Prognostic Value of Association of Copy Number Alterations and Cell-Surface Expression Markers in Newly Diagnosed Multiple Myeloma Patients
Abstract
:1. Introduction
2. Results
2.1. CNAs Identified
2.2. Correlation between Aberrant PC Immunophenotype and CNAs
3. Discussion
4. Materials and Methods
4.1. Study Design and Classification Criteria
4.2. Flow Cytometry Assessment
4.3. PCs-Enriching and Genomic DNA (gDNA) Extraction
4.4. MLPA Analysis
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Makers | Percentages | Number of Samples Investigated |
---|---|---|
CD81+ | 62.8% (n = 66) | 105 |
CD45+ | 85.04% (n = 91) | 107 |
CD56+ | 82.2% (n = 88) | 107 |
cyIgK | 63.55% (n = 68) | 107 |
cyIgL | 36.44% (n = 39) | 107 |
CD28+ | 60.7% (n = 62) | 102 |
CD27+ | 63% (n = 63) | 100 |
CD117+ | 63.2% (n = 67) | 106 |
References
- Hu, J.; Van Valckenborgh, E.; Menu, E.; De Bruyne, E.; Vanderkerken, K. Understanding the hypoxic niche of multiple myeloma: Therapeutic implications and contributions of mouse models. Dis. Model. Mech. 2012, 5, 763–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medical Masterclass, C.J. Haematology: Multiple Myeloma, 1st ed; Clinical Medicine: London, UK, 2019; Volume 19, pp. 58–60. [Google Scholar]
- Lagreca, I.; Riva, G.; Nasillo, V.; Barozzi, P.; Castelli, I.; Basso, S.; Bettelli, F.; Giusti, D.; Cuoghi, A.; Bresciani, P.; et al. The Role of T Cell Immunity in Monoclonal Gammopathy and Multiple Myeloma: From Immunopathogenesis to Novel Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 5242. [Google Scholar] [CrossRef] [PubMed]
- Corre, J.; Munshi, N.; Avet-Loiseau, H. Genetics of multiple myeloma: Another heterogeneity level? Blood J. Am. Soc. Hematol. 2015, 125, 1870–1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhutani, M.; Foureau, D.M.; Atrash, S.; Voorhees, P.M.; Usmani, S.Z. Extramedullary multiple myeloma. Leukemia 2020, 34, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood J. Am. Soc. Hematol. 2009, 113, 5412–5417. [Google Scholar] [CrossRef] [Green Version]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Larson, D.R.; Plevak, M.F.; Offord, J.R.; Dispenzieri, A.; Katzmann, J.A.; Melton, I.I.I.L.J. Prevalence of monoclonal gammopathy of undetermined significance. N. Engl. J. Med. 2006, 354, 1362–1369. [Google Scholar] [CrossRef] [Green Version]
- Kyle, R.A.; Larson, D.R.; Therneau, T.M.; Dispenzieri, A.; Kumar, S.; Cerhan, J.R.; Rajkumar, S.V. Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance. N. Engl. J. Med. 2018, 378, 241–249. [Google Scholar] [CrossRef]
- Kyle, R.A.; Remstein, E.D.; Therneau, T.M.; Dispenzieri, A.; Kurtin, P.J.; Hodnefield, J.M.; Larson, D.R.; Plevak, M.F.; Jelinek, D.F.; Fonseca, R.; et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 2007, 356, 2582–2590. [Google Scholar] [CrossRef]
- Maura, F.; Bolli, N.; Angelopoulos, N.; Dawson, K.J.; Leongamornlert, D.; Martincorena, I.; Mitchell, T.J.; Fullam, A.; Gonzalez, S.; Szalat, R.; et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 2019, 10, 3835. [Google Scholar] [CrossRef] [Green Version]
- Aktas Samur, A.; Minvielle, S.; Shammas, M.; Fulciniti, M.; Magrangeas, F.; Richardson, P.G.; Moreau, P.; Attal, M.; Anderson, K.C.; Parmigiani, G.; et al. Deciphering the chronology of copy number alterations in Multiple Myeloma. Blood Cancer J. 2019, 9, 39. [Google Scholar] [CrossRef]
- Sallustio, F.; Curci, C.; Solimando, A.G.; Leone, P.; Pontrelli, P.; Gesualdo, L.; Vacca, A.; Racanelli, V.; Gallone, A. Identification and monitoring of Copy Number Variants (CNV) in monoclonal gammopathy. Cancer Biol. 2021, 22, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Draube, A.; Pfister, R.; Vockerodt, M.; Schuster, S.; Kube, D.; Diehl, V.; Tesch, H. Immunomagnetic enrichment of CD138 positive cells from weakly infiltrated myeloma patients samples enables the determination of the tumor clone specific IgH rearrangement. Ann. Hematol. 2001, 80, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Kawano, M.M.; Huang, N.; Harada, Y.; Iwato, K.; Tanabe, O.; Tanaka, H.; Sakai, A.; Asaoku, H.; Kuramoto, A. Phenotypic difference of normal plasma cells from mature myeloma cells. Blood J. Am. Soc. Hematol. 1993, 81, 2658–2663. [Google Scholar]
- Bataille, R.; Jégo, G.; Robillard, N.; Barillé-Nion, S.; Harousseau, J.L.; Moreau, P.; Amiot, M.; Pellat-Deceunynck, C. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologia 2006, 91, 1234–1240. [Google Scholar]
- CreativeBiolabs. Creative Biolabs. Available online: https://www.creative-biolabs.com/blog/car-t/what-is-cd19-antigen/ (accessed on 5 March 2022).
- Mahmoud, M.S.; Huang, N.; Nobuyoshi, M.; Lisukov, I.A.; Tanaka, H.; Kawano, M.M. Altered expression of Pax-5 gene in human myeloma cells. Blood J. Am. Soc. Hematol. 1996, 87, 4311–4315. [Google Scholar] [CrossRef] [Green Version]
- Sahara, N.; Ihara, M.; Ono, T.; Tamashima, S.; Matsui, H.; Takeshita, A.; Ohno, R. Multiple myeloma expressing CD19(+)CD56(−). phenotype. Am. J. Hematol. 2000, 64, 311–313. [Google Scholar] [CrossRef]
- Schaffer, A.M.; Minguet, S. Caveolin-1, tetraspanin CD81 and flotillins in lymphocyte cell membrane organization, signaling and immunopathology. Biochem. Soc. Trans. 2020, 48, 2387–2397. [Google Scholar] [CrossRef]
- van Zelm, M.C.; Smet, J.; Adams, B.; Mascart, F.; Schandené, L.; Janssen, F.; Ferster, A.; Kuo, C.C.; Levy, S.; van Dongen, J.J.; et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J. Clin. Investig. 2010, 120, 1265–1274. [Google Scholar] [CrossRef] [Green Version]
- Cherukuri, A.; Carter, R.H.; Brooks, S.; Bornmann, W.; Finn, R.; Dowd, C.S.; Pierce, S.K. B cell signaling is regulated by induced palmitoylation of CD81. J. Biol. Chem. 2004, 279, 31973–31982. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Hu, Y.; Wang, X.; Fu, S.; Liu, Z.; Zhang, J. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018, 7, 5920–5927. [Google Scholar] [CrossRef] [Green Version]
- Paiva, B.; Gutiérrez, N.C.; Chen, X.; Vídriales, M.B.; Montalbán, M.; Rosiñol, L.; Oriol, A.; Martínez-López, J.; Mateos, M.V.; López-Corral, L.; et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia 2012, 26, 1862–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Li, J.; Luo, S.K.; Zhang, G.C.; Hong, W.D.; Tong, X.Z. Expression of CD117 antigen on multiple myeloma and its significance. Ai Zheng 2004, 23, 951–954. [Google Scholar] [CrossRef] [PubMed]
- Escribano, L.; Ocqueteau, M.; Almeida, J.; Orfao, A.; San Miguel, J.F. Expression of the c-kit (CD117) molecule in normal and malignant hematopoiesis. Leuk. Lymphoma 1998, 30, 459–466. [Google Scholar] [CrossRef]
- Ocqueteau, M.; Orfao, A.; García-Sanz, R.; Almeida, J.; Gonzalez, M.; San Miguel, J.F. Expression of the CD117 antigen (c-Kit) on normal and myelomatous plasma cells. Br. J. Haematol. 1996, 95, 489–493. [Google Scholar] [CrossRef]
- Bataille, R.; Pellat-Deceunynck, C.; Robillard, N.; Avet-Loiseau, H.; Harousseau, J.L.; Moreau, P. CD117 (c-kit) is aberrantly expressed in a subset of MGUS and multiple myeloma with unexpectedly good prognosis. Leuk. Res. 2008, 32, 379–382. [Google Scholar] [CrossRef]
- Castaneda, O.; Baz, R. Multiple Myeloma Genomics-A Concise Review. Acta Med. Acad. 2019, 48, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Cardona-Benavides, I.J.; de Ramón, C.; Gutiérrez, N.C. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021, 10, 336. [Google Scholar] [CrossRef]
- Cowan, A.J.; Green, D.J.; Kwok, M.; Lee, S.; Coffey, D.G.; Holmberg, L.A.; Tuazon, S.; Gopal, A.K.; Libby, E.N. Diagnosis and Management of Multiple Myeloma: A Review. JAMA 2022, 327, 464–477. [Google Scholar] [CrossRef]
- Chretien, M.L.; Corre, J.; Lauwers-Cances, V.; Magrangeas, F.; Cleynen, A.; Yon, E.; Hulin, C.; Leleu, X.; Orsini-Piocelle, F.; Blade, J.S. Understanding the role of hyperdiploidy in myeloma prognosis: Which trisomies really matter? Blood J. Am. Soc. Hematol. 2015, 126, 2713–2719. [Google Scholar] [CrossRef] [Green Version]
- Zhan, F.; Huang, Y.; Colla, S.; Stewart, J.P.; Hanamura, I.; Gupta, S.; Epstein, J.; Yaccoby, S.; Sawyer, J.; Burington, B. The molecular classification of multiple myeloma. Blood J. Am. Soc. Hematol. 2006, 108, 2020–2028. [Google Scholar] [CrossRef] [Green Version]
- Zang, M.; Zou, D.; Yu, Z.; Li, F.; Yi, S.; Ai, X.; Qin, X.; Feng, X.; Zhou, W.; Xu, Y.; et al. Detection of recurrent cytogenetic aberrations in multiple myeloma: A comparison between MLPA and iFISH. Oncotarget 2015, 6, 34276–34287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V.; Sherborne, A.L.; Walker, B.A.; Johnson, D.C.; Boyle, E.M.; Ellis, S.; Begum, D.B.; Proszek, P.Z.; Jones, J.R.; Pawlyn, C.; et al. Prediction of outcome in newly diagnosed myeloma: A meta-analysis of the molecular profiles of 1905 trial patients. Leukemia 2018, 32, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, U.; Usmani, S.; Kumar, S. Current approaches to management of newly diagnosed multiple myeloma. Am. J. Hematol. 2022, 97, S3–S25. [Google Scholar] [CrossRef]
- Hebraud, B.; Leleu, X.; Lauwers-Cances, V.; Roussel, M.; Caillot, D.; Marit, G.; Karlin, L.; Hulin, C.; Gentil, C.; Guilhot, F.; et al. Deletion of the 1p32 region is a major independent prognostic factor in young patients with myeloma: The IFM experience on 1195 patients. Leukemia 2014, 28, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Kim, S.M.; Lee, Y.; Jeong, D.; Yun, J.; Ryu, S.; Yoon, S.S.; Ahn, Y.O.; Hwang, S.M.; Lee, D.S. Prognostic value of integrated cytogenetic, somatic variation, and copy number variation analyses in Korean patients with newly diagnosed multiple myeloma. PLoS ONE 2021, 16, e0246322. [Google Scholar] [CrossRef]
- Knop, S.; Engelhardt, M.; Liebisch, P.; Meisner, C.; Holler, E.; Metzner, B.; Peest, D.; Kaufmann, M.; Bunjes, D.; Straka, C.; et al. Allogeneic transplantation in multiple myeloma: Long-term follow-up and cytogenetic subgroup analysis. Leukemia 2019, 33, 2710–2719. [Google Scholar] [CrossRef]
- Samur, M.K.; Shah, P.K.; Wang, X.; Minvielle, S.; Magrangeas, F.; Avet-Loiseau, H.; Munshi, N.C.; Li, C. The shaping and functional consequences of the dosage effect landscape in multiple myeloma. BMC Genom. 2013, 14, 672. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, J.R. The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet. 2011, 204, 3–12. [Google Scholar] [CrossRef]
- Hanamura, I. Multiple myeloma with high-risk cytogenetics and its treatment approach. Int. J. Hematol. 2022, 115, 762–777. [Google Scholar] [CrossRef]
- Paiva, B.; Puig, N.; Cedena, M.T.; de Jong, B.G.; Ruiz, Y.; Rapado, I.; Martinez-Lopez, J.; Cordon, L.; Alignani, D.; Delgado, J.A.; et al. Differentiation stage of myeloma plasma cells: Biological and clinical significance. Leukemia 2017, 31, 382–392. [Google Scholar] [CrossRef] [Green Version]
- Flores-Montero, J.; de Tute, R.; Paiva, B.; Perez, J.J.; Böttcher, S.; Wind, H.; Sanoja, L.; Puig, N.; Lecrevisse, Q.; Vidriales, M.B.; et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytom. B Clin. Cytom. 2016, 90, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.H.; Kim, J.; Lee, S.E.; Kim, Y.J.; Min, C.K. Copy number variations could predict the outcome of bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. Genes Chromosomes Cancer 2015, 54, 20–27. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up(†). Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Xu, Z.; Liu, J.; Qin, T.; Li, Q.; Xiao, Z. Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization for detecting chromosome abnormalities in myelodysplastic syndromes: A retrospective study. Medicine 2021, 100, e25768. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Wiktor, A.E.; Durnick, D.K.; Kurtin, P.J.; Van Dyke, D.L.; Tefferi, A.; Patnaik, M.S.; Ketterling, R.P.; Hanson, C.A. Bone Marrow Conventional Karyotyping and Fluorescence In Situ Hybridization: Defining an Effective Utilization Strategy for Evaluation of Myelodysplastic Syndromes. Am. J. Clin. Pathol. 2016, 146, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Stuppia, L.; Antonucci, I.; Palka, G.; Gatta, V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int. J. Mol. Sci. 2012, 13, 3245–3276. [Google Scholar] [CrossRef]
- Sommaluan, S.; Rerkamnuaychoke, B.; Pauwilai, T.; Chancharunee, S.; Onsod, P.; Pornsarayuth, P.; Chareonsirisuthigul, T.; Tammachote, R.; Siriboonpiputtana, T. The Utilization of Karyotyping, iFISH, and MLPA for the Detection of Recurrence Genetic Aberrations in Multiple Myeloma. Asian Pac. J. Cancer Prev. 2017, 18, 3135–3142. [Google Scholar]
- Ma, J.; Ai, X.; Wang, J.; Xing, L.; Tian, C.; Yang, H.; Yu, Y.; Zhao, H.; Wang, X.; Zhao, Z.; et al. Multiplex ligation-dependent probe amplification identifies copy number changes in normal and undetectable karyotype MDS patients. Ann. Hematol. 2021, 100, 2207–2214. [Google Scholar] [CrossRef]
- Mosebach, J.; Thierjung, H.; Schlemmer, H.P.; Delorme, S. Multiple Myeloma Guidelines and Their Recent Updates: Implications for Imaging. Rofo 2019, 191, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wendlandt, E.B.; Darbro, B.; Xu, H.; Thomas, G.S.; Tricot, G.; Chen, F.; Shaughnessy, J.D., Jr.; Zhan, F. Genetic Analysis of Multiple Myeloma Identifies Cytogenetic Alterations Implicated in Disease Complexity and Progression. Cancers 2021, 29, 517. [Google Scholar] [CrossRef] [PubMed]
- Manier, S.; Salem, K.; Glavey, S.V.; Roccaro, A.M.; Ghobrial, I.M. Genomic Aberrations in Multiple Myeloma. Cancer Treat. Res. 2016, 169, 23–34. [Google Scholar] [PubMed]
- Saxe, D.; Seo, E.J.; Bergeron, M.B.; Han, J.Y. Recent advances in cytogenetic characterization of multiple myeloma. Int. J. Lab. Hematol. 2019, 41, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Meng, H.; Wang, J.; Lou, Y.; Zhou, Y.; Lin, P.; Li, F.; Liu, L.; Xu, H.; Yang, M.; et al. Clinical characteristics and prognostic values of 1p32.3 deletion detected through fluorescence in situ hybridization in patients with newly diagnosed multiple myeloma: A single-center study in China. Front. Med. 2020, 14, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Boyd, K.D.; Ross, F.M.; Walker, B.A.; Wardell, C.P.; Tapper, W.J.; Chiecchio, L.; Dagrada, G.; Konn, Z.J.; Gregory, W.M.; Jackson, G.H.; et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin. Cancer Res. 2011, 17, 7776–7784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, M.A.; Lawrence, M.S.; Keats, J.J.; Cibulskis, K.; Sougnez, C.; Schinzel, A.C.; Harview, C.L.; Brunet, J.P.; Ahmann, G.J.; Adli, M.; et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011, 471, 467–472. [Google Scholar] [CrossRef]
- Schmidt, T.M.; Fonseca, R.; Usmani, S.Z. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021, 11, 83. [Google Scholar] [CrossRef]
- Walker, B.A.; Boyle, E.M.; Wardell, C.P.; Murison, A.; Begum, D.B.; Dahir, N.M.; Proszek, P.Z.; Johnson, D.C.; Kaiser, M.F.; Melchor, L.; et al. Mutational Spectrum, Copy Number Changes, and Outcome: Results of a Sequencing Study of Patients with Newly Diagnosed Myeloma. J. Clin. Oncol. 2015, 33, 3911–3920. [Google Scholar] [CrossRef]
- Van de Donk, N.; Pawlyn, C.; Yong, K.L. Multiple myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Heider, M.; Nickel, K.; Högner, M.; Bassermann, F. Multiple Myeloma: Molecular Pathogeenesis and Disease Evolution. Oncol. Res. Treat. 2021, 44, 672–681. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Tournay, E.; Hulin, C.; Chretien, M.L.; Royer, B.; Dib, M.; Decaux, O.; Jaccard, A.; Belhadj, K.; et al. Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma. J. Clin. Oncol. 2019, 37, 1657–1665. [Google Scholar] [CrossRef]
- Fonseca, R.; Oken, M.M.; Harrington, D.; Bailey, R.J.; Van Wier, S.A.; Henderson, K.J.; Kay, N.E.; Van Ness, B.; Greipp, P.R.; Dewald, G.W. Deletions of chromosome 13 in multiple myeloma identified by interphase FISH usually denote large deletions of the q arm or monosomy. Leukemia 2001, 15, 981–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baysal, M.; Demirci, U.; Umit, E.; Kirkizlar, H.O.; Atli, E.I.; Gurkan, H.; Gulsaran, S.K.; Bas, V.; Mail, C.; Demir, A.M. Concepts of Double Hit and Triple Hit Disease in Multiple Myeloma, Entity and Prognostic Significance. Sci. Rep. 2020, 10, 5991. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.; Guihard, S.; Roumier, C.; Peyrouze, P.; Gonzales, F.; Berthon, C.; Quesnel, B.; Preudhomme, C.; Behal, H.; Duhamel, A.; et al. Tetraspanin CD81 is an adverse prognostic marker in acute myeloid leukemia. Oncotarget. 2016, 7, 62377–62385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.L.; Shu, M.M.; Dong, B.X.; Gu, H.T.; Liang, R.; Bai, Q.X.; Yang, L.; Zhang, T.; Gao, G.X.; Chen, X.Q. Influence of CD117 Expression on Response of Multiple Myeloma Patients to Chemotherapy. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2015, 23, 1346–1351. [Google Scholar] [PubMed]
- Kraj, M.; Pogłód, R.; Kopeć-szlęzak, J.; Sokołowska, U.; Woźniak, J.; Kruk, B. C-kit receptor (CD117) expression on plasma cells in monoclonal gammopathies. Leuk. Lymphoma 2004, 45, 2281–2289. [Google Scholar] [CrossRef]
- Lebel, E.; Nachmias, B.; Pick, M.; Gross Even-Zohar, N.; Gatt, M.E. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J. Clin. Med. 2022, 11, 1809. [Google Scholar] [CrossRef]
- Ishikawa, H.; Tsuyama, N.; Mahmoud, M.S.; Fujii, R.; Abroun, S.; Liu, S.; Li, F.J.; Kawano, M.M. CD19 expression and growth inhibition of tumours in human multiple myeloma. Leuk. Lymphoma 2002, 43, 613–616. [Google Scholar] [CrossRef]
- Van Dongen, J.J.; Lhermitte, L.; Böttcher, S.; Almeida, J.; van der Velden, V.H.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [Green Version]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [Green Version]
- Glier, H.; Novakova, M.; Te Marvelde, J.; Bijkerk, A.; Morf, D.; Thurner, D.; Rejlova, K.; Lange, S.; Finke, J.; van der Sluijs-Gelling, A.; et al. Comments on EuroFlow standard operating procedures for instrument setup and compensation for BD FACS Canto II, Navios and BD FACS Lyric instruments. J. Immunol Methods 2019, 475, 112680. [Google Scholar] [CrossRef]
- Caers, J.; Garderet, L.; Kortüm, K.M.; O’Dwyer, M.E.; van de Donk, N.; Binder, M.; Dold, S.M.; Gay, F.; Corre, J.; Beguin, Y.; et al. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: What to use and when. Haematologica 2018, 103, 1772–1784. [Google Scholar] [CrossRef] [PubMed]
- Roshal, M.; Flores-Montero, J.A.; Gao, Q.; Koeber, M.; Wardrope, J.; Durie, B.G.M.; Dogan, A.; Orfao, A.; Landgren, O. MRD detection in multiple myeloma: Comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods. Blood Adv. 2017, 1, 728–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Chung, H.Y.; Ehrlich, L.A.; Jelinek, D.F.; Callander, N.S.; Roodman, G.D.; Choi, S.J. IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood J. Am. Soc. Hematol. 2004, 103, 2308–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semyachkina, A.N.; Nikolaeva, E.A.; Galeeva, N.M.; Polyakov, A.V.; Kurnikova, M.A.; Belova, V.; Shulyakova, I.V.; Dantsev, I.S.; Dzhivanshiryan, G.V. Ehlers-Danlos syndrome kyphoscoliotic type 2 caused by mutations in the FKBP14 gene: An analysis of five cases. F1000Res. 2021, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Sikhayeva, N.; Abilova, Z.; Shtefanov, I.; Makishev, A.; Akilzhanova, A. PTH Gene Polymorphism and Breast Cancer Risk in Kazakhstan. Cent. Asian J. Glob. Health 2014, 3, 175. [Google Scholar] [CrossRef] [Green Version]
- Rajan, A.M.; Rajkumar, S.V. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015, 5, e365. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef] [Green Version]
The Study Group | Number of Patients (%) |
---|---|
All patients | 389 |
MGUS | 45 (11.5%) |
SMM | 46 (11.8%) |
Solitary plasmacytoma | 13 (3.3%) |
Plasma cell leukemia | 27 (6.94%) |
Other associated diagnoses (e.g., POEMS syndrome or systemic amyloidosis) | 102 (26.22%) |
Multiple myeloma (MM) | 156 (40.1%) |
Characteristics of MM patients investigated by both MFC and MLPA | 107 |
Age (Years) | |
range 35–69, median 65 | |
<60 | 29 (27.1%) |
60–70 | 44 (41.1%) |
>70 | 34 (31.0%) |
Sex | |
Male | 51 (47.7%) |
Female | 56 (52.3%) |
ISS Stage | |
1 | 21 (19.6%) |
2 | 39 (36.4%) |
3 | 47 (43.9%) |
CRAB informations | |
Anemia | 82 (76.6%) |
Bone lesions | 98 (91.5%) |
Hypercalcemia (≥11 mg/dL) | 30 (28.0%) |
Renal lesions | 53 (49.5%) |
Treatment | |
VCD | 74 (69.1%) |
Other therapies | 33 (30.8%) |
Autologous transplant | 30 (40.5%) |
CNAs | Percent (%) | No. of Samples |
---|---|---|
HRD | 49.5 | 53 |
dup1q | 40.1 | 43 |
del13q | 38.3 | 41 |
del1p | 21.4 | 23 |
del16q | 19.6 | 21 |
del14p | 7.5 | 8 |
del17p | 4.6 | 5 |
del12p | 1.9 | 2 |
none | 27.1 | 29 |
CD81+ Atypical PCs | |||||||
---|---|---|---|---|---|---|---|
Adverse CNAs | N | Overall Survival | Progression-Free Survival | ||||
Months | Hazard Ratio (95% CI) | p Value | Months | Hazard Ratio (95%CI) | p Value | ||
del13q | 23 | 38 | 0.39 (0.18–0.85) | 0.013 | 19 | 0.62 (0.33–1.1) | ns |
dup1q | 29 | 38 | 0.31 (0.14–0.68) | 0.002 | 14 | 0.38 (0.21–0.7) | 0.001 |
del1p | 14 | 34 | 0.41 (0.17–0.99) | 0.04 | 16 | 0.47 (0.23–0.97) | 0.035 |
>3 CNAs | 13 | 38 | 0.36 (0.15–0.87) | 0.017 | 13 | 0.46 (0.21–1.0) | 0.045 |
PCs Maturation Stages | Genomic Alterations (CNAs) | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | del1p | dup1q | HRD | del12p | del13q | del14q | del16q | del17p | |
CD19 (+) CD81 (+) | 4 | 0% | 25% | 75% | 0% | 50% | 0% | 25% | 0% |
CD19 (−) CD81 (+) | 62 | 22.6% | 43.6% | 46.8% | 3.2% | 33.9% | 8.1% | 22.6% | 6.5% |
CD19 (−) CD81 (−) | 39 | 20.5% | 33.3% | 48.7% | 0% | 41% | 7.7% | 12.8% | 0% |
CD19, CD81 (PC Maturation Stage) | CNAs | CD117 | N | Progression-Free Survival | |||
---|---|---|---|---|---|---|---|
Positive or Negative | Subgroups | Months | Hazard Ratio (Subgroups Compared) | p Value (For Subgroups Compared) | |||
CD19− CD81− (differentiated) | <3 | + | (a) | 22 | >48 | 1.88 (0.22–15.69) | - |
− | (b) | 10 | 24 | 0.68 (0.06–7.70) (b vs. a) | 0.75 | ||
≥3 | + | (c) | 5 | >48 | 0.56 (0.06–4.48) (c vs. a) | 0.53 | |
− | (d) | 2 | 13 | x | x | ||
CD19− CD81+ (intermediate) | <3 | + | (e) | 27 | >48 | 3.021 (1.28–7.08) | - |
− | (f) | 23 | 19 | 0.33 (0.14–0.77) (f vs. e) | 0.008 | ||
≥3 | + | (g) | 9 | 13 | 0.35 (0.12–1.04) (g vs. e) | 0.049 | |
− | (h) | 3 | 7 | 0.21 (0.042–1.05) (h vs. e) | 0.051 | ||
CD19+ CD81+ (little or non-differentiated) | <3 | + | (i) | 3 | 17 | 0.28 (0.76–1.09) (i vs. e) | 0.052 |
≥3 | − | (j) | 1 | 7 | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragoș, M.L.; Ivanov, I.C.; Mențel, M.; Văcărean-Trandafir, I.C.; Sireteanu, A.; Titianu, A.A.; Dăscălescu, A.S.; Stache, A.B.; Jitaru, D.; Gorgan, D.L. Prognostic Value of Association of Copy Number Alterations and Cell-Surface Expression Markers in Newly Diagnosed Multiple Myeloma Patients. Int. J. Mol. Sci. 2022, 23, 7530. https://doi.org/10.3390/ijms23147530
Dragoș ML, Ivanov IC, Mențel M, Văcărean-Trandafir IC, Sireteanu A, Titianu AA, Dăscălescu AS, Stache AB, Jitaru D, Gorgan DL. Prognostic Value of Association of Copy Number Alterations and Cell-Surface Expression Markers in Newly Diagnosed Multiple Myeloma Patients. International Journal of Molecular Sciences. 2022; 23(14):7530. https://doi.org/10.3390/ijms23147530
Chicago/Turabian StyleDragoș, Mihaiela L., Iuliu C. Ivanov, Mihaela Mențel, Irina C. Văcărean-Trandafir, Adriana Sireteanu, Amalia A. Titianu, Angela S. Dăscălescu, Alexandru B. Stache, Daniela Jitaru, and Dragoș L. Gorgan. 2022. "Prognostic Value of Association of Copy Number Alterations and Cell-Surface Expression Markers in Newly Diagnosed Multiple Myeloma Patients" International Journal of Molecular Sciences 23, no. 14: 7530. https://doi.org/10.3390/ijms23147530
APA StyleDragoș, M. L., Ivanov, I. C., Mențel, M., Văcărean-Trandafir, I. C., Sireteanu, A., Titianu, A. A., Dăscălescu, A. S., Stache, A. B., Jitaru, D., & Gorgan, D. L. (2022). Prognostic Value of Association of Copy Number Alterations and Cell-Surface Expression Markers in Newly Diagnosed Multiple Myeloma Patients. International Journal of Molecular Sciences, 23(14), 7530. https://doi.org/10.3390/ijms23147530