Impact of Freeze-Drying on Cord Blood (CB), Serum (S), and Platelet-Rich Plasma (CB-PRP) Preparations on Growth Factor Content and In Vitro Cell Wound Healing
Abstract
:1. Introduction
2. Results
2.1. Growth Factor Levels
2.2. Cell Model
Scratch Wound Assay
2.3. Real-Time PCR for Proliferation Genes
2.4. Real-Time PCR for Migration and Activation Genes
3. Discussion
4. Materials and Methods
4.1. Cord Blood (CB) Collection
4.1.1. Assessment of CB Units
4.1.2. Obstetric Data
4.2. Serum Preparation
4.3. PRP Preparation
4.4. Freeze-Drying and Reconstitution Process
4.5. Growth Factor Dosage
4.6. Cell Model and Culture Conditions
4.6.1. Scratch Wound Assay
4.6.2. Gene Expression Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ljubimov, A.V.; Saghizadeh, M. Progress in corneal wound healing. Prog. Retin. Eye Res. 2015, 49, 17–45. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wu, H.; Huang, S. Role of NGF and its receptors in wound healing (review). Exp. Ther. Med. 2021, 21, 599. [Google Scholar] [CrossRef] [PubMed]
- Klenkler, B.; Sheardown, H.; Jones, L. Growth factors in the tear film: Role in tissue maintenance, wound healing, and ocular pathology. Ocul. Surf. 2007, 5, 228–239. [Google Scholar] [CrossRef]
- Pflugfelder, S.C.; Stern, M.E. Biological functions of tear film. Exp. Eye Res. 2020, 197, 108115. [Google Scholar] [CrossRef] [PubMed]
- Bernabei, F.; Roda, M.; Buzzi, M.; Pellegrini, M.; Giannaccare, G.; Versura, P. Blood-based treatments for severe dry eye disease: The need of a consensus. J. Clin. Med. 2019, 8, 1478. [Google Scholar] [CrossRef]
- Giannaccare, G.; Versura, P.; Buzzi, M.; Primavera, L.; Pellegrini, M.; Campos, E.C. Blood derived eye drops for the treatment of cornea and ocular surface diseases. Transfus. Apher. Sci. 2017, 56, 595–604. [Google Scholar] [CrossRef]
- Shtein, R.M.; Shen, J.F.; Kuo, A.N.; Hammersmith, K.M.; Li, J.Y.; Weikert, M.P. Autologous serum-based eye drops for treatment of ocular surface disease: A report by the American academy of ophthalmology. Ophthalmology 2020, 127, 128–133. [Google Scholar] [CrossRef]
- Storch, E.K.; Custer, B.S.; Jacobs, M.R.; Menitove, J.E.; Mintz, P.D. Review of current transfusion therapy and blood banking practices. Blood Rev. 2019, 38, 100593. [Google Scholar] [CrossRef]
- Izutsu, K.-I. Applications of freezing and freeze-drying in pharmaceutical formulations. Adv. Exp. Med. Biol. 2018, 1081, 371–383. [Google Scholar] [CrossRef]
- Andia, I.; Perez-Valle, A.; Del Amo, C.; Maffulli, N. Freeze-drying of platelet-rich plasma: The quest for standardization. Int. J. Mol. Sci. 2020, 21, 6904. [Google Scholar] [CrossRef]
- Jethwa, J.; Ireland, R.S.; Chan, D. Does a combination of platelet-rich plasma and decalcified freeze-dried bone allograft offer advantages over decalcified freeze-dried bone allograft alone when using pocket depth and clinical attachment level as markers for periodontal healing? A literature review. J. Investig. Clin. Dent. 2019, 10, e12397. [Google Scholar] [CrossRef] [PubMed]
- López-García, J.S.; García-Lozano, I.; Rivas, L.; Viso-Garrote, M.; Raposo, R.; Méndez, M.T. Lyophilized autologous serum eyedrops: Experimental and comparative study. Am. J. Ophthalmol. 2020, 213, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; de la Fuente, M.; Alcalde, I.; Sanchez, C.; Merayo-Lloves, J.; Muruzabal, F. Development and optimization of freeze-dried eye drops derived from plasma rich in growth factors technology. Transl. Vis. Sci. Technol. 2020, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Valente, S.; Curti, N.; Giampieri, E.; Randi, V.; Donadei, C.; Buzzi, M.; Versura, P. Impact of blood source and component manufacturing on neurotrophin content and in vitro cell wound healing. Blood Transfus. 2022, 20, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; de la Fuente, M.; Muruzábal, F.; Merayo-Lloves, J. Stability of freeze-dried plasma rich in growth factors eye drops stored for 3 months at different temperature conditions. Eur. J. Ophthalmol. 2021, 31, 354–360. [Google Scholar] [CrossRef]
- Buzzi, M.; Versura, P.; Grigolo, B.; Cavallo, C.; Terzi, A.; Pellegrini, M.; Giannaccare, G.; Randi, V.; Campos, E.C. Comparison of growth factor and interleukin content of adult peripheral blood and cord blood serum eye drops for cornea and ocular surface diseases. Transfus. Apher. Sci. 2018, 57, 549–555. [Google Scholar] [CrossRef]
- Versura, P.; Buzzi, M.; Giannaccare, G.; Terzi, A.; Fresina, M.; Velati, C.; Campos, E.C. Targeting growth factor supply in keratopathy treatment: Comparison between maternal peripheral blood and cord blood as sources for the preparation of topical eye drops. Blood Transfus. 2016, 14, 145–151. [Google Scholar] [CrossRef]
- Tighe, P.J.; Ryder, R.R.; Todd, I.; Fairclough, L.C. ELISA in the multiplex era: Potentials and pitfalls. Proteom.-Clin. Appl. 2015, 9, 406–422. [Google Scholar] [CrossRef]
- Dupuy, A.M.; Kuster, N.; Lizard, G.; Ragot, K.; Lehmann, S.; Gallix, B.; Cristol, J.P. Performance evaluation of human cytokines profiles obtained by various multiplexed-based technologies underlines a need for standardization. Clin. Chem. Lab. Med. 2013, 51, 1385–1393. [Google Scholar] [CrossRef]
- Roda, M.; Corazza, I.; Bacchi Reggiani, M.L.; Pellegrini, M.; Taroni, L.; Giannaccare, G.; Versura, P. Dry eye disease and tear cytokine levels-A meta-analysis. Int. J. Mol. Sci. 2020, 21, 3111. [Google Scholar] [CrossRef]
- Campos, E.; Versura, P.; Giannaccare, G.; Terzi, A.; Bisti, S.; Di Marco, S.; Buzzi, M. Topical treatment with cord blood serum in glaucoma patients: A preliminary report. Case Rep. Ophthalmol. Med. 2018, 2018, 2381296. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; de la Sen-Corcuera, B.; Orive, G.; Sánchez-Ávila, R.M.; Heredia, P.; Muruzabal, F.; Merayo-Lloves, J. Progress in the use of plasma rich in growth factors in ophthalmology: From ocular surface to ocular fundus. Expert Opin. Biol. Ther. 2022, 22, 31–45. [Google Scholar] [CrossRef]
- Eastlake, K.; Luis, J.; Limb, G.A. Potential of Müller glia for retina neuroprotection. Curr. Eye Res. 2020, 45, 339–348. [Google Scholar] [CrossRef]
- Kimura, A.; Namekata, K.; Guo, X.; Harada, C.; Harada, T. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int. J. Mol. Sci. 2016, 17, 1584. [Google Scholar] [CrossRef] [PubMed]
- Rebustini, I.T.; Bernardo-Colón, A.; Nalvarte, A.I.; Becerra, S.P. Delivery systems of retinoprotective proteins in the retina. Int. J. Mol. Sci. 2021, 22, 5344. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Woo, S.J. Ocular drug delivery to the retina: Current innovations and future perspectives. Pharmaceutics 2021, 13, 108. [Google Scholar] [CrossRef]
- Ciavarella, C.; Buzzi, M.; Bergantin, E.; Di Marco, S.; Giannaccare, G.; Campos, E.; Bisti, S.; Versura, P. Effects of cord blood serum (CBS) on viability of retinal Müller glial cells under in vitro injury. PLoS ONE 2020, 15, e0234145. [Google Scholar] [CrossRef]
- Li, Z.; Wang, C.; Jiao, X.; Lu, Y.; Fu, M.; Quong, A.A.; Dye, C.; Yang, J.; Dai, M.; Ju, X.; et al. Cyclin D1 regulates cellular migration through the inhibition of thrombospondin 1 and ROCK signaling. Mol. Cell Biol. 2006, 26, 4240–4256. [Google Scholar] [CrossRef]
- Middeldorp, J.; Hol, E.M. GFAP in health and disease. Prog. Neurobiol. 2011, 93, 421–443. [Google Scholar] [CrossRef]
- Arsiccio, A.; Giorsello, P.; Marenco, L.; Pisano, R. Considerations on protein stability during freezing and its impact on the freeze-drying cycle: A design space approach. J. Pharm. Sci. 2020, 109, 464–475. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | PRP | S |
---|---|---|
Samples (n) | 132 | 133 |
Mother’s age * (years) | 32 (21–42) | 33 (18–45) |
Gestational age * (weeks) | 40 (39–42) | 40 (39–42) |
Parity = 1 | 12 | 11 |
Parity > 1 | 20 | 22 |
ABO blood group | 0 = 62 | 0 = 54 |
A = 60 | A = 42 | |
B = 8 | B = 25 | |
AB = 2 | AB = 12 | |
Baby’s sex | 61 M; 71 F | 64 M; 69 F |
GFs | Product | Fresh-Frozen (95% CI) | Freeze-Dried (95% CI) | q-Value |
---|---|---|---|---|
EGF pg/mL | S | 1299.12 (717–2355.44) | 1193.69 (451–3162.19) | 0.38 |
PRP | 852.79 (249–2924.18) | 794.7 (267–2363.79) | 0.38 | |
BDNF pg/mL | S | 22,576.52 (17,009–29,966.16) | 18,903.22 (12,885–27,732.64) | 0.0057 ** |
PRP | 16,602 (7505–36,730.21) | 12,848.15 (5276–31,287.37) | 0.0028 ** |
GFs | PRP (95% CI) | S (95% CI) | q-Value |
---|---|---|---|
EGF pg/mL | 1.07 (1–1.76) | 1.09 (1–2.19) | 0.9 |
BDNF pg/mL | 1.29 (1–1.73) | 1.19 (1–1.61) | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente, S.; Ciavarella, C.; Astolfi, G.; Bergantin, E.; Curti, N.; Buzzi, M.; Fontana, L.; Versura, P. Impact of Freeze-Drying on Cord Blood (CB), Serum (S), and Platelet-Rich Plasma (CB-PRP) Preparations on Growth Factor Content and In Vitro Cell Wound Healing. Int. J. Mol. Sci. 2022, 23, 10701. https://doi.org/10.3390/ijms231810701
Valente S, Ciavarella C, Astolfi G, Bergantin E, Curti N, Buzzi M, Fontana L, Versura P. Impact of Freeze-Drying on Cord Blood (CB), Serum (S), and Platelet-Rich Plasma (CB-PRP) Preparations on Growth Factor Content and In Vitro Cell Wound Healing. International Journal of Molecular Sciences. 2022; 23(18):10701. https://doi.org/10.3390/ijms231810701
Chicago/Turabian StyleValente, Sabrina, Carmen Ciavarella, Gloria Astolfi, Elisa Bergantin, Nico Curti, Marina Buzzi, Luigi Fontana, and Piera Versura. 2022. "Impact of Freeze-Drying on Cord Blood (CB), Serum (S), and Platelet-Rich Plasma (CB-PRP) Preparations on Growth Factor Content and In Vitro Cell Wound Healing" International Journal of Molecular Sciences 23, no. 18: 10701. https://doi.org/10.3390/ijms231810701
APA StyleValente, S., Ciavarella, C., Astolfi, G., Bergantin, E., Curti, N., Buzzi, M., Fontana, L., & Versura, P. (2022). Impact of Freeze-Drying on Cord Blood (CB), Serum (S), and Platelet-Rich Plasma (CB-PRP) Preparations on Growth Factor Content and In Vitro Cell Wound Healing. International Journal of Molecular Sciences, 23(18), 10701. https://doi.org/10.3390/ijms231810701