Estimating the Similarity between Protein Pockets
Abstract
:1. Introduction
2. Pocket Detection and Druggability Estimate
3. Comparing Pockets: A Multi-Step Procedure
3.1. Pocket Representation
3.2. Similarity Search
3.3. Local Comparison of Protein Cavities
3.4. Scoring Functions
4. Retrospective Evaluations and Datasets
Purpose | Name | Content | # Positive (# Negatives) |
---|---|---|---|
Pairs of cavities from dissimilar proteins binding identical or similar ligands (positives) and dissimilar ligands (negatives) | APoc set [28] | Diverse | 38,066 (38,066) |
Barelier et al. [144] | Diverse | 62 | |
Homogeneous [116] | Diverse | 100 | |
Kahraman [146]/extended [116] | Cofactor sites | 100/972 | |
sc-PDB subset [47] | Diverse | 1070 | |
TOUGH-M1 [145] | Diverse | 505,116 (556,810) | |
TOUGH-C1 [128] | Nucleotides, heme, steroid sites | 2218 | |
Pairs of proteins sharing 3 high affinity ligands (potency < 100 nM) vs. pairs of proteins sharing 3 ligands with divergent affinities | Vertex [133] | Diverse | 6598 (379) |
Vertex refined [129] | Diverse | 338 (338) | |
Pairs of cavities of associated with the same (positives) or different (negatives) functions and fold class | sc-PDB subset [24] | Diverse | 769 (769) |
sc-PDB subset [121] | Diverse | 766 (766) | |
sc-PDB subset [129] | Diverse | 383 (383) | |
Intra-family classification | Proteases, kinases, GPCRs, Estrogen receptors [17,20,47,115,148] | - | |
Difficult cases | Difficult cases [19,24] | Diverse from experimental validations | 8 |
Successful applications | ProSPECCTs D7 [38] | Diverse from experimental validations | 115 (56,284) |
Structures of identical sequences | ProSPECCTs D1 [38] | Diverse | 13,430 (92,846) |
ProSPECCTs D1.2 [38] | Diverse | 241 (1784) | |
NMR structures | ProSPECCTs D2 [38] | Diverse | 7729 (100,512) |
Artificial sets: random mutations | ProSPECCTs D3 and D4 [38] | Diverse | 13,430 (67,150) |
5. Prospective Applications
- Fragment/ligand promiscuity towards unrelated targets of known 3D structure remains are a rare event [156];
- The experimental validation of putative binding site similarities is not as straightforward as testing many compounds on a single target. For every putative off-target, a suitable assay has to be used if available, or more likely needs to be developed on purpose. In vitro biophysical assays (e.g., NMR, thermal shift) give a direct answer of shared ligand binding to two different targets [159,160] but do not necessarily evidence the binding site location, by opposition to enzymatic assays [40,161,162,163,164] or binding competitions experiments for which the binding site is usually unambiguous [165,166,167]. If not possible otherwise, functional and/or in vivo assays [168,169] can be used but are more difficult to interpret since the examined function might be biased by binding to another target.Known success stories (Table 5) have notably enabled:
- The explanation of off-target beneficial effects [165];
- The confirmation of ligand 2D and 3D shape similarities [164];
Method | On-Target | Secondary Target | Ligand | Secondary Target Affinity | Ref. |
---|---|---|---|---|---|
SOIPPA | Estrogen receptor alpha | SERCA Ca2+ ion channel ATPase | Tamoxifen | IC50 = 5 µM | [168] |
CPASS | Bcl-2 apoptosis protein Bcl-xL | Type III SS Needle Protein (PrgI) | Chelerythrine | N/A a | [160] |
SOIPPA | Catechol-O-methyltransferase | Enoyl-acyl carrier protein reductase | Entacapone | IC50 = 80 µM | [162] |
SiteAlign | Pim-1 kinase | Synapsin I | Quercetagetin | IC50 = 0.15 µM | [167] |
SMAP | HIV-1 protease | ErbB2 receptor tyrosine kinase | Nelfinavir | N/A b | [163] |
PSSC | Monoamine oxidase | Lysine-specific demethylase 1 | Namoline | IC50 = 51 µM | [166] |
SMAP | Epidermal growth factor | β-secretase | Gefitinib | IC50 = 20 µM | [165] |
KRIPO | Cannabinoid type 1 receptor | Adenine nucleotide translocase 1 | Ibipinabant | N/A c | [169] |
PSIM | PPAR gamma | Cyclooxygenase type 1 | Fenofibrate | IC50 = 950 μM | [161] |
TM-align | Receptor Tyrosine kinases | Acetylcholinesterase | Pazopanib Sunitinib | IC50 = 0.93 μM IC50 = 5.87 μM | [164] |
Shaper | Cyclooxygenase type 1 | Cinnamoylesterase | Flurbiprofen | IC50 = 400 µM | [40] |
ProCare | HIV-1 reverse transcriptase | TNF-α trimer | Efavirenz Delavirdine | Kd = 24 µM Kd = 49 µM | [159] |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Illergard, K.; Ardell, D.H.; Elofsson, A. Structure is three to ten times more conserved than sequence—A study of structural response in protein cores. Proteins 2009, 77, 499–508. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 2007, 63 Pt 1, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalli, A.; Salvatella, X.; Dobson, C.M.; Vendruscolo, M. Protein structure determination from NMR chemical shifts. Proc. Natl. Acad. Sci. USA 2007, 104, 9615–9620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renaud, J.P.; Chari, A.; Ciferri, C.; Liu, W.T.; Remigy, H.W.; Stark, H.; Wiesmann, C. Cryo-EM in drug discovery: Achievements, limitations and prospects. Nat. Rev. Drug Discov. 2018, 17, 471–492. [Google Scholar] [CrossRef] [PubMed]
- Shimada, I.; Ueda, T.; Kofuku, Y.; Eddy, M.T.; Wuthrich, K. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 2019, 18, 59–82. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Edelsbrunner, H.; Woodward, C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 1998, 7, 1884–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Wolfson, H.J. Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. Proc. Natl. Acad. Sci. USA 1991, 88, 10495–10499. [Google Scholar] [CrossRef] [Green Version]
- Russell, R.B.; Sasieni, P.D.; Sternberg, M.J. Supersites within superfolds. Binding site similarity in the absence of homology. J. Mol. Biol. 1998, 282, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Wolfson, H.; Lin, S.L.; Nussinov, R. Three-dimensional, sequence order-independent structural comparison of a serine protease against the crystallographic database reveals active site similarities: Potential implications to evolution and to protein folding. Protein Sci. 1994, 3, 769–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, A.C.; Borkakoti, N.; Thornton, J.M. TESS: A geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites. Protein Sci. 1997, 6, 2308–2323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J. Mol. Graph. Model. 1997, 15, 359–363. [Google Scholar] [CrossRef]
- Levitt, D.G.; Banaszak, L.J. Pocket—A Computer-Graphics Method for Identifying and Displaying Protein Cavities and Their Surrounding Amino-Acids. J. Mol. Graph. Model. 1992, 10, 229–234. [Google Scholar] [CrossRef]
- Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 2012, 28, 2074–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivak, R.; Hoksza, D. P2Rank: Machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminform. 2018, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand pocket detection. BMC Bioinform. 2009, 10, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, S.; Kuhn, D.; Klebe, G. A new method to detect related function among proteins independent of sequence and fold homology. J. Mol. Biol. 2002, 323, 387–406. [Google Scholar] [CrossRef]
- Shulman-Peleg, A.; Nussinov, R.; Wolfson, H.J. Recognition of functional sites in protein structures. J. Mol. Biol. 2004, 339, 607–633. [Google Scholar] [CrossRef]
- Yeturu, K.; Chandra, N. PocketMatch: A new algorithm to compare binding sites in protein structures. BMC Bioinform. 2008, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Schalon, C.; Surgand, J.S.; Kellenberger, E.; Rognan, D. A simple and fuzzy method to align and compare druggable ligand-binding sites. Proteins 2008, 71, 1755–1778. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.J.; de Vlieg, J.; Wagener, M.; Ritschel, T. Pharmacophore fingerprint-based approach to binding site subpocket similarity and its application to bioisostere replacement. J. Chem. Inf. Model. 2012, 52, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.T.; Scozzafava, A.; Klebe, G. Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: New pharmacological opportunities due to related binding site recognition. J. Med. Chem. 2004, 47, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Ehrt, C.; Brinkjost, T.; Koch, O. Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design. J. Med. Chem. 2016, 59, 4121–4151. [Google Scholar] [CrossRef] [PubMed]
- Weill, N.; Rognan, D. Alignment-free ultra-high-throughput comparison of druggable protein-ligand binding sites. J. Chem. Inf. Model. 2010, 50, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Wu, J.; Burk, D.L.; Xue, M.; Jiang, H.; Shen, J. BSSF: A fingerprint based ultrafast binding site similarity search and function analysis server. BMC Bioinform. 2010, 11, 47. [Google Scholar] [CrossRef] [Green Version]
- Krotzky, T.; Grunwald, C.; Egerland, U.; Klebe, G. Large-scale mining for similar protein binding pockets: With RAPMAD retrieval on the fly becomes real. J. Chem. Inf. Model. 2015, 55, 165–179. [Google Scholar] [CrossRef]
- Kellenberger, E.; Schalon, C.; Rognan, D. How to Measure the Similarity Between Protein Ligand-Binding Sites? Curr. Comput. Aided Drug Des. 2008, 4, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Skolnick, J. APoc: Large-scale identification of similar protein pockets. Bioinformatics 2013, 29, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Brylinski, M. eMatchSite: Sequence Order-Independent Structure Alignments of Ligand Binding Pockets in Protein Models. PLoS Comput. Biol. 2014, 10, e1003829. [Google Scholar] [CrossRef]
- Feldman, H.J.; Labute, P. Pocket Similarity: Are alpha Carbons Enough? J. Chem. Inf. Model. 2010, 50, 1466–1475. [Google Scholar] [CrossRef]
- Konc, J.; Janezic, D. ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 2010, 26, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Simonovsky, M.; Meyers, J. DeeplyTough: Learning Structural Comparison of Protein Binding Sites. J. Chem. Inf. Model. 2020, 60, 2356–2366. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Xie, L.; Bourne, P.E. A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery. Bioinformatics 2009, 25, i305–i312. [Google Scholar] [CrossRef] [Green Version]
- Levitt, M.; Gerstein, M. A unified statistical framework for sequence comparison and structure comparison. Proc. Natl. Acad. Sci. USA 1998, 95, 5913–5920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhagavat, R.; Sankar, S.; Srinivasan, N.; Chandra, N. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Structure 2018, 26, 499–512.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognan, D. Structure-Based Approaches to Target Fishing and Ligand Profiling. Mol. Inform. 2010, 29, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Nisius, B.; Sha, F.; Gohlke, H. Structure-based computational analysis of protein binding sites for function and druggability prediction. J. Biotechnol. 2012, 159, 123–134. [Google Scholar] [CrossRef]
- Ehrt, C.; Brinkjost, T.; Koch, O. A benchmark driven guide to binding site comparison: An exhaustive evaluation using tailor-made data sets (ProSPECCTs). PLoS Comput. Biol. 2018, 14, e1006483. [Google Scholar] [CrossRef]
- Naderi, M.; Lemoine, J.M.; Govindaraj, R.G.; Kana, O.Z.; Feinstein, W.P.; Brylinski, M. Binding site matching in rational drug design: Algorithms and applications. Brief. Bioinform. 2019, 20, 2167–2184. [Google Scholar] [CrossRef]
- Da Silva, F.; Bret, G.; Teixeira, L.; Gonzalez, C.F.; Rognan, D. Exhaustive Repertoire of Druggable Cavities at Protein-Protein Interfaces of Known Three-Dimensional Structure. J. Med. Chem. 2019, 62, 9732–9742. [Google Scholar] [CrossRef]
- McGreig, J.E.; Uri, H.; Antczak, M.; Sternberg, M.J.E.; Michaelis, M.; Wass, M.N. 3DLigandSite: Structure-based prediction of protein-ligand binding sites. Nucleic Acids Res. 2022, 50, W13–W20. [Google Scholar] [CrossRef] [PubMed]
- Desaphy, J.; Bret, G.; Rognan, D.; Kellenberger, E. sc-PDB: A 3D-database of ligandable binding sites-10 years on. Nucleic Acids Res. 2015, 43, D399–D404. [Google Scholar] [CrossRef] [PubMed]
- Ben Chorin, A.; Masrati, G.; Kessel, A.; Narunsky, A.; Sprinzak, J.; Lahav, S.; Ashkenazy, H.; Ben-Tal, N. ConSurf-DB: An accessible repository for the evolutionary conservation patterns of the majority of PDB proteins. Protein Sci. 2020, 29, 258–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogha, J.; Diharce, J.; Obled, A.; Aci-Seche, S.; Bonnet, P. Computational Analysis of Crystallization Additives for the Identification of New Allosteric Sites. ACS Omega 2020, 5, 2114–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drwal, M.N.; Jacquemard, C.; Perez, C.; Desaphy, J.; Kellenberger, E. Do Fragments and Crystallization Additives Bind Similarly to Drug like Ligands? J. Chem. Inf. Model. 2017, 57, 1197–1209. [Google Scholar] [CrossRef]
- Da Silva, F.; Desaphy, J.; Rognan, D. IChem: A Versatile Toolkit for Detecting, Comparing, and Predicting Protein-Ligand Interactions. ChemMedChem 2018, 13, 507–510. [Google Scholar] [CrossRef]
- Desaphy, J.; Azdimousa, K.; Kellenberger, E.; Rognan, D. Comparison and Druggability Prediction of Protein-Ligand Binding Sites from Pharmacophore-Annotated Cavity Shapes. J. Chem. Inf. Model. 2012, 52, 2287–2299. [Google Scholar] [CrossRef]
- Oliveira, S.H.P.; Ferraz, F.A.N.; Honorato, R.V.; Xavier-Neto, J.; Sobreira, T.J.P.; de Oliveira, P.S.L. KVFinder: Steered identification of protein cavities as a PyMOL plugin. BMC Bioinform. 2014, 15, 197. [Google Scholar] [CrossRef] [Green Version]
- Marchand, J.R.; Pirard, B.; Ertl, P.; Sirockin, F. CAVIAR: A method for automatic cavity detection, description and decomposition into subcavities. J. Comput.-Aided Mol. Des. 2021, 35, 737–750. [Google Scholar] [CrossRef]
- Fathi, S.M.S.; Tuszynski, J.A. A simple method for finding a protein’s ligand-binding pockets. BMC Struct. Biol. 2014, 14, 18. [Google Scholar] [CrossRef]
- Petrek, M.; Otyepka, M.; Banas, P.; Kosinova, P.; Koca, J.; Damborsky, J. CAVER: A new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinform. 2006, 7, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleywegt, G.J.; Jones, T.A. Detection, Delineation, Measurement and Display of Cavities in Macromolecular Structures. Acta Crystallogr. Sect. D 1994, 50, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.D.; Schroeder, M. LIGSITE(csc): Predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 2006, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Weisel, M.; Proschak, E.; Schneider, G. PocketPicker: Analysis of ligand binding-sites with shape descriptors. Chem. Cent. J. 2007, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Kalidas, Y.; Chandra, N. PocketDepth: A new depth based algorithm for identification of ligand binding sites in proteins. J. Struct. Biol. 2008, 161, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, A.; Kellogg, G.E. A novel and efficient tool for locating and characterizing protein cavities and binding sites. Proteins 2010, 78, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins 2010, 78, 1195–1211. [Google Scholar] [CrossRef]
- Till, M.S.; Ullmann, G.M. McVol—A program for calculating protein volumes and identifying cavities by a Monte Carlo algorithm. J. Mol. Model. 2010, 16, 419–429. [Google Scholar] [CrossRef]
- Peters, K.P.; Fauck, J.; Frommel, C. The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 1996, 256, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Binkowski, T.A.; Naghibzadeh, S.; Liang, J. CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Res. 2003, 31, 3352–3355. [Google Scholar] [CrossRef]
- Tan, K.P.; Varadarajan, R.; Madhusudhan, M.S. DEPTH: A web server to compute depth and predict small-molecule binding cavities in proteins. Nucleic Acids Res. 2011, 39 (Suppl. 2), W242–W248. [Google Scholar] [CrossRef] [PubMed]
- Smart, O.S.; Neduvelil, J.G.; Wang, X.; Wallace, B.A.; Sansom, M.S.P. HOLE: A program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. Model. 1996, 14, 354–360. [Google Scholar] [CrossRef]
- Ho, B.K.; Gruswitz, F. HOLLOW: Generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 2008, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, G.P.; Stouten, P.F.W. Fast prediction and visualization of protein binding pockets with PASS. J. Comput.-Aided Mol. Des. 2000, 14, 383–401. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Y.; Tanaka, I.; Yao, M. Roll: A new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 2010, 26, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskowski, R.A. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 1995, 13, 323–330. [Google Scholar] [CrossRef]
- Glaser, F.; Morris, R.J.; Najmanovich, R.J.; Laskowski, R.A.; Thornton, J.M. A method for localizing ligand binding pockets in protein structures. Proteins 2006, 62, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Pisabarro, M.T. MSPocket: An orientation-independent algorithm for the detection of ligand binding pockets. Bioinformatics 2011, 27, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Tseng, Y.Y.; Dupree, C.; Chen, Z.J.; Li, W.H. SplitPocket: Identification of protein functional surfaces and characterization of their spatial patterns. Nucleic Acids Res. 2009, 37, W384–W389. [Google Scholar] [CrossRef]
- Harris, R.; Olson, A.J.; Goodsell, D.S. Automated prediction of ligand-binding sites in proteins. Proteins 2008, 70, 1506–1517. [Google Scholar] [CrossRef]
- An, J.; Totrov, M.; Abagyan, R. Comprehensive identification of “druggable” protein ligand binding sites. Genome Inform. 2004, 15, 31–41. [Google Scholar] [PubMed]
- Ngan, C.H.; Hall, D.R.; Zerbe, B.; Grove, L.E.; Kozakov, D.; Vajda, S. FTSite: High accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 2012, 28, 286–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, J.; Totrov, M.; Abagyan, R. Pocketome via comprehensive identification and classification of ligand binding envelopes. Mol. Cell. Proteom. 2005, 4, 752–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurie, A.T.; Jackson, R.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005, 21, 1908–1916. [Google Scholar] [CrossRef]
- Ghersi, D.; Sanchez, R. EasyMIFS and SiteHound: A toolkit for the identification of ligand-binding sites in protein structures. Bioinformatics 2009, 25, 3185–3186. [Google Scholar] [CrossRef] [Green Version]
- Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef]
- Ruppert, J.; Welch, W.; Jain, A.N. Automatic identification and representation of protein binding sites for molecular docking. Protein Sci. 1997, 6, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Goodford, P.J. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J. Med. Chem. 1985, 28, 849–857. [Google Scholar] [CrossRef]
- Schneider, S.; Zacharias, M. Combining geometric pocket detection and desolvation properties to detect putative ligand binding sites on proteins. J. Struct. Biol. 2012, 180, 546–550. [Google Scholar] [CrossRef]
- Morita, M.; Nakamura, S.; Shimizu, K. Highly accurate method for ligand-binding site prediction in unbound state (apo) protein structures. Proteins 2008, 73, 468–479. [Google Scholar] [CrossRef]
- Tuzmen, C.; Erman, B. Identification of Ligand Binding Sites of Proteins Using the Gaussian Network Model. PLoS ONE 2011, 6, e16474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santana, C.A.; Silveira, S.D.; Moraes, J.P.A.; Izidoro, S.C.; de Melo-Minardi, R.C.; Ribeiro, A.J.M.; Tyzack, J.D.; Borkakoti, N.; Thornton, J.M. GRaSP: A graph-based residue neighborhood strategy to predict binding sites. Bioinformatics 2020, 36, I726–I734. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.Y.; Leung, F.H.F.; Ling, S.S.H. Identification of Protein-Ligand Binding Site Using Multi-Clustering and Support Vector Machine. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 939–944. [Google Scholar]
- Krivak, R.; Hoksza, D. Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. J. Cheminform. 2015, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayal, M.; Honig, B. On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites. Proteins 2006, 63, 892–906. [Google Scholar] [CrossRef]
- Yan, X.; Lu, Y.F.; Li, Z.; Wei, Q.; Gao, X.; Wang, S.; Wu, S.; Cui, S.G. PointSite: A Point Cloud Segmentation Tool for Identification of Protein Ligand Binding Atoms. J. Chem. Inf. Model. 2022, 62, 2835–2845. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Gupta, A.; Chelur, V.; Jawahar, C.V.; Priyakumar, U.D. DeepPocket: Ligand Binding Site Detection and Segmentation using 3D Convolutional Neural Networks. J. Chem. Inf. Model. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kandel, J.; Tayara, H.; Chong, K.T. PUResNet: Prediction of protein-ligand binding sites using deep residual neural network. J. Cheminform. 2021, 13, 65. [Google Scholar] [CrossRef]
- Mylonas, S.K.; Axenopoulos, A.; Daras, P. DeepSurf: A surface-based deep learning approach for the prediction of ligand binding sites on proteins. Bioinformatics 2021, 37, 1681–1690. [Google Scholar] [CrossRef]
- Kozlovskii, I.; Popov, P. Spatiotemporal identification of druggable binding sites using deep learning. Commun. Biol. 2020, 3, 618. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Z.; Bian, Y.; Wei, Z. A novel protein descriptor for the prediction of drug binding sites. BMC Bioinform. 2019, 20, 478. [Google Scholar] [CrossRef]
- Jimenez, J.; Doerr, S.; Martinez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelsbrunner, H.; Kirkpatrick, D.G.; Seidel, R. On the Shape of a Set of Points in the Plane. IEEE Trans. Inf. Theory 1983, 29, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Kawabata, T.; Go, N. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites. Proteins 2007, 68, 516–529. [Google Scholar] [CrossRef]
- Xie, L.; Bourne, P.E. A robust and efficient algorithm for the shape description of protein structures and its application in predicting ligand binding sites. BMC Bioinform. 2007, 8, S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.R.; Su, H.; Mo, K.C.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 77–85. [Google Scholar] [CrossRef] [Green Version]
- Degac, J.; Winter, U.; Helms, V. Graph-Based Clustering of Predicted Ligand-Binding Pockets on Protein Surfaces. J. Chem. Inf. Model. 2015, 55, 1944–1952. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Li, Y.; Lin, B.Y.; Schroeder, M.; Huang, B.D. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 2011, 27, 2083–2088. [Google Scholar] [CrossRef] [Green Version]
- Huang, B. MetaPocket: A meta approach to improve protein ligand binding site prediction. OMICS 2009, 13, 325–330. [Google Scholar] [CrossRef]
- Hajduk, P.J.; Huth, J.R.; Tse, C. Predicting protein druggability. Drug Discov. Today 2005, 10, 1675–1682. [Google Scholar] [CrossRef]
- Volkamer, A.; Kuhn, D.; Grombacher, T.; Rippmann, F.; Rarey, M. Combining global and local measures for structure-based druggability predictions. J. Chem. Inf. Model. 2012, 52, 360–372. [Google Scholar] [CrossRef]
- Perola, E.; Herman, L.; Weiss, J. Development of a rule-based method for the assessment of protein druggability. J. Chem. Inf. Model. 2012, 52, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, R.P.; Maiorov, V.N.; Holloway, M.K.; Cornell, W.D.; Gao, Y.D. Drug-like Density: A Method of Quantifying the “Bindability” of a Protein Target Based on a Very Large Set of Pockets and Drug-like Ligands from the Protein Data Bank. J. Chem. Inf. Model. 2010, 50, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Krasowski, A.; Muthas, D.; Sarkar, A.; Schmitt, S.; Brenk, R. DrugPred: A Structure-Based Approach To Predict Protein Druggability Developed Using an Extensive Nonredundant Data Set. J. Chem. Inf. Model. 2011, 51, 2829–2842. [Google Scholar] [CrossRef] [PubMed]
- Borrel, A.; Regad, L.; Xhaard, H.; Petitjean, M.; Camproux, A.C. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties. J. Chem. Inf. Model. 2015, 55, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Edfeldt, F.N.; Folmer, R.H.; Breeze, A.L. Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov. Today 2011, 16, 284–287. [Google Scholar] [CrossRef]
- Abi Hussein, H.; Geneix, C.; Petitjean, M.; Borrel, A.; Flatters, D.; Camproux, A.C. Global vision of druggability issues: Applications and perspectives. Drug Discov. Today 2017, 22, 404–415. [Google Scholar] [CrossRef]
- Kinoshita, K.; Furui, J.; Nakamura, H. Identification of protein functions from a molecular surface database, eF-site. J. Struct. Funct. Genomics 2002, 2, 9–22. [Google Scholar] [CrossRef]
- Jambon, M.; Imberty, A.; Deleage, G.; Geourjon, C. A new bioinformatic approach to detect common 3D sites in protein structures. Proteins 2003, 52, 137–145. [Google Scholar] [CrossRef]
- Brakoulias, A.; Jackson, R.M. Towards a structural classification of phosphate binding sites in protein-nucleotide complexes: An automated all-against-all structural comparison using geometric matching. Proteins 2004, 56, 250–260. [Google Scholar] [CrossRef]
- Ramensky, V.; Sobol, A.; Zaitseva, N.; Rubinov, A.; Zosimov, V. A novel approach to local similarity of protein binding sites substantially improves computational drug design results. Proteins 2007, 69, 349–357. [Google Scholar] [CrossRef]
- Binkowski, T.A.; Joachimiak, A. Protein functional surfaces: Global shape matching and local spatial alignments of ligand binding sites. BMC Struct. Biol. 2008, 8, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Bourne, P.E. Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl. Acad. Sci. USA 2008, 105, 5441–5446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milletti, F.; Vulpetti, A. Predicting polypharmacology by binding site similarity: From kinases to the protein universe. J. Chem. Inf. Model. 2010, 50, 1418–1431. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Zaslavskiy, M.; Vert, J.P.; Stoven, V. A new protein binding pocket similarity measure based on comparison of clouds of atoms in 3D: Application to ligand prediction. BMC Bioinform. 2010, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Yeturu, K.; Chandra, N. PocketAlign a novel algorithm for aligning binding sites in protein structures. J. Chem. Inf. Model. 2011, 51, 1725–1736. [Google Scholar] [CrossRef]
- Liu, T.Y.; Altman, R.B. Using Multiple Microenvironments to Find Similar Ligand-Binding Sites: Application to Kinase Inhibitor Binding. PLoS Comput. Biol. 2011, 7, e1002326. [Google Scholar] [CrossRef] [Green Version]
- Sael, L.; Kihara, D. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison. Proteins 2012, 80, 1177–1195. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, L.; Zhang, J. Protein surface matching by combining local and global geometric information. PLoS ONE 2012, 7, e40540. [Google Scholar] [CrossRef] [Green Version]
- von Behren, M.M.; Volkamer, A.; Henzler, A.M.; Schomburg, K.T.; Urbaczek, S.; Rarey, M. Fast protein binding site comparison via an index-based screening technology. J. Chem. Inf. Model. 2013, 53, 411–422. [Google Scholar] [CrossRef]
- Volkamer, A.; Griewel, A.; Grombacher, T.; Rarey, M. Analyzing the topology of active sites: On the prediction of pockets and subpockets. J. Chem. Inf. Model. 2010, 50, 2041–2052. [Google Scholar] [CrossRef]
- Brylinski, M.; Feinstein, W.P. eFindSite: Improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J. Comput.-Aided Mol. Des. 2013, 27, 551–567. [Google Scholar] [CrossRef]
- Chartier, M.; Najmanovich, R. Detection of Binding Site Molecular Interaction Field Similarities. J. Chem. Inf. Model. 2015, 55, 1600–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudreault, F.; Morency, L.P.; Najmanovich, R.J. NRGsuite: A PyMOL plugin to perform docking simulations in real time using FlexAID. Bioinformatics 2015, 31, 3856–3858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Im, W. G-LoSA: An efficient computational tool for local structure-centric biological studies and drug design. Protein Sci. 2016, 25, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Batista, J.; Hawkins, P.C.D.; Tolbert, R.; Geballe, M.T. SiteHopper—A unique tool for binding site comparison. J. Cheminform. 2014, 6, P57. [Google Scholar] [CrossRef] [Green Version]
- Pu, L.; Govindaraj, R.G.; Lemoine, J.M.; Wu, H.C.; Brylinski, M. DeepDrug3D: Classification of ligand-binding pockets in proteins with a convolutional neural network. PLoS Comput. Biol. 2019, 15, e1006718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguida, M.; Rognan, D. A Computer Vision Approach to Align and Compare Protein Cavities: Application to Fragment-Based Drug Design. J. Med. Chem. 2020, 63, 7127–7142. [Google Scholar] [CrossRef]
- Li, S.; Cai, C.; Gong, J.; Liu, X.; Li, H. A fast protein binding site comparison algorithm for proteome-wide protein function prediction and drug repurposing. Proteins 2021, 89, 1541–1556. [Google Scholar] [CrossRef]
- Bhadra, A.; Yeturu, K. Site2Vec: A reference frame invariant algorithm for vector embedding of protein-ligand binding sites. Mach. Learn. Sci. Technol. 2020, 2, 015005. [Google Scholar] [CrossRef]
- Haupt, V.J.; Daminelli, S.; Schroeder, M. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key. PLoS ONE 2013, 8, e65894. [Google Scholar] [CrossRef]
- Chen, Y.C.; Tolbert, R.; Aronov, A.M.; McGaughey, G.; Walters, W.P.; Meireles, L. Prediction of Protein Pairs Sharing Common Active Ligands Using Protein Sequence, Structure, and Ligand Similarity. J. Chem. Inf. Model. 2016, 56, 1734–1745. [Google Scholar] [CrossRef] [Green Version]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus—A Paradigm for Model-Fitting with Applications to Image-Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Besl, P.J.; Mckay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Bron, C.; Kerbosch, J. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM 1973, 16, 575–577. [Google Scholar] [CrossRef]
- Johnston, H.C. Cliques of a Graph-Variations on the Bron-Kerbosch Algorithm. Int. J. Comput. Inf. Sci. 1976, 5, 209–238. [Google Scholar] [CrossRef]
- Desaphy, J.; Raimbaud, E.; Ducrot, P.; Rognan, D. Encoding protein-ligand interaction patterns in fingerprints and graphs. J. Chem. Inf. Model. 2013, 53, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Im, W. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures. Methods Mol. Biol. 2017, 1611, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.R.; Jackson, R.M.; Mardia, K.V.; Taylor, C.C. The Poisson Index: A new probabilistic model for proteinligand binding site similarity. Bioinformatics 2007, 23, 3001–3008. [Google Scholar] [CrossRef]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef]
- Tran-Nguyen, V.K.; Jacquemard, C.; Rognan, D. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening. J. Chem. Inf. Model. 2020, 60, 4263–4273. [Google Scholar] [CrossRef] [PubMed]
- Barelier, S.; Sterling, T.; O’Meara, M.J.; Shoichet, B.K. The Recognition of Identical Ligands by Unrelated Proteins. ACS Chem. Biol. 2015, 10, 2772–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Govindaraj, R.G.; Brylinski, M. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. BMC Bioinform. 2018, 19, 91. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, A.; Morris, R.J.; Laskowski, R.A.; Thornton, J.M. Shape variation in protein binding pockets and their ligands. J. Mol. Biol. 2007, 368, 283–301. [Google Scholar] [CrossRef]
- Mestres, J.; Gregori-Puigjane, E.; Valverde, S.; Sole, R.V. Data completeness—The Achilles heel of drug-target networks. Nat. Biotechnol. 2008, 26, 983–984. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, D.; Weskamp, N.; Hullermeier, E.; Klebe, G. Functional classification of protein kinase binding sites using cavbase. Chemmedchem 2007, 2, 1432–1447. [Google Scholar] [CrossRef] [PubMed]
- UniProt, C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, A.; Kulesha, E.; Gough, J.; Murzin, A.G. The SCOP database in 2020: Expanded classification of representative family and superfamily domains of known protein structures. Nucleic Acids Res. 2020, 48, D376–D382. [Google Scholar] [CrossRef]
- Sillitoe, I.; Bordin, N.; Dawson, N.; Waman, V.P.; Ashford, P.; Scholes, H.M.; Pang, C.S.M.; Woodridge, L.; Rauer, C.; Sen, N.; et al. CATH: Increased structural coverage of functional space. Nucleic Acids Res. 2021, 49, D266–D273. [Google Scholar] [CrossRef]
- sc-PDB: An Annotated Database of Druggable Binding Sites from the Protein DataBank. Available online: http://bioinfo-pharma.u-strasbg.fr/scPDB/ (accessed on 15 October 2022).
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Zidek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Wang, S.; Lin, H.; Huang, Z.; He, Y.; Deng, X.; Xu, Y.; Pei, J.; Lai, L. CavitySpace: A Database of Potential Ligand Binding Sites in the Human Proteome. Biomolecules 2022, 12, 967. [Google Scholar] [CrossRef]
- Kalliokoski, T.; Olsson, T.S.; Vulpetti, A. Subpocket analysis method for fragment-based drug discovery. J. Chem. Inf. Model. 2013, 53, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.A. Best practices for repurposing studies. J. Comput. Aided Mol. Des. 2021, 35, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A. What Are the Odds of Finding a COVID-19 Drug from a Lab Repurposing Screen? J. Chem. Inf. Model. 2020, 60, 5727–5729. [Google Scholar] [CrossRef]
- Eguida, M.; Rognan, D. Unexpected similarity between HIV-1 reverse transcriptase and tumor necrosis factor binding sites revealed by computer vision. J. Cheminform. 2021, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, M.D.; Powers, R. Structural and Functional Similarity between the Bacterial Type III Secretion System Needle Protein PrgI and the Eukaryotic Apoptosis Bcl-2 Proteins. PLoS ONE 2009, 4, e7442. [Google Scholar] [CrossRef] [Green Version]
- Cleves, A.E.; Jain, A.N. Chemical and protein structural basis for biological crosstalk between PPAR alpha and COX enzymes. J. Comput.-Aided Mol. Des. 2015, 29, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Kinnings, S.L.; Liu, N.; Buchmeier, N.; Tonge, P.J.; Xie, L.; Bourne, P.E. Drug Discovery Using Chemical Systems Biology: Repositioning the Safe Medicine Comtan to Treat Multi-Drug and Extensively Drug Resistant Tuberculosis. PLoS Comput. Biol. 2009, 5, e1000423. [Google Scholar] [CrossRef]
- Xie, L.; Evangelidis, T.; Xie, L.; Bourne, P.E. Drug Discovery Using Chemical Systems Biology: Weak Inhibition of Multiple Kinases May Contribute to the Anti-Cancer Effect of Nelfinavir. PLoS Comput. Biol. 2011, 7, e1002037. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, G.; Zhao, D.; Yu, H.; Zheng, X.; Peng, X.; Zhang, X.; Fu, T.; Hu, X.; Niu, M.; et al. Computational discovery and experimental verification of tyrosine kinase inhibitor pazopanib for the reversal of memory and cognitive deficits in rat model neurodegeneration. Chem. Sci. 2015, 6, 2812–2821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, M.S.; Hu, J.; Wu, S.J.; Zhang, X.E.; Xu, H.X.; Zhang, Y.W.; Zhang, J.; Yang, Y.L. Structural Bioinformatics-Based Identification of EGFR Inhibitor Gefitinib as a Putative Lead Compound for BACE. Chem. Biol. Drug. Des. 2014, 83, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Willmann, D.; Lim, S.; Wetzel, S.; Metzger, E.; Jandausch, A.; Wilk, W.; Jung, M.; Forne, I.; Imhof, A.; Janzer, A.; et al. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int. J. Cancer 2012, 131, 2704–2709. [Google Scholar] [CrossRef] [PubMed]
- De Franchi, E.; Schalon, C.; Messa, M.; Onofri, F.; Benfenati, F.; Rognan, D. Binding of Protein Kinase Inhibitors to Synapsin I Inferred from Pair-Wise Binding Site Similarity Measurements. PLoS ONE 2010, 5, e12214. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Wang, J.; Bourne, P.E. In silico elucidation of the molecular mechanism defining the adverse effect of selective estrogen receptor modulators. PLoS Comput. Biol. 2007, 3, e217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirris, T.J.; Ritschel, T.; Herma Renkema, G.; Willems, P.H.; Smeitink, J.A.; Russel, F.G. Mitochondrial ADP/ATP exchange inhibition: A novel off-target mechanism underlying ibipinabant-induced myotoxicity. Sci. Rep. 2015, 5, 14533. [Google Scholar] [CrossRef] [PubMed]
- Eguida, M.; Rognan, D. Fragment-based and pocket-focused libray design by protein-applied computer vision and deep generative linking. J. Med. Chem. 2022, in press. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
Category | Search Approach | Methods |
---|---|---|
Geometric | Grid | CAVER [51], CAVIAR [49], DoGSite [14], ghecom [57], KVFinder [48], LIGSITE [12], LIGSITEcsc [53], McVol [58], POCKET [13], PocketDepth [55], PocketPicker [54] VICE [56], VOIDOO [52], VOLSITE [47] |
Alpha-shape | APROPOS [59], CAST [6], CASTp [60], Fpocket [16], | |
Spherical probes | DEPTH [61], HOLE [62], HOLLOW [63], PHECOM [57], PASS [64], Roll [65], SURFNET [66], SURFNET-ConSurf [67], Xie and Bourne [33] | |
Other | MSPocket [68], SplitPocket [69] | |
Energetic | Grid | AutoLigand [70], DrugSite [71], FTSite [72], PocketFinder [73], Q-SiteFinder [74], SITEHOUND [75], SiteMap [76], pocket-finder [77], GRID [78] |
Spherical probes | dPredGB [79], Morita et al. [80] | |
Other | Gaussian Network Model [81] | |
Data-driven | Machine learning | GRaSP [82], MCSVMBs [83], P2Rank [15], PRANK [84], SCREEN [85] |
Deep learning | PoinSite [86], DeepPocket [87], PUResNet [88], DeepSurf [89], BiteNet [90], Jiang et al. [91], DeepSite [92], ISMBLab-LIG [91] |
Year | Name | Detection | Principle | Scoring | Evaluation Datasets |
---|---|---|---|---|---|
2002 | CavBase [17] | LIGSITE [12] | Clique detection in graphs of pseudoatoms | Overlap of surface grid points, RMSD | Cofactor sites, kinases, serine proteases |
2002 | eF-site [109] | Ligand Databases | Clique detection in graph of surface normal vectors and electrostatic potentials | Normalized and weighed contributions of vectors angles, potentials, distances | Phosphate sites, antibodies, PROSITE classes |
2003 | SuMo [110] | Ligand | Incremental match of triplets of pseudocenters | Count of matches, RMSD, composite of Euclidean and density distances | Protease catalytic sites, lectines |
2004 | SiteEngine [18] | Ligand | Match of triplets of points by hashing | Hierarchical scoring: count of matches, RMSD, overlap of patches, local shape | Cofactors, steroids, fatty acid sites, catalytic triad in proteases |
2004 | SitesBase [111] | Ligand | Match of triplets of points | Count of matches, RMSD | Cofactors, phosphate sites |
2007 | Ramensky et al. [112] | Ligand | Clique detection in graph of atoms | Dice similarity of matches | Diverse |
2008 | Binkowski et al. [113] | CAST [6] Ligand | Comparison of pairwise distance histograms | Kolmogorov–Smirnov divergence, overlap of volume, RMSD | Cofactor sites, HIV proteases |
2008 | PocketMatch [19] | Ligand | Comparison of sorted pairwise distances | Normalized count of matches | Diverse, SCOP classes |
2008 | SiteAlign [20] | Ligand | Alignment of polyhedron fingerprints | Normalized distances of fingerprints | Proteases, kinases, estrogen receptors, GPCRs |
2008 | SOIPPA [114] | Ligand | Clique detection in graphs of atoms | Composite weighted by frequencies, PSSM, distances | Cofactor sites, SCOP classes |
2009 | SMAP [33] | Ligand | Clique detection in graphs of atoms | Gaussian densities from distances, angles of normal vectors, BLOSSUM weights | Cofactor sites |
2010 | BSSF [25] | PASS [64] | Comparison of fingerprints of binned distances and properties | Canberra distances of fingerprints | Diverse, synthetic data, SCOP classes |
2010 | Feldman et al. [30] | Ligand | Match of subsets of Cα atoms | Probabilistic score from distances between matches | Diverse, kinases |
2010 | FuzCav [24] | Ligand | Fingerprints of triplets of atom features | Maximal proportion of matches | Diverse, functional groups, 8 difficult cases |
2010 | Milletti et al. [115] | Ligand | Comparison of 3 concentric spheres fingerprints encoding neighborhood for each point, solving linear assignment | Composite of fingerprint distances and RMSD | ATP sites, kinases |
2010 | P.A.R.I.S (sup-CK) [116] | Ligand | Initial alignment optimized by gradient ascent to maximize a Gaussian kernel | Gaussian kernel | Cofactor sites |
2010 | ProBiS [31] | Ligand | Maximum clique detection in graphs of surface atoms | Count of Matches, RMSD, angle between vectors | Cofactor/metal sites, protein–protein interfaces, protein–DNA complexes |
2011 | PocketAlign [117] | Ligand | Initial pairs from sorted lists of atom distances, then extend | Count of matches, RMSD | Cofactor sites, SCOP classes |
2011 | PocketFEATURE [118] | Ligand | Comparison of 7 concentric spheres fingerprints encoding neighborhood for each microenvironment | Normalized Tanimoto similarity of fingerprints | Kinases |
2012 | KRIPO [21] | Ligand | Fingerprints of triplets of pharmacophore | Modified Tanimoto of fingerprints | Diverse, fragments subpockets, search of bioisosteric substructures |
2012 | Patch-Surfer [119] | Ligand LIGSITE [12] | Comparison of 3D Zernike of surface patches solving a weighted bipartite matching | Composite of surface match distances and size differences | Cofactor sites |
2012 | Shaper [47] | VolSite [47] | Comparison of cloud of points by Gaussian shapes matching | Tanimoto, Tversky of matches | Diverse, GPCRs, proteases |
2012 | TIPSA [120] | Ligand | Match of quadruplets of points, iterative refinement by Hungarian algorithm | Tanimoto of matches, overlap of volume, normalized RMSD | Cofactor sites |
2013 | Apoc [28] | Ligand CAVITATOR [28], LIGSITE [12] | Seed alignment by comparing secondary structures, optimized by solving linear assignment problem | Composite of vector orientation, distance, properties | Diverse, similar ligand recognition sites |
2013 | TrixP [121] | DoGSite [122] | Search for common shape and triplets of points by bitmap indexing | Composite of matches count, angle between vectors, mismatches penalty | Diverse, 8 difficult cases, protease, estrogen receptor, HIV reverse transcriptase |
2014 | eMatchSite [29] | eFindSite [123] | Template-based alignment optimized by Hungarian algorithm | Machine learning score: RMSD, residue, properties | Cofactors, steroid sites |
2014 | RAPMAD [26] | LIGSITE [12] | Comparison of 14 pairwise distance histograms, one for each property | Jensen–Shannon divergence of histograms | Cofactor sites, proteases, diverse |
2015 | IsoMIF [124] | GetCleft [125] | Clique detection in graphs of interaction grid points | Tanimoto of descriptors of matched points | Cofactors, steroid sites |
2016 | G-LoSA [126] | Ligand | Clique detection in graphs of atoms | Feature-weighted count of matches | Diverse, Ca+ sites, similar ligands recognition sites, protein–protein interfaces |
2016 | SiteHopper [127] | Ligand | Comparison of surface atoms by Gaussian shapes matching | Weighted combination of shape and color Tanimoto | Diverse using binding affinities |
2019 | DeepDrug3D [128] | Ligand | Convolutional neural network model | Binary classification | Cofactors, steroids sites, proteases |
2020 | DeeplyTough [32] | Fpocket [16] Ligand | Convolutional neural network model | Binary classification | Cofactor sites, diverse and using binding affinities |
2020 | ProCare [129] | VolSite [47] | Match of randomly sampled quadruplets refined by iterative closest point | Tversky of matched pharmacophoric properties | Diverse, using functional annotation, fragments subpockets, search of bioisosteric structures |
2021 | PocketShape [130] | Ligand | Initial alignment optimized by Hungarian algorithm | Composite of matches, orientation of residues | Diverse SCOP classes, kinases |
2021 | Site2Vec [131] | Ligand | Random forest model on autoencoder-generated descriptors | Binary classification | Cofactors, steroid sites, diverse |
Representation | Illustration a | Methods |
---|---|---|
Single points | APoc, eMatchSite, FuzCav, G-LoSA, PocketAlign b, SiteAlign b, SMAP, SOIPPA, | |
Pseudocenters | BSSF, CavBase b, KRIPO, PocketAlign b, PocketMatch, RAPMAD, Site2Vec, SiteEngine, SuMo, TrixP b | |
Surface points, surface patches, volume points, polyhedron | CavBase b, DeepDrug3D, DeeplyTough, IsoMiF, Patch-Surfer, ProCare, Shaper, SiteAlign b, TrixP b | |
All heavy atoms | Binkowski et al., Brakoulias et al., Milletti et al., P.A.R.I.S, ProBiS, SiteHopper, TIPSA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eguida, M.; Rognan, D. Estimating the Similarity between Protein Pockets. Int. J. Mol. Sci. 2022, 23, 12462. https://doi.org/10.3390/ijms232012462
Eguida M, Rognan D. Estimating the Similarity between Protein Pockets. International Journal of Molecular Sciences. 2022; 23(20):12462. https://doi.org/10.3390/ijms232012462
Chicago/Turabian StyleEguida, Merveille, and Didier Rognan. 2022. "Estimating the Similarity between Protein Pockets" International Journal of Molecular Sciences 23, no. 20: 12462. https://doi.org/10.3390/ijms232012462
APA StyleEguida, M., & Rognan, D. (2022). Estimating the Similarity between Protein Pockets. International Journal of Molecular Sciences, 23(20), 12462. https://doi.org/10.3390/ijms232012462