Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection
Abstract
:1. Introduction
2. Results
2.1. Non-Functionalized Gold Nanoparticle (nfGNP) Characterization
2.2. Characterization of PsVs
2.3. nfGNPs Interact with PsVs
2.4. nfGNP-PsV Interaction Is Mediated by Hydrophobic Interactions
2.5. nfGNPs Inhibit HPV16 PsV Pseudo-Infection
2.6. nfGNPs Efficiently Inhibit Pseudo-Infection at Ineffective Concentrations of Heparin
3. Discussion
4. Materials and Methods
4.1. Synthesis of Non-Funtionalized GNPs (nfGNPs)
4.2. Production of HPV16 L1 Virus-Like Particles (VLPs)
4.3. GNP Aggregation Assays
4.4. Dynamic Light Scattering (DLS)
4.5. Cell Culture
4.6. HPV16 Pseudovirus (PsVs) Production
4.7. Pseudovirus Infection Inhibition
4.8. Cellular Viability Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walboomers, J.; Jacobs, M.V.; Manos, M.M.; Bosch, F.X.; Kummer, J.A.; Shah, K.V.; Snijders, P.; Peto, J.; Meijer, C.; Munoz, N. Human Papillomavirus Is a Necessary Cause of Invasive Cervical Cancer Worldwide. J. Pathol. 1999, 189, 12–19. [Google Scholar] [CrossRef]
- Jit, M.; Prem, K.; Benard, E.; Brisson, M. From Cervical Cancer Elimination to Eradication of Vaccine-Type Human Papillomavirus: Feasibility, Public Health Strategies and Cost-Effectiveness. Prev. Med. 2021, 144, 106354. [Google Scholar] [CrossRef] [PubMed]
- Giroglou, T.; Florin, L.; Schafer, F.; Streeck, R.E.; Sapp, M. Human Papillomavirus Infection Requires Cell Surface Heparan Sulfate. J. Virol. 2001, 75, 1565–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzelczak, M.; Vermant, J.; Furst, E.M.; Liz-Marzán, L.M. Directed Self-Assembly of Nanoparticles. ACS Nano 2010, 4, 3591–3605. [Google Scholar] [CrossRef]
- Ke, P.C.; Lin, S.; Parak, W.J.; Davis, T.P.; Caruso, F. A Decade of the Protein Corona. ACS Nano 2017, 11, 11773–11776. [Google Scholar] [CrossRef]
- Palomino-Vizcaino, G.; Valencia-Reséndiz, D.G.; Benítez-Hess, M.L.; Martínez-Acuña, N.; Tapia-Vieyra, J.V.; Bahena, D.; Díaz-Sánchez, M.; García-González, O.P.; Alvarez-Sandoval, B.A.; Alvarez-Salas, L.M. Effect of HPV16 L1 Virus-like Particles on the Aggregation of Non-Functionalized Gold Nanoparticles. Biosens. Bioelectron. 2018, 100, 176–183. [Google Scholar] [CrossRef]
- Valencia-Reséndiz, D.G.; Palomino-Vizcaino, G.; Tapia-Vieyra, J.V.; Benítez-Hess, M.L.; Leija-Montoya, A.G.; Alvarez-Salas, L.M. Inhibition of Human Papillomavirus Type 16 Infection Using an RNA Aptamer. Nucleic Acid Ther. 2018, 28, 97–105. [Google Scholar] [CrossRef]
- Buck, C.B.; Cheng, N.; Thompson, C.D.; Lowy, D.R.; Steven, A.C.; Schiller, J.T.; Trus, B.L. Arrangement of L2 within the Papillomavirus Capsid. J. Virol. 2008, 82, 5190–5197. [Google Scholar] [CrossRef] [Green Version]
- Buck, C.B.; Day, P.M.; Thompson, C.D.; Lubkowski, J.; Lu, W.; Lowy, D.R.; Schiller, J.T. Human Alpha-Defensins Block Papillomavirus Infection. Proc. Natl. Acad. Sci. USA 2006, 103, 1516–1521. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Sanyal, G.; Ni, A.; Luo, Z.; Doshna, S.; Wang, B.; Graham, T.L.; Wang, N.; Volkin, D.B. Stabilization of Human Papillomavirus Virus-like Particles by Non-Ionic Surfactants. J. Pharm. Sci. 2005, 94, 1538–1551. [Google Scholar] [CrossRef]
- Buck, C.B.; Thompson, C.D.; Roberts, J.N.; Müller, M.; Lowy, D.R.; Schiller, J.T. Carrageenan Is a Potent Inhibitor of Papillomavirus Infection. PLoS Pathog. 2006, 2, e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maduray, K.; Parboosing, R. Metal Nanoparticles: A Promising Treatment for Viral and Arboviral Infections. Biol. Trace Elem. Res. 2020, 199, 3159–3176. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, S.; Ganesan, S. Gold Nanoparticles as an HIV Entry Inhibitor. Curr. Hiv. Res. 2012, 10, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Vonnemann, J.; Sieben, C.; Wolff, C.; Ludwig, K.; Böttcher, C.; Herrmann, A.; Haag, R. Virus Inhibition Induced by Polyvalent Nanoparticles of Different Sizes. Nanoscale 2014, 6, 2353–2358. [Google Scholar] [CrossRef]
- Xiang, D.; Zheng, C.; Zheng, Y.; Li, X.; Yin, J.; Conner, M.O.; Marappan, M.; Miao, Y.; Xiang, B.; Duan, W.; et al. Inhibition of A/Human/Hubei/3/2005 (H3N2) Influenza Virus Infection by Silver Nanoparticles in Vitro and in Vivo. Int. J. Nanomed. 2013, 8, 4103–4112. [Google Scholar] [CrossRef] [Green Version]
- Sani, A.; Cao, C.; Cui, D. Toxicity of Gold Nanoparticles (AuNPs): A Review. Biochem. Biophys. Rep. 2021, 26, 100991. [Google Scholar] [CrossRef]
- Anderson, D.J.; Marathe, J.; Pudney, J. The Structure of the Human Vaginal Stratum Corneum and Its Role in Immune Defense. Am. J. Reprod. Immunol. 2014, 71, 618–623. [Google Scholar] [CrossRef] [Green Version]
- Ensign, L.M.; Tang, B.C.; Wang, Y.-Y.; Tse, T.A.; Hoen, T.; Cone, R.; Hanes, J. Mucus-Penetrating Nanoparticles for Vaginal Drug Delivery Protect Against Herpes Simplex Virus. Sci. Transl. Med. 2012, 4, 138ra79. [Google Scholar] [CrossRef] [Green Version]
- Shwetha, N.; Selvakumar, L.S.; Thakur, M.S. Aptamer–Nanoparticle-Based Chemiluminescence for P53 Protein. Anal. Biochem. 2013, 441, 73–79. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.S.; Newcomb, W.W.; Olson, N.H.; Cowsert, L.M.; Olson, C.; Brown, J.C. Structures of Bovine and Human Papillomaviruses. Analysis by Cryoelectron Microscopy and Three-Dimensional Image Reconstruction. Biophys. J. 1991, 60, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Buck, C.B.; Thompson, C.D. Production of Papillomavirus-Based Gene Transfer Vectors; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; Volume 78, ISBN 0471143030. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Reséndiz, D.G.; Villegas, A.; Bahena, D.; Palomino, K.; Cornejo-Bravo, J.M.; Quintanar, L.; Palomino-Vizcaino, G.; Alvarez-Salas, L.M. Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. Int. J. Mol. Sci. 2022, 23, 7552. https://doi.org/10.3390/ijms23147552
Valencia-Reséndiz DG, Villegas A, Bahena D, Palomino K, Cornejo-Bravo JM, Quintanar L, Palomino-Vizcaino G, Alvarez-Salas LM. Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. International Journal of Molecular Sciences. 2022; 23(14):7552. https://doi.org/10.3390/ijms23147552
Chicago/Turabian StyleValencia-Reséndiz, Diana Gabriela, Atenea Villegas, Daniel Bahena, Kenia Palomino, Jose Manuel Cornejo-Bravo, Liliana Quintanar, Giovanni Palomino-Vizcaino, and Luis Marat Alvarez-Salas. 2022. "Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection" International Journal of Molecular Sciences 23, no. 14: 7552. https://doi.org/10.3390/ijms23147552
APA StyleValencia-Reséndiz, D. G., Villegas, A., Bahena, D., Palomino, K., Cornejo-Bravo, J. M., Quintanar, L., Palomino-Vizcaino, G., & Alvarez-Salas, L. M. (2022). Non-Functionalized Gold Nanoparticles Inhibit Human Papillomavirus (HPV) Infection. International Journal of Molecular Sciences, 23(14), 7552. https://doi.org/10.3390/ijms23147552