Laser Shock Fabrication of Nitrogen Doped Inverse Spinel Fe3O4/Carbon Nanosheet Film Electrodes towards Hydrogen Evolution Reactions in Alkaline Media
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Fabrication of Fe3O4/CNS Nanocomposite Films
3.2. Materials Characterization
3.3. Electrochemical Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- What Do We Need to Achieve at COP26? 2020. Available online: https://ukcop26.org/cop26-goals/ (accessed on 25 January 2022).
- Luna, P.D.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 6438. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Shih, P.-C.; Qin, Y.; Al-Bardan, Z.; Sun, C.J.; Yang, H. A Porous Pyrochlore Y2[Ru1.6Y0.4]O7–δ Electrocatalyst for Enhanced Performance towards the Oxygen Evolution Reaction in Acid Media. Angew. Chem. Int. Ed. 2018, 57, 13877–13881. [Google Scholar] [CrossRef] [PubMed]
- Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A.P.; Stamenkovic, V.; Markovic, N.M. Enhancing Hydrogen Evolution Activity in Water Splitting by Tailoring Li⁺-Ni(OH)2-Pt Interfaces. Science 2011, 334, 1256–1260. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Duan, Y.; Feng, X.-Y.; Yu, X.; Gao, M.-R.; Yu, S.-H. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.; James, D.K.; Tour, J.M. Laser-Induced Graphene: From Discovery to Translation. Adv. Mater. 2019, 31, 1803621. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liang, H.; Wu, D.; Lu, X.; Wang, Q. Direct Semiconductor Laser Writing of Few-Layer Graphene Polyhedra Networks for Flexible Solid-State Supercapacitor. Adv. Electron. Mater. 2018, 4, 1800092. [Google Scholar] [CrossRef]
- Jokerst, J.V.; Gambhir, S.S. Molecular Imaging with Theranostic Nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses; Wiley-VCH: Weinheim, Germany, 1996. [Google Scholar]
- Johnson, R.J.G.; Haas, K.M.; Lear, B.J. Fe3O4 nanoparticles as robust photothermal agents for driving high barrier reactions under ambient conditions. Chem. Commun. 2015, 51, 417–420. [Google Scholar] [CrossRef]
- Wei, C.; Feng, Z.; Scherer, G.G.; Barber, J.; Shao-Horn, Y.; Xu, Z.J. Cations in Octahedral Sites: A Descriptor for Oxygen Electrocatalysis on Transition-Metal Spinels. Adv. Mater. 2017, 29, 1606800. [Google Scholar] [CrossRef]
- Dementyev, P.; Dostert, K.-H.; Ivars-Barceló, F.; O’Brien, C.P.; Mirabella, F.; Schauermann, S.; Li, X.; Paier, J.; Sauer, J.; Freund, H.J. Water Interaction with Iron Oxides. Angew. Chem. Int. Ed. 2015, 54, 13942–13946. [Google Scholar] [CrossRef]
- Wang, F.; Wang, K.; Dong, X.; Mei, X.; Zhai, Z.; Zheng, B.; Lv, J.; Duan, W.; Wang, W. Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet. Appl. Surf. Sci. 2017, 419, 893–900. [Google Scholar] [CrossRef]
- Georgiev, A.; Spassova, E.; Assa, J.; Danev, G. Polymer Thin Films; Intechopen Book: London, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Chalmpes, N.; Bourlinos, A.B.; Talande, S.; Bakandritsos, A.; Moschovas, D.; Avgeropoulos, A.; Karakassides, M.A.; Gournis, D. Nanocarbon from Rocket Fuel Waste: The Case of Furfuryl Alcohol-Fuming Nitric Acid Hypergolic Pair. Nanomaterials 2021, 11, 1. [Google Scholar] [CrossRef]
- Chalmpes, N.; Spyrou, K.; Vasilopoulos, K.C.; Bourlinos, A.B.; Moschovas, D.; Avgeropoulos, A.; Gioti, C.; Karakassides, M.A.; Gournis, D. Hypergolics in Carbon Nanomaterials Synthesis: New Paradigms and Perspectives. Molecules 2020, 25, 2207. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Law, W.-C.; Chan, K.C. Floating, highly efficient, and scalable grapheme membranes for seawater desalination using solar Energy. Green Chem. 2018, 20, 3689–3695. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, D.; Liu, C. Electrostatic assembly of graphene oxide with Zinc-Glutamate metal-organic framework crystalline to synthesis nanoporous carbon with enhanced capacitive performance. Electrochimica Acta 2018, 270, 183–191. [Google Scholar] [CrossRef]
- Chung, H.T.; Cullen, D.A.; Higgins, D.; Sneed, B.T.; Holby, E.F.; More, K.L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Hu, X.; Wang, J.; Fang, X.; Zhu, Y. Novel Route to Fe-Based Cathode as an Efficient Bifunctional Catalysts for Rechargeable Zn–Air Battery. Adv. Energy. Mater. 2018, 8, 1800955. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Sha, J.; Fei, H.; Li, Y.; Tour, J.M. Efficient Water-Splitting Electrodes Based on Laser-Induced Graphene. ACS Appl. Mater. Interfaces 2017, 9, 26840–26847. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jung, H.; Jung, S.-M.; Hwang, J.; Kim, D.Y.; Lee, N.; Kim, K.-S.; Kwon, H.; Kim, Y.-T.; Han, J.W.; et al. Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2021, 143, 1399–1408. [Google Scholar] [CrossRef]
- Xu, S.; Yang, F.; Han, S.; Zhang, S.; Wang, Q.; Jiang, C. MOF-derived PdNiCo alloys encapsulated in nitrogen-doped graphene for robust hydrogen evolution reactions. CrystEngComm 2020, 22, 6063–6070. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, R.; Liu, Y.; Ha, Y.; Guo, Y.; Sun, D.; Liu, M.; Fang, F. Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction. Adv. Mater. 2018, 30, 1802011. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, F.; Zaki, E.; Ivars-Barceló, F.; Li, X.; Paier, J.; Sauer, J.; Shaikhutdinov, S.; Freund, H.-J. Cooperative Formation of Long-Range Ordering in Water Ad-layers on Fe3O4(111) Surfaces. Angew. Chem. Int. Ed. 2018, 57, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Huang, H.; Cheng, L.; Hu, W.; Xu, P.; Yang, Y.; Li, J.; Gao, F.; Yang, K.; Liu, S.; et al. Tuning the p-Orbital Electron Structure of s-Block Metal Ca Enables a High-Performance Electrocatalyst for Oxygen Reduction. Adv. Mater. 2021, 33, 2107103. [Google Scholar] [CrossRef] [PubMed]
- Martinez, U.; Babu, S.K.; Holby, E.F.; Chung, H.T.; Yin, X.; Zelenay, P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2019, 31, 1806545. [Google Scholar] [CrossRef]
- Zhang, T. Single-Atom Catalysis: Far beyond the Matter of Metal Dispersion. Nano Lett. 2021, 21, 9835–9837. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, C.; Meng, T.; Pu, Z.; Jin, H.; He, D.; Zhang, J.; Mu, S. Iron oxide and phosphide encapsulated within N,P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc-air batteries. J. Power Sources 2019, 413, 367–375. [Google Scholar] [CrossRef]
- Jiang, J.; Zhu, L.; Sun, Y.; Chen, Y.; Chen, H.; Han, S.; Lin, H. Fe2O3 nanocatalysts on N-doped carbon nanomaterial for highly efficient electrochemical hydrogen evolution in alkaline. J. Power Sources 2019, 426, 74–83. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, D.; Ling, T.; Vasileff, A.; Qiao, S.-Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH. Nano Energy 2017, 40, 264–273. [Google Scholar] [CrossRef]
- Zhang, J.; Shang, X.; Ren, H.; Chi, J.; Fu, H.; Dong, B.; Liu, C.; Chai, Y. Modulation of Inverse Spinel Fe3O4 by Phosphorus Doping as an Industrially Promising Electrocatalyst for Hydrogen Evolution. Adv. Mater. 2019, 31, 1905107. [Google Scholar] [CrossRef]
- Terasa, J.B. Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings. Carbon 2022, 188, 289. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Zhao, J.; Cheng, J.; Liu, C.; Wang, Q. Laser Shock Fabrication of Nitrogen Doped Inverse Spinel Fe3O4/Carbon Nanosheet Film Electrodes towards Hydrogen Evolution Reactions in Alkaline Media. Int. J. Mol. Sci. 2022, 23, 7477. https://doi.org/10.3390/ijms23137477
Wu D, Zhao J, Cheng J, Liu C, Wang Q. Laser Shock Fabrication of Nitrogen Doped Inverse Spinel Fe3O4/Carbon Nanosheet Film Electrodes towards Hydrogen Evolution Reactions in Alkaline Media. International Journal of Molecular Sciences. 2022; 23(13):7477. https://doi.org/10.3390/ijms23137477
Chicago/Turabian StyleWu, Dun, Jiaming Zhao, Junfeng Cheng, Chunlin Liu, and Qiang Wang. 2022. "Laser Shock Fabrication of Nitrogen Doped Inverse Spinel Fe3O4/Carbon Nanosheet Film Electrodes towards Hydrogen Evolution Reactions in Alkaline Media" International Journal of Molecular Sciences 23, no. 13: 7477. https://doi.org/10.3390/ijms23137477
APA StyleWu, D., Zhao, J., Cheng, J., Liu, C., & Wang, Q. (2022). Laser Shock Fabrication of Nitrogen Doped Inverse Spinel Fe3O4/Carbon Nanosheet Film Electrodes towards Hydrogen Evolution Reactions in Alkaline Media. International Journal of Molecular Sciences, 23(13), 7477. https://doi.org/10.3390/ijms23137477