Identification of a Maturation Plasma Cell Index through a Highly Sensitive Droplet Digital PCR Assay Gene Expression Signature Validation in Newly Diagnosed Multiple Myeloma Patients
Abstract
:1. Introduction
2. Results
2.1. 10 HH Genes Were Expressed at Low Level across Different Cohorts of NDMM Patients
2.2. Selection of Suitable Housekeeping Gene
2.3. Design and Set-Up of the 10 HH Genes Signature ddPCR Assay
2.4. Multiplexed ddPCR 10-HH Genes Assay: Signature Validation on Primary Patients’ Samples
2.5. Prospective Testing of the 10 HH Genes Signature by Integration of Molecular and Immunophenotypic Data
3. Discussion
4. Patients and Methods
4.1. Patients
4.2. Sample Collection and Cell Fraction Enrichment
4.3. RNA Processing and Droplet Digital PCR (ddPCR)
4.4. Data and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasche, L.; Kortum, K.M.; Raab, M.S.; Weinhold, N. The Impact of Tumor Heterogeneity on Diagnostics and Novel Therapeutic Strategies in Multiple Myeloma. Int. J. Mol. Sci. 2019, 20, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maura, F.; Bolli, N.; Angelopoulos, N.; Dawson, K.J.; Leongamornlert, D.; Martincorena, I.; Campbell, P.J. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat. Commun. 2019, 10, 3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terragna, C.; Renzulli, M.; Remondini, D.; Tagliafico, E.; Di Raimondo, F.; Patriarca, F.; Cavo, M. Correlation between eight-gene expression profiling and response to therapy of newly diagnosed multiple myeloma patients treated with thalidomide-dexamethasone incorporated into double autologous transplantation. Ann. Hematol. 2013, 92, 1271–1280. [Google Scholar] [CrossRef]
- Szalat, R.; Avet-Loiseau, H.; Munshi, N.C. Gene Expression Profiles in Myeloma: Ready for the Real World? Clin. Cancer Res. 2016, 22, 5434–5442. [Google Scholar] [CrossRef] [Green Version]
- Narrandes, S.; Xu, W. Gene Expression Detection Assay for Cancer Clinical Use. J. Cancer 2018, 9, 2249–2265. [Google Scholar] [CrossRef]
- Michaels, Y.S.; Barnkob, M.B.; Barbosa, H.; Baeumler, T.A.; Thompson, M.K.; Andre, V.; Fulga, T.A. Precise tuning of gene expression levels in mammalian cells. Nat. Commun. 2019, 10, 818. [Google Scholar] [CrossRef] [Green Version]
- Bammler, T.; Beyer, R. Members of the Toxicogenomics Research Consortium. Standardizing global gene expression analysis between laboratories and across platforms. Nat. Methods 2005, 2, 351–356. [Google Scholar] [CrossRef]
- Jarvinen, A.K.; Hautaniemi, S.; Edgren, H.; Auvinen, P.; Saarela, J.; Kallioniemi, O.P.; Monni, O. Are data from different gene expression microarray platforms comparable? Genomics 2004, 83, 1164–1168. [Google Scholar] [CrossRef]
- Jenssen, T.K.; Langaas, M.; Kuo, W.P.; Smith-Sorensen, B.; Myklebost, O.; Hovig, E. Analysis of repeatability in spotted cDNA microarrays. Nucleic Acids Res. 2002, 30, 3235–3244. [Google Scholar] [CrossRef]
- Martello, M.; Remondini, D.; Borsi, E.; Santacroce, B.; Procacci, M.; Pezzi, A.; Dico, F.A.; Martinelli, G.; Zamagni, E.; Tacchetti, P.; et al. Opposite activation of the Hedgehog pathway in CD138+ plasma cells and CD138-CD19+ B cells identifies two subgroups of patients with multiple myeloma and different prognosis. Leukiemia 2016, 30, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Horne, G.A.; Copland, M. Approaches for targeting self-renewal pathways in cancer stem cells: Implications for hematological treatments. Expert Opin. Drug Discov. 2017, 12, 465–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borah, A.; Raveendran, S.; Rochani, A.; Maekawa, T.; Kumar, D.S. Targeting self-renewal pathways in cancer stem cells: Clinical implications for cancer therapy. Oncogenesis 2015, 4, e177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef] [Green Version]
- Olmedillas-Lopez, S.; Olivera-Salazar, R.; Garcia-Arranz, M.; Garcia-Olmo, D. Current and Emerging Applications of Droplet Digital PCR in Oncology: An Updated Review. Mol. Diagn. Ther. 2022, 26, 61–87. [Google Scholar] [CrossRef]
- Cortes, A.A.; Olmedillas, S.; Serrano-Lopez, J.; Lainez-Gonzalez, D.; Castano, T.; Iniguez, R.; García, A.; Atance, M.; Sánchez, R.N.S.; Lopez, C.B.; et al. Comparison of Droplet Digital PCR versus qPCR Measurements on the International Scale for the Molecular Monitoring of Chronic Myeloid Leukemia Patients. Mol. Diagn. Ther. 2020, 24, 593–600. [Google Scholar] [CrossRef]
- Kuhlmann, K.; Cieselski, M.; Schumann, J. Relative versus absolute RNA quantification: A comparative analysis based on the example of endothelial expression of vasoactive receptors. Biol. Proced. Online 2021, 23, 6. [Google Scholar] [CrossRef]
- Sari, I.N.; Phi, L.T.H.; Jun, N.; Wijaya, Y.T.; Lee, S.; Kwon, H.Y. Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Peacock, C.D.; Wang, Q.; Gesell, G.S.; Corcoran-Schwartz, I.M.; Jones, E.; Kim, J.; Devereux, W.L.; Rhodes, J.T.; Huff, C.A.; Beachy, P.A.; et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl. Acad. Sci. USA 2007, 104, 4048–4053. [Google Scholar] [CrossRef] [Green Version]
- Manasanch, E.E.; Berrios, D.; Fountain, E.; Claussen, C.M.; Chuang, T.; Kaufman, G.; Kunacheewa, C. Gene expression profiling predicts relapse-free and overall survival in newly diagnosed myeloma patients treated with novel therapies. Br. J. Haematol. 2021, 192, e115–e120. [Google Scholar] [CrossRef]
- Black, H.; Glavey, S. Gene expression profiling as a prognostic tool in multiple myeloma. Cancer Drug Resist. 2021, 4, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Zamagni, E.; Cavo, M. Toward a GEP-based PET in myeloma. Blood 2017, 130, 2–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Laar, R.; Flinchum, R.; Brown, N.; Ramsey, J.; Riccitelli, S.; Heuck, C.; Barlogie, B.; Shaughnessy, J.D., Jr. Translating a gene expression signature for multiple myeloma prognosis into a robust high-throughput assay for clinical use. BMC Med. Genomics 2014, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.T.; Valent, E.T.; van Beers, E.H.; Kuiper, R.; Oliva, S.; Haferlach, T.; Chng, W.; van Vliet, M.H.; Sonneveld, P.; Larocca, A. Prognostic gene expression analysis in a retrospective, multinational cohort of 155 multiple myeloma patients treated outside clinical trials. Int. J. Lab. Hematol. 2022, 44, 127–134. [Google Scholar] [CrossRef]
- Cerchione, C.; Usmani, S.Z.; Stewart, A.K.; Kaiser, M.; Rasche, L.; Kortum, M.; Mateos, M.; Spencer, A.; Sonneveld, P.; Anderson, K.C. Gene Expression Profiling in Multiple Myeloma: Redefining the Paradigm of Risk-Adapted Treatment. Front. Oncol. 2022, 12, 820768. [Google Scholar] [CrossRef]
- Cristiano, D.; Peruzy, M.F.; Aponte, M.; Mancusi, A.; Proroga, Y.T.R.; Capuano, F.; Murru, N. Comparison of droplet digital PCR vs real-time PCR for Yersinia enterocolitica detection in vegetables. Int. J. Food Microbiol. 2021, 354, 109321. [Google Scholar] [CrossRef]
- Lindner, L.; Cayrou, P.; Rosahl, T.W.; Zhou, H.H.; Birling, M.C.; Herault, Y.; Pavlovic, G. Droplet digital PCR or quantitative PCR for in-depth genomic and functional validation of genetically altered rodents. Methods 2021, 191, 107–119. [Google Scholar] [CrossRef]
- Coccaro, N.; Tota, G.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Digital PCR: A Reliable Tool for Analyzing and Monitoring Hematologic Malignancies. Int. J. Mol. Sci. 2020, 21, 3141. [Google Scholar] [CrossRef]
- Li, C. Automating dChip: Toward reproducible sharing of microarray data analysis. BMC Bioinform. 2008, 9, 231. [Google Scholar] [CrossRef]
PROBE SET | GENES | DONOR (M) | MM (M) | FC MM vs. DONOR | p-Value |
---|---|---|---|---|---|
207586_at | SHH | 22.77 | 23.1 | 0.32 | 7.42 × 10−7 |
1552730_at | DHH | 40.39 | 40.4 | −0.01 | 8.60 × 10−1 |
229358_at | IHH | 56.7 | 56.98 | −0.27 | 8.65 × 10−5 |
218629_at | SMO | 92.18 | 92.33 | −0.15 | 1.41 × 10−2 |
209816_at | PTCH1 | 31.76 | 32.32 | −0.56 | 1.43 × 10−14 |
221292_at | PTCH2 | 32.08 | 32.28 | −0.2 | 4.95 × 10−4 |
222749_at | SUFU | 64.04 | 64.46 | −0.42 | 2.16 × 10−8 |
206646_at | GLI1 | 65.18 | 65.55 | −0.37 | 2.77 × 10−8 |
207034_at | GLI2 | 25.31 | 25.8 | −0.49 | 2.22 × 10−12 |
1569342_at | GLI3 | 16.7 | 16.81 | 0.11 | 2.32 × 10−1 |
Sample ID | CLU1 | CLU2 | Classification |
---|---|---|---|
GSM562812_KMS12BM | 18.7636 | 17.1984 | 2 |
GSM562817_NCIH929 | 20.0729 | 15.7932 | 2 |
GSM1300960_MM1S | 10.3441 | 17.6051 | 1 |
GSM1300964_RPMI8226 | 7.40587 | 13.3582 | 1 |
GSM562814_MM1S | 10.3498 | 10.4041 | 1 |
GSM562819_RPMI8226 | 11.3982 | 14.13 | 1 |
GSM1300957_KMS12 | 15.2754 | 10.3545 | 2 |
GSM1300962_NCIH929 | 15.1557 | 13.777 | 2 |
10-HH Genes SIGNATURE ddPCR Assay | |
---|---|
FAM | HEX |
IHH | GLI2 |
PTCH1 | GLI1 |
SMO | GLI3 |
DHH | SUFU |
SHH | PTCH2 |
Gene | CD19-/CD81- (M) | CD19-/CD81- (Range) | CD19+/CD81+ (M) | CD19+/CD81+ (Range) | FC CD19-/CD81- vs. CD19+/CD81+ | p-Value |
---|---|---|---|---|---|---|
GLI1 | 108.28 | 2.50–413.17 | 5.8 | 3.29–81.47 | 18.67 | 0.009 |
PTCH1 | 174.65 | 30.46–2363.64 | 63.29 | 5.80–135.74 | 2.76 | 0.028 |
SMO | 296.26 | 136.36–1045.45 | 94.2 | 6.70–1464.60 | 3.15 | 0.047 |
IHH | 172.15 | 18.56–1056.82 | 100.8 | 2.90–1542.49 | 1.71 | 0.118 |
PTCH2 | 321.45 | 75.0–1315.91 | 172.66 | 27.12–1695.13 | 1.86 | 0.136 |
SHH | 165.71 | 11.17–1213.64 | 94.2 | 3.68–1458.37 | 1.76 | 0.177 |
GLI3 | 212.5 | 19.90–387.60 | 123.29 | 14.50–527.53 | 1.72 | 0.201 |
GLI2 | 242.39 | 147.15–1343.18 | 220.4 | 17.99–1445.91 | 1.10 | 0.256 |
DHH | 82.4 | 9.14–422.75 | 35.66 | −5.8–186.36 | 2.31 | 0.394 |
SUFU | 183.55 | 44.88–502.99 | 177.8 | 50.13–396.16 | 1.03 | 0.887 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martello, M.; Solli, V.; Termini, R.; Kanapari, A.; Remondini, D.; Borsi, E.; Poletti, A.; Armuzzi, S.; Taurisano, B.; Vigliotta, I.; et al. Identification of a Maturation Plasma Cell Index through a Highly Sensitive Droplet Digital PCR Assay Gene Expression Signature Validation in Newly Diagnosed Multiple Myeloma Patients. Int. J. Mol. Sci. 2022, 23, 12450. https://doi.org/10.3390/ijms232012450
Martello M, Solli V, Termini R, Kanapari A, Remondini D, Borsi E, Poletti A, Armuzzi S, Taurisano B, Vigliotta I, et al. Identification of a Maturation Plasma Cell Index through a Highly Sensitive Droplet Digital PCR Assay Gene Expression Signature Validation in Newly Diagnosed Multiple Myeloma Patients. International Journal of Molecular Sciences. 2022; 23(20):12450. https://doi.org/10.3390/ijms232012450
Chicago/Turabian StyleMartello, Marina, Vincenza Solli, Rosalinda Termini, Ajsi Kanapari, Daniel Remondini, Enrica Borsi, Andrea Poletti, Silvia Armuzzi, Barbara Taurisano, Ilaria Vigliotta, and et al. 2022. "Identification of a Maturation Plasma Cell Index through a Highly Sensitive Droplet Digital PCR Assay Gene Expression Signature Validation in Newly Diagnosed Multiple Myeloma Patients" International Journal of Molecular Sciences 23, no. 20: 12450. https://doi.org/10.3390/ijms232012450
APA StyleMartello, M., Solli, V., Termini, R., Kanapari, A., Remondini, D., Borsi, E., Poletti, A., Armuzzi, S., Taurisano, B., Vigliotta, I., Mazzocchetti, G., Zamagni, E., Merlotti, A., Tacchetti, P., Pantani, L., Rocchi, S., Rizzello, I., Mancuso, K., Cavo, M., & Terragna, C. (2022). Identification of a Maturation Plasma Cell Index through a Highly Sensitive Droplet Digital PCR Assay Gene Expression Signature Validation in Newly Diagnosed Multiple Myeloma Patients. International Journal of Molecular Sciences, 23(20), 12450. https://doi.org/10.3390/ijms232012450