Current Advances and Future Prospects for Molecular Research for Agronomically Important Traits in Rice
Funding
Conflicts of Interest
References
- International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 2005, 436, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Gao, S.; Nie, J.; Tan, X.; Xie, J.; Bi, X.; Sun, Y.; Luo, S.; Zhu, Q.; Geng, J.; et al. Improved 93-11 genome and time-course transcriptome expand resources for rice genomics. Front. Plant Sci. 2022, 12, 769700. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Zhu, W.; Hamilton, J.; Lin, H.; Campbell, M.; Childs, K.; Thibaud-Nissen, F.; Malek, R.L.; Lee, Y.; Zheng, L.; et al. The TIGR Rice Genome Annotation Resource: Improvements and new features. Nucleic Acids Res. 2007, 35, D883–D887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, H.; Lee, S.S.; Tanaka, T.; Numa, H.; Kim, J.; Kawahara, Y.; Wakimoto, H.; Yang, C.C.; Iwamoto, M.; Abe, T.; et al. Rice Annotation Project DataBase (RAP-DB): An integrative and interactive database for rice genomics. Plant. Cell Physiol. 2013, 54, e6. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, M.; Nishikawa, D.; Kawahara, Y.; Wakimoto, H.; Itoh, R.; Tabei, N.; Tanaka, T.; Itoh, T. TASUKE+: A web-based platform for exploring GWAS results and large-scale resequencing data. DNA Res. 2019, 26, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Takehisa, H.; Kamatsuki, K.; Minami, H.; Namiki, N.; Ikawa, H.; Ohyanagi, H.; Sugimoto, K.; Antonio, B.A.; Nagamura, Y. RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Res. 2013, 41, D1206–D1213. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Jenkins, J.; Shu, S.; Chern, M.; Martin, J.A.; Copetti, D.; Duong, P.Q.; Pham, N.T.; Kudrna, D.A.; Talag, J.; et al. Genome sequence of the model rice variety KitaakeX. BMC Genomics 2019, 20, 905. [Google Scholar] [CrossRef] [Green Version]
- Hori, K.; Shenton, M. Recent advances in molecular research in rice: Agronomically important traits. Int. J. Mol. Sci. 2020, 21, 5495. [Google Scholar] [CrossRef]
- Song, S.; Tian, D.; Zhang, Z.; Hu, S.; Yu, J. Rice genomics: Over the past two decades and into the future. Genomics Proteomics Bioinform. 2018, 16, 397–404. [Google Scholar] [CrossRef]
- Biswal, A.K.; Mangrauthia, S.K.; Reddy, M.R.; Yugandhar, P. CRISPR mediated genome engineering to develop climate smart rice: Challenges and opportunities. Semin. Cell Dev. Biol. 2019, 96, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Fu, D.; Xu, T.; Wu, C. VPB1 encoding BELL-like homeodomain protein is involved in rice panicle architecture. Int. J. Mol. Sci. 2021, 22, 7949. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, Y.; Li, X.; Lin, Y. Molecular and genetic aspects of grain number determination in rice (Oryza sativa L.). Int. J. Mol. Sci. 2021, 22, 728. [Google Scholar] [CrossRef] [PubMed]
- Park, J.R.; Resolus, D.; Kim, K.M. OsBRKq1, related grain size mapping, and identification of grain shape based on QTL mapping in rice. Int. J. Mol. Sci. 2021, 22, 2289. [Google Scholar] [CrossRef] [PubMed]
- Usman, B.; Zhao, N.; Nawaz, G.; Qin, B.; Liu, F.; Liu, Y.; Li, R. CRISPR/Cas9 guided mutagenesis of Grain Size 3 confers increased rice (Oryza sativa L.) grain length by regulating cysteine proteinase inhibitor and ubiquitin-related proteins. Int. J. Mol. Sci. 2021, 22, 3225. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.W.; Lee, H.S.; Park, S.H.; Lee, D.K.; Seo, J.S.; Kim, Y.S.; Park, S.C.; Kim, J.K. OsCRP1, a ribonucleoprotein gene, regulates chloroplast mRNA stability that confers drought and cold tolerance. Int. J. Mol. Sci. 2021, 22, 1673. [Google Scholar] [CrossRef]
- Huang, K.; Wu, T.; Ma, Z.; Li, Z.; Chen, H.; Zhang, M.; Bian, M.; Bai, H.; Jiang, W.; Du, X. Rice transcription factor OsWRKY55 is involved in the drought response and regulation of plant growth. Int. J. Mol. Sci. 2021, 22, 4337. [Google Scholar] [CrossRef]
- Wu, Y.P.; Wang, S.M.; Chang, Y.C.; Ho, C.; Hsu, Y.C. Submergence gene Sub1A transfer into drought-tolerant japonica rice DT3 using marker-assisted selection. Int. J. Mol. Sci. 2021, 22, 13365. [Google Scholar] [CrossRef]
- Hori, K.; Saisho, D.; Nagata, K.; Nonoue, Y.; Uehara-Yamaguchi, Y.; Kanatani, A.; Shu, K.; Hirayama, T.; Hirayama, T.; Yonemaru, J.-I.; et al. Genetic elucidation for response of flowering time to ambient temperatures in Asian rice cultivars. Int. J. Mol. Sci. 2021, 22, 1024. [Google Scholar] [CrossRef]
- Kabange, N.R.; Park, S.Y.; Lee, J.Y.; Shin, D.; Lee, S.M.; Kwon, Y.; Cha, J.K.; Cho, J.H.; Duyen, D.V.; Ko, J.M.; et al. New insights into the transcriptional regulation of genes involved in the nitrogen use efficiency under potassium chlorate in rice (Oryza sativa L.). Int. J. Mol. Sci. 2021, 22, 2192. [Google Scholar] [CrossRef]
- Sato, M.; Akashi, H.; Sakamoto, Y.; Matsunaga, S.; Tsuji, H. Whole-tissue three-dimensional imaging of rice at single-cell resolution. Int. J. Mol. Sci. 2022, 23, 40. [Google Scholar] [CrossRef] [PubMed]
- Ronald, P.C.; Albano, B.; Tabien, R.; Abenes, L.; Wu, K.S.; McCouch, S.; Tanksley, S.D. Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21. Mol. Gen. Genet. 1992, 236, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirabayashi, H.; Sasaki, K.; Kambe, T.; Gannaban, R.B.; Miras, M.A.; Mendioro, M.S.; Simon, E.V.; Lumanglas, P.D.; Fujita, D.; Takemoto-Kuno, Y.; et al. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa. J. Exp. Bot. 2015, 66, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Song, Y.; Li, X.; Chen, J.; Mo, L.; Zhang, X.; Lin, Z.; Zhang, L. Genome sequences of horticultural plants: Past, present, and future. Hortic. Res. 2019, 6, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eshed, Y.; Lippman Zachary, B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019, 366, eaax0025. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hori, K.; Shenton, M. Current Advances and Future Prospects for Molecular Research for Agronomically Important Traits in Rice. Int. J. Mol. Sci. 2022, 23, 7531. https://doi.org/10.3390/ijms23147531
Hori K, Shenton M. Current Advances and Future Prospects for Molecular Research for Agronomically Important Traits in Rice. International Journal of Molecular Sciences. 2022; 23(14):7531. https://doi.org/10.3390/ijms23147531
Chicago/Turabian StyleHori, Kiyosumi, and Matthew Shenton. 2022. "Current Advances and Future Prospects for Molecular Research for Agronomically Important Traits in Rice" International Journal of Molecular Sciences 23, no. 14: 7531. https://doi.org/10.3390/ijms23147531
APA StyleHori, K., & Shenton, M. (2022). Current Advances and Future Prospects for Molecular Research for Agronomically Important Traits in Rice. International Journal of Molecular Sciences, 23(14), 7531. https://doi.org/10.3390/ijms23147531