Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin
Abstract
:1. Introduction
2. Results
2.1. Epithelial Cells Display Enhanced Migratory Capacity under Haat-Rich Conditions, Further Pronounced under A Non-Protease-Inhibitory Formulation
2.2. hAAT Enhances Excisional Skin Wound Closure Irrespective of Protease Inhibition
2.3. Neutrophilic Infiltration Profiles Coincide with Subtype of hAAT
2.4. Inhibitory Effect of Dexamethasone (DEX) Compared to DEX and hAATCP Treatment
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. In Vitro Human Epithelial Gap Repair Assay
4.3. In Vivo Wound Models
4.3.1. Excisional Wound Model
4.3.2. Excisional Wound Model with Early Stitch Removal
4.4. Treatments
4.5. Histological Analysis
4.6. RT-PCR Gene Expression Analysis
4.7. Statistical Analysis
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound Repair and Regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Brazil, J.C.; Quiros, M.; Nusrat, A.; Parkos, C.A. Innate Immune Cell-Epithelial Crosstalk during Wound Repair. J. Clin. Investig. 2019, 129, 2983–2993. [Google Scholar] [CrossRef] [Green Version]
- Dunlea, D.M.; Fee, L.T.; McEnery, T.; McElvaney, N.G.; Reeves, E.P. The Impact of Alpha-1 Antitrypsin Augmentation Therapy on Neutrophil-Driven Respiratory Disease in Deficient Individuals. J. Inflamm. Res. 2018, 11, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Martin, P. Wound Healing--Aiming for Perfect Skin Regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef]
- Guo, S.; Dipietro, L.A. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef]
- Wang, A.S.; Armstrong, E.J.; Armstrong, A.W. Corticosteroids and Wound Healing: Clinical Considerations in the Perioperative Period. Am. J. Surg. 2013, 206, 410–417. [Google Scholar] [CrossRef]
- Slominski, A.T.; Zmijewski, M.A. Glucocorticoids Inhibit Wound Healing: Novel Mechanism of Action. J. Investig. Dermatol. 2017, 137, 1012–1014. [Google Scholar] [CrossRef] [Green Version]
- Schuster, R.; Bar-Nathan, O.; Tiosano, A.; Lewis, E.C.; Silberstein, E. Enhanced Survival and Accelerated Perfusion of Skin Flap to Recipient Site Following Administration of Human A1-Antitrypsin in Murine Models. Adv. Wound Care 2019, 8, 281–290. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Alam, S.; Li, Z.; Janciauskiene, S.; Mahadeva, R. Oxidation of Z A1-Antitrypsin by Cigarette Smoke Induces Polymerization: A Novel Mechanism of Early-Onset Emphysema. Am. J. Respir. Cell Mol. Biol. 2011, 45, 261–269. [Google Scholar] [CrossRef]
- Petrache, I.; Fijalkowska, I.; Medler, T.R.; Skirball, J.; Cruz, P.; Zhen, L.; Petrache, H.I.; Flotte, T.R.; Tuder, R.M. Alpha-1 Antitrypsin Inhibits Caspase-3 Activity, Preventing Lung Endothelial Cell Apoptosis. Am. J. Pathol. 2006, 169, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Lior, Y.; Geyra, A.; Lewis, E.C. Therapeutic Compositions and Uses of Alpha1-Antitrypsin: A Patent Review (2012–2015). Expert Opin. Ther. Pat. 2016, 26, 581–589. [Google Scholar] [CrossRef]
- Toldo, S.; Seropian, I.M.; Mezzaroma, E.; Van Tassell, B.W.; Salloum, F.N.; Lewis, E.C.; Voelkel, N.; Dinarello, C.A.; Abbate, A. Alpha-1 Antitrypsin Inhibits Caspase-1 and Protects from Acute Myocardial Ischemia-Reperfusion Injury. J. Mol. Cell. Cardiol. 2011, 51, 244–251. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, J.; Kim, H.; Xu, S.; Chen, M.; Bai, X.; Toba, H.; Cho, H.-R.; Zhang, H.; Keshavjeel, S.; et al. A1-Antitrypsin Inhibits Ischemia Reperfusion-Induced Lung Injury by Reducing Inflammatory Response and Cell Death. J. Heart Lung Transplant. 2014, 33, 309–315. [Google Scholar] [CrossRef]
- Janciauskiene, S.M.; Nita, I.M.; Stevens, T. Alpha1-Antitrypsin, Old Dog, New Tricks. Alpha1-Antitrypsin Exerts in Vitro Anti-Inflammatory Activity in Human Monocytes by Elevating CAMP. J. Biol. Chem. 2007, 282, 8573–8582. [Google Scholar] [CrossRef] [Green Version]
- Scott, B.M.; Sheffield, W.P. Engineering the Serpin A1 -Antitrypsin: A Diversity of Goals and Techniques. Protein Sci. 2020, 29, 856–871. [Google Scholar] [CrossRef]
- O’Brien, M.E.; Murray, G.; Gogoi, D.; Yusuf, A.; McCarthy, C.; Wormald, M.R.; Casey, M.; Gabillard-Lefort, C.; McElvaney, N.G.; Reeves, E.P. A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int. J. Mol. Sci. 2022, 23, 2441. [Google Scholar] [CrossRef]
- Greulich, T.; Chlumsky, J.; Wencker, M.; Vit, O.; Fries, M.; Chung, T.; Shebl, A.; Vogelmeier, C.; Chapman, K.R.; McElvaney, N.G.; et al. Safety of Biweekly A1-Antitrypsin Treatment in the RAPID Programme. Eur. Respir. J. 2018, 52, 1800897. [Google Scholar] [CrossRef] [Green Version]
- Brener, A.; Lebenthal, Y.; Interator, H.; Horesh, O.; Leshem, A.; Weintrob, N.; Loewenthal, N.; Shalitin, S.; Rachmiel, M. Long-Term Safety of α-1 Antitrypsin Therapy in Children and Adolescents with Type 1 Diabetes. Immunotherapy 2018, 10, 1137–1148. [Google Scholar] [CrossRef]
- Antonelli, P.J.; Schultz, G.S.; Sundin, D.J.; Pemberton, P.A.; Barr, P.J. Alpha1-Antitrypsin Single Dose Adjuvant Therapy for Acute Otitis Media. Otolaryngol. Head Neck Surg. 2006, 135, 111–115. [Google Scholar] [PubMed]
- Franciosi, A.N.; McCarthy, C.; McElvaney, N.G. The Efficacy and Safety of Inhaled Human α-1 Antitrypsin in People with α-1 Antitrypsin Deficiency-Related Emphysema. Expert Rev. Respir. Med. 2015, 9, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Lior, Y.; Zaretsky, M.; Ochayon, D.E.; Lotysh, D.; Baranovski, B.M.; Schuster, R.; Guttman, O.; Aharoni, A.; Lewis, E.C. Point Mutation of a Non-Elastase-Binding Site in Human A1-Antitrypsin Alters Its Anti-Inflammatory Properties. Front. Immunol. 2018, 9, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillipson, M.; Kubes, P. The Healing Power of Neutrophils. Trends Immunol. 2019, 40, 635–647. [Google Scholar] [CrossRef]
- McCarthy, C.; Reeves, E.P.; McElvaney, N.G. The Role of Neutrophils in Alpha-1 Antitrypsin Deficiency. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. S4), S297–S304. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, T.; Zia, M.K.; Ali, S.S.; Rehman, A.A.; Ahsan, H.; Khan, F.H. Reactive Oxygen Species and Anti-Proteinases. Arch. Physiol. Biochem. 2016, 122, 1–7. [Google Scholar] [CrossRef]
- Lior, Y.; Shtriker, E.; Kahremany, S.; Lewis, E.C.; Gruzman, A. Development of Anti-Inflammatory Peptidomimetics Based on the Structure of Human Alpha1-Antitrypsin. Eur. J. Med. Chem. 2022, 228, 113969. [Google Scholar] [CrossRef]
- Oda, Y.; Takahashi, C.; Harada, S.; Nakamura, S.; Sun, D.; Kiso, K.; Urata, Y.; Miyachi, H.; Fujiyoshi, Y.; Honigmann, A.; et al. Discovery of Anti-Inflammatory Physiological Peptides That Promote Tissue Repair by Reinforcing Epithelial Barrier Formation. Sci. Adv. 2021, 7, eabj6895. [Google Scholar] [CrossRef]
- Pääkkö, P.; Kirby, M.; Du Bois, R.M.; Gillissen, A.; Ferrans, V.J.; Crystal, R.G. Activated Neutrophils Secrete Stored Alpha 1-Antitrypsin. Am. J. Respir. Crit. Care Med. 1996, 154, 1829–1833. [Google Scholar] [CrossRef]
- Sarabhai, T.; Peter, C.; Bär, A.-K.; Windolf, J.; Relja, B.; Wesselborg, S.; Wahlers, T.; Paunel-Görgülü, A. Serum α-1 Antitrypsin (AAT) Antagonizes Intrinsic Apoptosis Induction in Neutrophils from Patients with Systemic Inflammatory Response Syndrome. PLoS ONE 2017, 12, e0177450. [Google Scholar] [CrossRef] [Green Version]
- Kaner, Z.; Ochayon, D.E.; Shahaf, G.; Baranovski, B.M.; Bahar, N.; Mizrahi, M.; Lewis, E.C. Acute Phase Protein A1-Antitrypsin Reduces the Bacterial Burden in Mice by Selective Modulation of Innate Cell Responses. J. Infect. Dis. 2015, 211, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Akita, S. Wound Repair and Regeneration: Mechanisms, Signaling. Int. J. Mol. Sci. 2019, 20, 6328. [Google Scholar] [CrossRef] [Green Version]
- Schuster, R.; Motola-Kalay, N.; Baranovski, B.M.; Bar, L.; Tov, N.; Stein, M.; Lewis, E.C.; Ayalon, M.; Sagiv, Y. Distinct Anti-Inflammatory Properties of Alpha1-Antitrypsin and Corticosteroids Reveal Unique Underlying Mechanisms of Action. Cell. Immunol. 2020, 356, 104177. [Google Scholar] [CrossRef]
- Bellacen, K.; Kalay, N.; Ozeri, E.; Shahaf, G.; Lewis, E.C. Revascularization of Pancreatic Islet Allografts Is Enhanced by α-1-Antitrypsin under Anti-Inflammatory Conditions. Cell Transplant. 2013, 22, 2119–2133. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, T.; Liang, Y.; Cui, W.; Li, D.; Zhang, G.; Deng, Z.; Chen, M.; Sha, K.; Xiao, W.; et al. N2-Polarized Neutrophils Reduce Inflammation in Rosacea by Regulating Vascular Factors and Proliferation of CD4+ T Cells. J. Investig. Dermatol. 2021, 142, 1835–1844.e2. [Google Scholar] [CrossRef]
- Langendorf, E.K.; Rommens, P.M.; Drees, P.; Ritz, U. Dexamethasone Inhibits the Pro-Angiogenic Potential of Primary Human Myoblasts. Int. J. Mol. Sci. 2021, 22, 7986. [Google Scholar] [CrossRef]
- Arai, K.; Yamamoto, K.-H.; Suzuki, T.; Mitsukawa, N.; Ishii, I. Risk Factors Affecting Pressure Ulcer Healing: Impact of Prescription Medications. Wound Repair Regen. 2020, 28, 409–415. [Google Scholar] [CrossRef]
- Delpachitra, M.R.; Heal, C.; Banks, J.; Divakaran, P.; Pawar, M. Risk Factors for Surgical Site Infection in Minor Dermatological Surgery: A Systematic Review. Adv. Skin Wound Care 2019, 32, 217–226. [Google Scholar] [CrossRef]
- Chapman, K.R.; Chorostowska-Wynimko, J.; Koczulla, A.R.; Ferrarotti, I.; McElvaney, N.G. Alpha 1 Antitrypsin to Treat Lung Disease in Alpha 1 Antitrypsin Deficiency: Recent Developments and Clinical Implications. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Lebenthal, Y.; Brener, A.; Hershkovitz, E.; Shehadeh, N.; Shalitin, S.; Lewis, E.C.; Elias, D.; Haim, A.; Barash, G.; Loewenthal, N.; et al. A Phase II, Double-Blind, Randomized, Placebo-Controlled, Multicenter Study Evaluating the Efficacy and Safety of Alpha-1 Antitrypsin (AAT) (Glassia®) in the Treatment of Recent-Onset Type 1 Diabetes. Int. J. Mol. Sci. 2019, 20, 6032. [Google Scholar] [CrossRef] [Green Version]
- Rachmiel, M.; Strauss, P.; Dror, N.; Benzaquen, H.; Horesh, O.; Tov, N.; Weintrob, N.; Landau, Z.; Ben-Ami, M.; Haim, A.; et al. Alpha-1 Antitrypsin Therapy Is Safe and Well Tolerated in Children and Adolescents with Recent Onset Type 1 Diabetes Mellitus. Pediatr. Diabetes 2016, 17, 351–359. [Google Scholar] [CrossRef]
- Wood, S.; Jayaraman, V.; Huelsmann, E.J.; Bonish, B.; Burgad, D.; Sivaramakrishnan, G.; Qin, S.; DiPietro, L.A.; Zloza, A.; Zhang, C.; et al. Pro-Inflammatory Chemokine CCL2 (MCP-1) Promotes Healing in Diabetic Wounds by Restoring the Macrophage Response. PLoS ONE 2014, 9, e91574. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimmon, A.; Sherker, L.; Kojukarov, L.; Zaknoun, M.; Lior, Y.; Fadel, T.; Schuster, R.; Lewis, E.C.; Silberstein, E. Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin. Int. J. Mol. Sci. 2022, 23, 7364. https://doi.org/10.3390/ijms23137364
Gimmon A, Sherker L, Kojukarov L, Zaknoun M, Lior Y, Fadel T, Schuster R, Lewis EC, Silberstein E. Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin. International Journal of Molecular Sciences. 2022; 23(13):7364. https://doi.org/10.3390/ijms23137364
Chicago/Turabian StyleGimmon, Alon, Lior Sherker, Lena Kojukarov, Melodie Zaknoun, Yotam Lior, Tova Fadel, Ronen Schuster, Eli C. Lewis, and Eldad Silberstein. 2022. "Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin" International Journal of Molecular Sciences 23, no. 13: 7364. https://doi.org/10.3390/ijms23137364
APA StyleGimmon, A., Sherker, L., Kojukarov, L., Zaknoun, M., Lior, Y., Fadel, T., Schuster, R., Lewis, E. C., & Silberstein, E. (2022). Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin. International Journal of Molecular Sciences, 23(13), 7364. https://doi.org/10.3390/ijms23137364