and Phylogenetic Implications. Genes 2022, 13, 461. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Liu, W.R.; Peng, Q.W.; He, X.M.; Xie, D.S. Characterization and chromosomal organization of Ty1-copia retrotransposons in wax gourd. Gene 2014, 551, 26–32. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wang, P.; Chen, Y. Study on Nutrient Components Change during Chieh-qua Fruit. China Veg. 2014, 8, 30–33. [Google Scholar] [CrossRef]
- Wang, M.; Liu, W.R.; He, X.M.; Jiang, B.; Lin, Y.E.; Xie, D.S.; Peng, Q.W. Identification; Evaluation and Utilization of Germplasm Resources of Chieh-qua. Guangdong Agric. Sci. 2021, 48, 35–41. [Google Scholar] [CrossRef]
- Monforte, A.J.; Oliver, M.; Gonzalo, M.J.; Alvarez, J.M.; Dolcet-Sanjuan, R.; Arús, P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumismelo L.). Theor. Appl. Genet. 2004, 108, 750–758. [Google Scholar] [CrossRef]
- Eduardo, I.; Arús, P.; Monforte, A.J.; Obando, J.; Fernandez-Trujillo, J.P.; Martinez, J.A.; Alarcon, A.L.; Alvarez, J.M.; van der Knaap, E. Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. J. Am. Soc. Hortic. Sci. 2007, 131, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Obando, J.; Fernandez-Trujillo, J.P.; Martinez, J.A.; Alarcon, A.L.; Eduardo, I.; Arus, P.; Monforte, A.J. Identification of Melon Fruit Quality Quantitative Trait Loci Using Near-isogenic Lines. J. Am. Soc. Hortic. Sci. 2008, 133, 139–151. [Google Scholar] [CrossRef]
- Harel-Beja, R.; Tzuri, G.; Portnoy, V.; Lotan-Pompan, M.; Lev, S.; Cohen, S.; Dai, N.; Yeselson, L.; Meir, A.; Libhaber, S.E.; et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers; including sugar and carotenoid metabolism genes. Theor. Appl. Genet. 2010, 121, 511–533. [Google Scholar] [CrossRef]
- Ramamurthy, R.K.; Waters, B.M. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 2015, 204, 163–177. [Google Scholar] [CrossRef]
- Pereira, L.; Ruggieri, V.; Pérez, S.; Alexiou, K.G.; Fernández, M.; Jahrmann, T.; Pujol, M.; Garcia-Mas, J. QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol. 2018, 18, 324. [Google Scholar] [CrossRef]
- Argyris, J.M.; Diaz, A.; Ruggieri, V.; Fernandez, M.; Fernandez, M.; Jahrmann, T.; Gibon, Y.; Pico, B.; Martin-Hernandez, A.M.; Monforte, A.J.; et al. QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumismelo L.). Front. Plant Sci. 2017, 8, 1679. [Google Scholar] [CrossRef] [Green Version]
- Wormit, A.; Trentmann, O.; Feifer, I.; Lohr, C.; Tjaden, J.; Meyer, S.; Schmidt, U.; Martinoia, E.; Neuhaus, H.E. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport. Plant Cell 2006, 18, 3476–3490. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.T.; Wen, S.Y.; Xiao, S.; Lu, B.Y.; Ma, M.R.; Bie, Z.L. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation. J. Exp. Bot. 2018, 69, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Guo, S.G.; Zhang, J.; He, H.J.; Sun, H.H.; Tian, S.W.; Gong, G.Y.; Zhang, H.Y.; Levi, A.; Tadmor, Y.; et al. A Tonoplast Sugar Transporter Underlies a Sugar Accumulation QTL in Watermelon. Plant Physiol. 2018, 176, 836–850. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Huang, W.F.; Dong, L.L.; Liu, S.Q.; Zhou, Y. Molecular cloning and functional analysis of a sugar transporter gene (CsTST2) from cucumber (Cucumis sativus L.). Biotechnol. Biotechnol. Equip. 2019, 33, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Hshizume, T.; Shimoto, I.; Hirai, M. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor. Appl. Genet. 2003, 106, 779–785. [Google Scholar] [CrossRef]
- Guo, S.G.; Xu, Y.; Zhang, H.Y.; Gong, G.Y. QTL Analysis of Soluble Solids Content in Watermelon under Different Environments. Mol. Plant Breed. 2006, 4, 393–398. [Google Scholar] [CrossRef]
- Sandlin, K.; Prothro, J.; Heesacker, A.; Khalilian, N.; Okashah, R.; Xiang, W.W.; Bachlava, E.; Caldwell, D.G.; Taylor, C.A.; Seymour, D.K.; et al. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor. Appl. Genet. 2012, 125, 1603–1618. [Google Scholar] [CrossRef]
- Cheng, Y.; Luan, F.S.; Xang, X.Z.; Gao, P.; Zhu, Z.C.; Liu, S.; Baloch, A.M.; Zhang, Y.S. Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci. Hortic. 2016, 202, 25–31. [Google Scholar] [CrossRef]
- Umer, M.J.; Gao, L.; Gebremeskel, H.; Bin Safdar, L.; Yuan, P.L.; Zhao, S.J.; Lu, X.Q.; He, N.; Zhu, H.J.; Liu, W.G. Expression pattern of sugars and organic acids regulatory genes during watermelon fruit development. Sci. Hortic. 2020, 265, 109102. [Google Scholar] [CrossRef]
- Umer, M.J.; Bin Safdar, L.; Gebremeskel, H.; Zhao, S.J.; Yuan, P.L.; Zhu, H.J.; Kased, M.O.; Anees, M.; Lu, X.Q.; He, N.; et al. Identification of key gene networks controlling organic acid and sugar metabolism during watermelon fruit development by integrating metabolic phenotypes and gene expression profiles. Hortic. Res. 2020, 7, 193. [Google Scholar] [CrossRef]
- Yang, T.T.; Amanullah, S.; Pan, J.H.; Chen, G.X.; Liu, S.; Ma, S.W.; Wang, J.M.; Gao, P.; Wang, X.Z. Identification of putative genetic regions for watermelon rind hardness and related traits by BSA-seq and QTL mapping. Euphytica 2021, 217, 19. [Google Scholar] [CrossRef]
- Wang, J.F.; Wang, Y.P.; Zhang, J.; Ren, Y.; Li, M.Y.; Tian, S.W.; Yu, Y.T.; Zuo, Y.; Gong, G.Y.; Zhang, H.Y.; et al. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Hortic. Res. 2021, 8, 265. [Google Scholar] [CrossRef]
- Gao, P.; Wan, Y.; Zhang, T.F.; Osae, B.A.; Liu, S.; Luan, F.S. Major QTLs analysis of traits related to melon flesh sourness by BSA technique. J. Northeast. Agric. Univ. 2019, 50, 29–36. [Google Scholar] [CrossRef]
- Nuñez-Lilloa, G.; Balladaresa, C.; Paveza, C.; Urra, C.; Sanhueza, D.; Vendramin, E.; Dettori, M.T.; Arús, P.; Verde, I.; Blanco-Herrera, F.; et al. High-density genetic map and QTL analysis of soluble solid content; maturity date; and mealiness in peach using genotyping by sequencing. Sci. Hortic. 2019, 257, 108734. [Google Scholar] [CrossRef]
- Zhang, R.J.; Ren, Y.M.; Wu, H.Y.; Yang, Y.; Yuan, M.G.; Liang, H.N.; Zhang, C.W. Mapping of Genetic Locus for Leaf Trichome Formation in Chinese Cabbage Based on Bulked Segregant Analysis. Plants 2021, 10, 771. [Google Scholar] [CrossRef]
- Wei, Q.Z.; Wang, Y.Z.; Qin, X.D.; Zhang, Y.X.; Zhang, Z.T.; Wang, J.; Li, J.; Lou, Q.F.; Chen, J.F. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genom. 2014, 15, 1158. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.L.; Liu, Z.G.; Cheng, Z.K.; Gou, J.Q.; Chen, J.Y.; Yu, W.J.; Wang, P. Identification and Application of BhAPRR2 Controlling Peel Colour in Wax Gourd (Benincasa hispida). Front. Plant Sci. 2021, 12, 716772. [Google Scholar] [CrossRef]
- Cheng, Z.K.; Liu, Z.G.; Xu, Y.C.; Ma, L.L.; Chen, J.Y.; Gou, J.Q.; Su, L.W.; Wu, W.T.; Chen, Y.; Yu, W.; et al. Fine mapping and identification of the candidate gene BFS for fruit shape in wax gourd (Benincasa hispida). Theor. Appl. Genet. 2021, 134, 3983–3995. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Liu, W.R.; Xie, D.S.; Peng, Q.W.; He, X.M.; Lin, Y.E.; Liang, Z.J. High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing. BMC Genom. 2015, 16, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yativ, M.; Harary, I.; Wolf, S. Sucrose accumulation in watermelon fruits: Genetic variation and biochemical analysis. J. Plant Physiol. 2010, 167, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.J.; Li, P.H.; Li, N.N.; Wang, L.J. Change of Fruit and Sugar Accumulation during Melon Development. J. Henan Agric. Sci. 2015, 44, 82–85. [Google Scholar] [CrossRef]
- Huang, Y.W.; Xue, D.Y. Study on fruit development of Chieh-qua. J. Hunan Agric. Coll. 1992, 18, 807–811. [Google Scholar] [CrossRef]
- Liu, W.R.; Jiang, B.; Peng, Q.W.; He, X.M.; Lin, Y.E.; Wang, M.; Liang, Z.J.; Xie, D.S.; Hu, K.L. Genetic analysis and QTL mapping of fruit-related traits in wax gourd (Benincasa hispida). Euphytica 2018, 214, 136. [Google Scholar] [CrossRef]
- Feng, Y.; Li, C.Q.; Zhu, L.Y.; Liu, Y.T.; Yang, X.D.; Zhang, Y.Y.; Zhang, H.; Zhu, W.M. Research Progress of Soluble Solids Content in Tomato. Molecular Plant Breeding. 2021. Available online: https://kns.cnki.net/kcms/detail/46.1068.S.20210122.1747.022.html (accessed on 25 January 2021).
- Lu, B.Y.; Zhou, H.W.; Chen, X.; Luan, F.S.; Wang, X.Z.; Jiang, Y. QTL analysis of fruit traits in watermelon. J. Fruit Sci. 2016, 33, 1206–1218. [Google Scholar] [CrossRef]
- Capel, C.; del Carmen, A.F.; Alba, J.M.; Lima-Silva, V.; Hernández-Gras, F.; Salinas, M.; Boronat, A.; Angosto, T.; Botella, M.A.; Fernández-Muñoz, R.; et al. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor. Appl. Genet. 2015, 128, 2019–2035. [Google Scholar] [CrossRef]
- Chetelat, R.T.; Deverna, J.W.; Bennett, A.B. Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor. Appl. Genet. 1995, 91, 327–333. [Google Scholar] [CrossRef]
- Ariizumi, T.; Higuchi, K.; Arakaki, S.; Sano, T.; Asamizu, E.; Ezura, H. Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. J. Exp. Bot. 2011, 62, 2773–2786. [Google Scholar] [CrossRef]
- Garcia-Lozano, M.; Dutta, S.K.; Natarajan, P.; Tomason, Y.R.; Lopez, C.; Katam, R.; Levi, A.; Nimmakayala, P.; Reddy, U.K. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Plant Mol. Biol. 2020, 102, 213–223. [Google Scholar] [CrossRef]
- Bianchetti, R.E.; Cruz, A.B.; Oliveira, B.S.; Demarco, D.; Purgatto, E.; Peres, L.E.P.; Rossi, M.; Freschi, L. Phytochromobilin deficiency impairs sugar metabolism through the regulation of cytokinin and auxin signaling in tomato fruits. Sci. Rep. 2017, 7, 7822. [Google Scholar] [CrossRef]
- Sagor, G.H.M.; Berberich, T.; Tanaka, S.; Nishiyama, M.; Kanayama, Y.; Kojima, S.; Muramoto, K.; Kusano, T. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol. J. 2016, 14, 1116–1126. [Google Scholar] [CrossRef]
- Sweetman, C.; Deluc, L.G.; Cramer, G.R.; Ford, C.M.; Soole, K.L. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 2009, 70, 1329–1344. [Google Scholar] [CrossRef]
- Yao, Y.X.; Li, M.; You, C.X.; Liu, Z.; Wang, D.M.; Hao, Y.J. Relationship between Malic Acid Metabolism-related Key Enzymes and Accumulation of Malic Acid as Well as Soluble Sugar in Apple Fruit. Acta Hortic. Sin. 2010, 37, 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Li, X.L. Study on Sugar and organic Acids Metabolism in Development Process of Nectarine Fruit in Greenhouse. J. Anhui Agric. Sci. 2009, 37, 8959–8962. [Google Scholar] [CrossRef]
- Sweetlove, L.J.; Beard, K.F.M.; Nunes-Nesi, A.; Fernie, A.R.; Ratcliffe, R.G. Not just a circle: Flux modes in the plant TCA cycle. Trends Plant Sci. 2010, 15, 462–470. [Google Scholar] [CrossRef]
- Wang, X.H.; Chen, H.; Dong, X.Q. Changes in organic acids content during ‘Fengtang’plum (Prunus salicina) fruit development in relation to malic acid metabolism related enzymes. J. Fruit Sci. 2018, 35, 293–300. [Google Scholar] [CrossRef]
- De Oliveira, G.A.; de Castilhos, F.; Renard, C.M.G.C.; Bureaub, S. Comparison of NIR and MIR spectroscopic methods for determination of individual sugars; organic acids and carotenoids in passion fruit. Food Res. Int. 2014, 60, 154–162. [Google Scholar] [CrossRef]
- Zhao, S.J.; Gao, L.; Lu., X.Q.; He., N.; Liu., W.G. Analysis of components and contents of soluble sugars and organic acids in watermelon germplasm. Chin. Melons Veg. 2017, 30, 7–11. [Google Scholar] [CrossRef]
- Li, H.; Ruan, C.J.; Li, J.B.; Wang, L.; Tian, X.J. Expression Analysis of Key Genes Involved in Malate Metabolism in Fruit Development of Hippophae rhamnoides. Mol. Plant Breed. 2019, 17, 65–71. [Google Scholar] [CrossRef]
- Wu, X.; Chen, F.; Zhao, X.Z.; Pang, C.K.; Shi, R.; Liu, C.L.; Sun, C.; Zhang, W.; Wang, X.D.; Zhang, J.F. QTL Mapping and GWAS Reveal the Genetic Mechanism Controlling Soluble Solids Content in Brassica napus Shoots. Foods 2021, 10, 2400. [Google Scholar] [CrossRef]
- An, C.Y.; Xie, D.S.; Peng, Q.W.; He, X.M. Comparison of Genomic DNA Extraction Methods in Chieh-qua (Benincasa hispida). China Cucurbits Veg. 2011, 24, 1–4. [Google Scholar] [CrossRef]
Gene ID | Whether There Are Nonsynonymous Mutations in Coding Sequences (CDS) | Physical Location | Gene Annotation |
---|---|---|---|
Bch02G016850 | No | Chr2:58282903-58284486(−) | multidrug and toxin extrusion protein 2-like |
Bch02G016860 | No | Chr2:58309654-58310180(+) | uncharacterized protein LOC103485927 |
Bch02G016870 | No | Chr2:58334921-58338296(+) | hexokinase-2-like |
Bch02G016880 | No | Chr2:58338536-58338820(−) | - |
Bch02G016890 | No | Chr2:58339177-58342311(−) | receptor-like protein kinase 5 |
Bch02G016900 | No | Chr2:58423992-58426566(−) | mitochondrial import inner membrane translocase subunit Tim17-like |
Bch02G016910 | No | Chr2:58437320-58440270(+) | uncharacterized tRNA/rRNA methyltransferase MAV_0574-like |
Bch02G016920 | No | Chr2:58443425-58450331(+) | uncharacterized protein LOC103492261 |
Bch02G016930 | No | Chr2:58452533-58454823(+) | uncharacterized protein LOC101220646 |
Bch02G016940 | Yes | Chr2:58474310-58497129(+) | putative ABC transporter B family member 8 |
Bch02G016950 | No | Chr2:58497772-58502600(−) | probable protein phosphatase 2C 6-like |
Bch02G016960 | Yes | Chr2:58563979-58569234(−) | NADP-dependent malic enzyme |
Bch02G016970 | No | Chr2:58609828-58644783(−) | probable RNA-dependent RNA polymerase 5 isoform X2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Wang, P.; Huang, X.; Su, L.; Lv, H.; Gou, J.; Cheng, Z.; Ma, L.; Yu, W.; Liu, Z. Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax Gourd (Benincasa hispida). Int. J. Mol. Sci. 2022, 23, 6999. https://doi.org/10.3390/ijms23136999
Wu W, Wang P, Huang X, Su L, Lv H, Gou J, Cheng Z, Ma L, Yu W, Liu Z. Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax Gourd (Benincasa hispida). International Journal of Molecular Sciences. 2022; 23(13):6999. https://doi.org/10.3390/ijms23136999
Chicago/Turabian StyleWu, Wenting, Peng Wang, Xiaochun Huang, Liwen Su, Haixuan Lv, Jiquan Gou, Zhikui Cheng, Lianlian Ma, Wenjin Yu, and Zhengguo Liu. 2022. "Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax Gourd (Benincasa hispida)" International Journal of Molecular Sciences 23, no. 13: 6999. https://doi.org/10.3390/ijms23136999
APA StyleWu, W., Wang, P., Huang, X., Su, L., Lv, H., Gou, J., Cheng, Z., Ma, L., Yu, W., & Liu, Z. (2022). Fine Mapping and Functional Analysis of Major Regulatory Genes of Soluble Solids Content in Wax Gourd (Benincasa hispida). International Journal of Molecular Sciences, 23(13), 6999. https://doi.org/10.3390/ijms23136999