Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy
Abstract
:1. Introduction
2. Results
2.1. Characterization of UCNPs@GQDs
2.2. In Vitro ROS Detection for UCNPs@GQDs
2.3. PDT Assessment for UCNPs@GQDs
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Apparatus
4.3. Material Synthesis
4.3.1. Synthesis of GQDs
4.3.2. Synthesis of UCNPs
4.3.3. Synthesis of UCNPs@GQDs
4.4. Assessment of 1O2 Generation
4.5. PDT Tests
4.5.1. Biocompatibility of UCNPs@GQDs
4.5.2. Cell Apoptosis Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Karges, J. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew. Chem. Int. Edit. 2022, 61, e202112236. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.C.; Nguyen, V.N.; Choi, Y.; Lee, S.; Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zeng, Z.; Almatrafi, E.; Huang, D.; Zhang, C.; Xiong, W.; Cheng, M.; Zhou, C.; Wang, W.; Song, B.; et al. Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord. Chem. Rev. 2022, 458, 214427. [Google Scholar] [CrossRef]
- Tabrizi, P.F.; Wennige, S.; Berneburg, M.; Maisch, T. Susceptibility of soda- and sodb-deficient escherichia coli mutant towards antimicrobial photodynamic inactivation via the type i-mechanism of action. Photoch. Photobio. Sci. 2018, 17, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhao, S.; Wu, J.; Yu, L.; Singh, N.; Yang, K.; Lan, M.; Wang, P.; Kim, J.S. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coord. Chem. Rev. 2021, 438, 213888. [Google Scholar] [CrossRef]
- Dolmans, D.E.J.G.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Choi, J.; Sun, I.C.; Hwang, H.S.; Yoon, H.Y.; Kim, K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv. Drug Deliver. Rev. 2022, 186, 114344. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Li, D.D.; Lee, C.; Xie, J. Nanoparticle phototherapy in the era of cancer immunotherapy. Trends Chem. 2020, 2, 1082–1095. [Google Scholar] [CrossRef]
- Han, S.Y.; Yi, Z.G.; Zhang, J.B.; Gu, Q.F.; Liang, L.L.; Qin, X.; Xu, J.H.; Wu, Y.M.; Xu, H.; Rao, A.; et al. Photon upconversion through triplet exciton-mediated energy relay. Nat. Commun. 2021, 12, 3704. [Google Scholar] [CrossRef]
- Han, S.Y.; Deng, R.R.; Gu, Q.F.; Ni, L.M.; Huynh, U.; Zhang, J.B.; Yi, Z.G.; Zhao, B.D.; Tamura, H.; Pershin, A.; et al. Lanthanide-doped inorganic nanoparticles turn molecular triplet excitons bright. Nature 2020, 587, 594. [Google Scholar] [CrossRef]
- Yi, Z.G.; Luo, Z.C.; Qin, X.; Chen, Q.S.; Liu, X.G. Lanthanide-activated nanoparticles: A toolbox for bioimaging, therapeutics, and neuromodulation. Acc. Chem. Res. 2020, 53, 2692–2704. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.Z.; Loh, K.Y.; Wang, Y.; Chen, Q.S.; Fan, J.Y.; Jung, T.; Nam, S.H.; Suh, Y.D.; Liu, X.G. Recent advances in upconversion nanocrystals: Expanding the kaleidoscopic toolbox for emerging applications. Nano Today 2019, 29, 100797. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Bu, W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev. 2019, 379, 82–98. [Google Scholar] [CrossRef]
- Li, Y.; Jia, D.L.; Ren, W.; Shi, F.; Liu, C.H. A versatile photoinduced electron transfer-based upconversion fluorescent biosensing platform for the detection of disease biomarkers and nerve agent. Adv. Funct. Mater. 2019, 29, 1903191. [Google Scholar] [CrossRef]
- Xu, H.; Han, S.Y.; Deng, R.R.; Su, Q.Q.; Wei, Y.; Tang, Y.A.; Qin, X.; Liu, X.G. Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nat. Photonics 2021, 15, 732–737. [Google Scholar] [CrossRef]
- Yan, Y.; Gong, J.; Chen, J.; Zeng, Z.; Huang, W.; Pu, K.; Liu, J.; Chen, P. Recent advances on graphene quantum dots: From chemistry and physics to applications. Adv. Mater. 2019, 31, 1808283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Wei, C.B.; Li, Y.; Yu, D.S. Shining luminescent graphene quantum dots: Synthesis, physicochemical properties, and biomedical applications. TrAC Trends Anal. Chem. 2019, 116, 109–121. [Google Scholar] [CrossRef]
- Chung, S.; Revia, R.A.; Zhang, M.Q. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv. Mater. 2021, 33, 1904362. [Google Scholar] [CrossRef]
- Vukovic, M.; Dinic, I.; Jardim, P.; Marković, S.; Veselinović, L.; Nikolić, M.; Mancic, L. The low-temperature sonochemical synthesis of up-converting β NaYF4:Yb,Er mesocrystals. Adv. Powder Technol. 2022, 33, 103403. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K.; Ahmed, B.; Kumar, A.; Das, J.; Materny, A. Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Mater. Today Commun. 2017, 11, 76–86. [Google Scholar] [CrossRef]
- Ghosh, S.; Chizhik, A.M.; Karedla, N.; Dekaliuk, M.O.; Gregor, I.; Schuhmann, H.; Seibt, M.; Bodensiek, K.; Schaap, I.A.T.; Schulz, O.; et al. Photoluminescence of carbon nanodots: Dipole emission centers and electron–phonon coupling. Nano Lett. 2014, 14, 5656–5661. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Förster resonance energy transfer (fret)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef] [PubMed]
- Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim. Acta 2017, 184, 1899–1914. [Google Scholar] [CrossRef]
- Zhang, D.; Wen, L.; Huang, R.; Wang, H.; Hu, X.; Xing, D. Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots. Biomaterials 2018, 153, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.F.; Li, Z.H.; Sun, Y.Q.; Geng, X.; Hu, Y.L.; Meng, H.M.; Ge, J.; Qu, L.B. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Sci. Rep. 2018, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Deng, R.; Liu, X. Preparation of core-shell nagdf4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 2014, 9, 1634–1644. [Google Scholar] [CrossRef]
- Hou, W.Y.; Yuan, Y.; Sun, Z.Z.; Guo, S.X.; Dong, H.W.; Wu, C.F. Ratiometric fluorescent detection of intracellular singlet oxygen by semiconducting polymer dots. Anal. Chem. 2018, 90, 14629–14634. [Google Scholar] [CrossRef]
- Wang, X.H.; Yu, Y.X.; Cheng, K.; Yang, W.; Liu, Y.A.; Peng, H.S. Polylysine modified conjugated polymer nanoparticles loaded with the singlet oxygen probe 1,3-diphenylisobenzofuran and the photosensitizer indocyanine green for use in fluorometric sensing and in photodynamic therapy. Microchim. Acta 2019, 186, 842. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Y.; Shang, H.; Wu, J. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. Int. J. Mol. Sci. 2022, 23, 12558. https://doi.org/10.3390/ijms232012558
Li Y, Wang Y, Shang H, Wu J. Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. International Journal of Molecular Sciences. 2022; 23(20):12558. https://doi.org/10.3390/ijms232012558
Chicago/Turabian StyleLi, Yuting, Yufei Wang, Hong Shang, and Jing Wu. 2022. "Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy" International Journal of Molecular Sciences 23, no. 20: 12558. https://doi.org/10.3390/ijms232012558
APA StyleLi, Y., Wang, Y., Shang, H., & Wu, J. (2022). Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy. International Journal of Molecular Sciences, 23(20), 12558. https://doi.org/10.3390/ijms232012558