Regulation of Inflammation-Related Genes through Fosl1 Suppression in a Levetiracetam-Treated Pilocarpine-Induced Status Epilepticus Mouse Model
Abstract
:1. Introduction
2. Results
2.1. Comprehensive Analysis of Hippocampal Gene Expression Profiling during Epileptogenesis after PILO-SE
2.2. Induction of Hippocampal Fosl1 Expression during Epileptogenesis after PILO-SE and Differences between Fosl1 and Fos Expression
2.3. Identification of Cell Types Expressing Fosl1 in the Mouse Hippocampus after SE
2.4. Effect of PILO-SE and LEV Administration on the Induction of Different Reactive Astrocyte Phenotypes
3. Discussion
4. Methods and Materials
4.1. Experimental Animals
4.2. Induction of Status Epilepticus (SE) by Pilocarpine (PILO) and Administration of Levetiracetam (LEV)
4.3. CAGE Analysis
4.4. Real-Time Polymerase Chain Reaction (PCR) Analysis
4.5. Mouse Proteomic Profiling Array Analysis
4.6. FACS of Microglia, Astrocytes, Neurons and Vascular Endothelial Cells
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef]
- Trinka, E.; Kwan, P.; Lee, B.; Dash, A. Epilepsy in Asia: Disease burden, management barriers, and challenges. Epilepsia 2019, 60 (Suppl. S1), 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Temkin, N.R. Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: Meta-analysis of controlled trials. Epilepsia 2001, 42, 515–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temkin, N.R. Risk factors for posttraumatic seizures in adults. Epilepsia 2003, 44, 18–20. [Google Scholar] [CrossRef]
- Temkin, N.R. Preventing and treating posttraumatic seizures: The human experience. Epilepsia 2009, 50 (Suppl. S2), 10–13. [Google Scholar] [CrossRef]
- Galanopoulou, A.S.; Gorter, J.A.; Cepeda, C. Finding a better drug for epilepsy: The mTOR pathway as an antiepileptogenic target. Epilepsia 2012, 53, 1119–1130. [Google Scholar] [CrossRef]
- Jiang, J.; Ganesh, T.; Du, Y.; Quan, Y.; Serrano, G.; Qui, M.; Speigel, I.; Rojas, A.; Lelutiu, N.; Dingledine, R. Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc. Natl. Acad. Sci. USA 2012, 109, 3149–3154. [Google Scholar] [CrossRef] [Green Version]
- Krumholz, A.; Wiebe, S.; Gronseth, G.S.; Gloss, D.S.; Sanchez, A.M.; Kabir, A.A.; Liferidge, A.T.; Martello, J.P.; Kanner, A.M.; Shinnar, S.; et al. Evidence-based guideline: Management of an unprovoked first seizure in adults: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 2015, 84, 1705–1713. [Google Scholar] [CrossRef] [Green Version]
- Belcastro, V.; Costa, C.; Galletti, F.; Autuori, A.; Pierguidi, L.; Pisani, F.; Calabresi, P.; Parnetti, L. Levetiracetam in newly diagnosed late-onset post-stroke seizures: A prospective observational study. Epilepsy Res. 2008, 82, 223–226. [Google Scholar] [CrossRef]
- Klein, P.; Herr, D.; Pearl, P.L.; Natale, J.; Levine, Z.; Nogay, C.; Sandoval, F.; Trzcinski, S.; Atabaki, S.M.; Tsuchida, T.; et al. Results of phase 2 safety and feasibility study of treatment with levetiracetam for prevention of posttraumatic epilepsy. Arch. Neurol. 2012, 69, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Pearl, P.L.; McCarter, R.; McGavin, C.L.; Yu, Y.; Sandoval, F.; Trzcinski, S.; Atabaki, S.M.; Tsuchida, T.; van den Anker, J.; He, J.; et al. Results of phase II levetiracetam trial following acute head injury in children at risk for posttraumatic epilepsy. Epilepsia 2013, 54, e135–e137. [Google Scholar] [CrossRef] [PubMed]
- Lyseng-Williamson, K.A. Levetiracetam: A review of its use in epilepsy. Drugs 2011, 71, 489–514. [Google Scholar] [CrossRef] [PubMed]
- Itoh, K.; Inamine, M.; Oshima, W.; Kotani, M.; Chiba, Y.; Ueno, M.; Ishihara, Y. Prevention of status epilepticus-induced brain edema and neuronal cell loss by repeated treatment with high-dose levetiracetam. Brain Res. 2015, 1608, 225–234. [Google Scholar] [CrossRef]
- Itoh, K.; Ishihara, Y.; Komori, R.; Nochi, H.; Taniguchi, R.; Chiba, Y.; Ueno, M.; Takata-Tsuji, F.; Dohgu, S.; Kataoka, Y. Levetiracetam treatment influences blood-brain barrier failure associated with angiogenesis and inflammatory responses in the acute phase of epileptogenesis in post-status epilepticus mice. Brain Res. 2016, 1652, 1–13. [Google Scholar] [CrossRef]
- Itoh, K.; Taniguchi, R.; Matsuo, T.; Oguro, A.; Vogel, C.F.A.; Yamazaki, T.; Ishihara, Y. Suppressive effects of levetiracetam on neuroinflammation and phagocytic microglia: A comparative study of levetiracetam, valproate and carbamazepine. Neurosci. Lett. 2019, 708, 134363. [Google Scholar] [CrossRef]
- Niidome, K.; Taniguchi, R.; Yamazaki, T.; Tsuji, M.; Itoh, K.; Ishihara, Y. FosL1 Is a Novel Target of Levetiracetam for Suppressing the Microglial Inflammatory Reaction. Int. J. Mol. Sci. 2021, 22, 10962. [Google Scholar] [CrossRef]
- Hess, J.; Angel, P.; Schorpp-Kistner, M. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965–5973. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.K.; Bakiri, L.; Hasenfuss, S.C.; Hamacher, R.; Martinez, L.; Wagner, E.F. JUNB/AP-1 controls IFN-γ during inflammatory liver disease. J. Clin. Investig. 2013, 123, 5258–5268. [Google Scholar] [CrossRef] [Green Version]
- Nitkin, C.R.; Xia, S.; Menden, H.; Yu, W.; Xiong, M.; Heruth, D.P.; Ye, S.Q.; Sampath, V. FOSL1 is a novel mediator of endotoxin/lipopolysaccharide-induced pulmonary angiogenic signaling. Sci. Rep. 2020, 10, 13143. [Google Scholar] [CrossRef]
- Jones-Davis, D.M.; Macdonald, R.L. GABAA receptor function and pharmacology in epilepsy and status epilepticus. Curr. Opin. Pharmacol. 2003, 3, 12–18. [Google Scholar] [CrossRef]
- Abraham, W.C.; Mason, S.E.; Demmer, J.; Williams, J.M.; Richardson, C.L.; Tate, W.P.; Lawlor, P.A.; Dragunow, M. Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience 1993, 56, 717–727. [Google Scholar] [CrossRef]
- Guzowski, J.F.; Setlow, B.; Wagner, E.K.; McGaugh, J.L. Experience-dependent gene expression in the rat hippocampus after spatial learning: A comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 2001, 21, 5089–5098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losi, G.; Cammarota, M.; Carmignoto, G. The role of astroglia in the epileptic brain. Front. Pharmacol. 2012, 3, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binder, D.K.; Steinhäuser, C. Functional changes in astroglial cells in epilepsy. Glia 2006, 54, 358–368. [Google Scholar] [CrossRef]
- Seifert, G.; Carmignoto, G.; Steinhäuser, C. Astrocyte dysfunction in epilepsy. Brain Res. Rev. 2010, 63, 212–221. [Google Scholar] [CrossRef]
- Witcher, M.R.; Ellis, T.L. Astroglial networks and implications for therapeutic neuromodulation of epilepsy. Front. Comput. Neurosci. 2012, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Dambach, H.; Hinkerohe, D.; Prochnow, N.; Stienen, M.N.; Moinfar, Z.; Haase, C.G.; Hufnagel, A.; Faustmann, P.M. Glia and epilepsy: Experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Epilepsia 2014, 55, 184–192. [Google Scholar] [CrossRef]
- Giffard, R.G.; Swanson, R.A. Ischemia-induced programmed cell death in astrocytes. Glia 2005, 50, 299–306. [Google Scholar] [CrossRef]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Miller, S.J. Astrocyte Heterogeneity in the Adult Central Nervous System. Front. Cell Neurosci. 2018, 12, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.-Y.; Huo, J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem. Int. 2021, 148, 105080. [Google Scholar] [CrossRef] [PubMed]
- Weijenberg, A.; Brouwer, O.F.; Callenbach, P.M.C. Levetiracetam Monotherapy in Children with Epilepsy: A Systematic Review. CNS Drugs 2015, 29, 371–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [Green Version]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef]
- Kondo, T.; Sharp, F.R.; Honkaniemi, J.; Mikawa, S.; Epstein, C.J.; Chan, P.H. DNA fragmentation and Prolonged expression of c-fos, c-jun, and hsp70 in kainic acid-induced neuronal cell death in transgenic mice overexpressing human CuZn-superoxide dismutase. J. Cereb. Blood Flow. Metab. 1997, 17, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, D.; McQuade, J.S.; Behbehani, M.; Tsien, J.Z.; Xu, M. c-fos regulates neuronal excitability and survival. Nat. Genet. 2002, 30, 416–420. [Google Scholar] [CrossRef]
- Sobue, A.; Komine, O.; Hara, Y.; Endo, F.; Mizoguchi, H.; Watanabe, S.; Murayama, S.; Saito, T.; Saido, T.C.; Sahara, N.; et al. Microglial gene signature reveals loss of homeostatic microglia associated with neurodegeneration of Alzheimer’s disease. Acta Neuropathol. Commun. 2021, 9, 1. [Google Scholar] [CrossRef]
- Hasel, P.; Dando, O.; Jiwaji, Z.; Baxter, P.; Todd, A.C.; Heron, S.; Márkus, N.M.; McQueen, J.; Hampton, D.W.; Torvell, M.; et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 2017, 8, 15132. [Google Scholar] [CrossRef]
- Zhang, S.C. Defining glial cells during CNS development. Nat. Rev. Neurosci. 2001, 2, 840–843. [Google Scholar] [CrossRef]
- Gaudet, A.D.; Fonken, L.K. Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics 2018, 15, 554–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, S.P.; Kam, T.-I.; Panicker, N.; Kim, S.; Oh, Y.; Park, J.-S.; Kwon, S.-H.; Park, Y.J.; Karuppagounder, S.S.; Park, H.; et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 2018, 24, 931–938. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Zhang, C.; Zhang, Y.; Yao, W. An update on reactive astrocytes in chronic pain. J. Neuroinflamm. 2019, 16, 140. [Google Scholar] [CrossRef] [PubMed]
- Qian, D.; Li, L.; Rong, Y.; Liu, W.; Wang, Q.; Zhou, Z.; Gu, C.; Huang, Y.; Zhao, X.; Chen, J.; et al. Blocking Notch signal pathway suppresses the activation of neurotoxic A1 astrocytes after spinal cord injury. Cell Cycle 2019, 18, 3010–3029. [Google Scholar] [CrossRef]
- Farina, C.; Aloisi, F.; Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 2007, 28, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, J.T.; Dawson, V.L.; Dawson, T.M. The A1 astrocyte paradigm: New avenues for pharmacological intervention in neurodegeneration. Mov. Disord. 2019, 34, 959–969. [Google Scholar] [CrossRef]
- Han, P.; Guerrero-Netro, H.; Estienne, A.; Cao, B.; Price, C.A. Regulation and action of early growth response 1 in bovine granulosa cells. Reproduction 2017, 54, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yu, P.; Wu, J.; Tao, F.; Zhou, J. Transcriptional regulation of early growth response gene-1 (EGR1) is associated with progression of nonalcoholic fatty liver disease (NAFLD) in patients with insulin resistance. Med. Sci. Monit. 2019, 25, 2293–3004. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer | Reverse Primer |
---|---|---|
Il6 | GTCGGAGGCTTAATTACACATGTTC | AATCAGAATTGCCATTGCACAA |
IL1rn | TTGTGCCAAGTCTGGAGATG | CTCAGAGCGGATGAAGGTAAAG |
Il33 | TCCTTGCTTGGCAGTATCCA | TGCTCAATGTGTCAACAGACG |
Il23a | GACCCACAAGGACTCAAGGAC | ATGGGGCTATCAGGGAGTAGAG |
Ccl2 | GGCTCAGCCAGATGCAGTTAA | CCTACTCATTGGGATCATCTTGCT |
Ccl5 | GCCCACGTCAAGGAGTATTTCTA | ACACACTTGGCGGTTCCTTC |
Ccl6 | ATCAAGCCGGGCATCATCTTTA | TGCCCTCCTTCTCAAGCAAT |
Ccl11 | GAATCACCAACAACAGATGCAC | TCCTGGACCCACTTCTTCTT |
Ccl12 | CATCAGTCCTCAGGTATTGGC | TTGTGATTCTCCTGTAGCTCTTC |
Ccl22 | TGGTGCCAATGTGGAAGACA | GGCAGGATTTTGAGGTCCAGA |
Cx3cl1 | CGCGTTCTTCCATTTGTGTA | CATGATTTCGCATTTCGTCA |
Cxcl1 | ACTGCACCCAAACCGAAGTC | CAAGGGAGCTTCAGGGTCAA |
Cxcl10 | AAGTGCTGCCGTCATTTTCT | GTGGCAATGATCTCAACACG |
Cxcl11 | ATGGCAGAGATCGAGAAAGC | TGCATTATGAGGCGAGCTTG |
Cxcl13 | AGATCGGATTCAAGTTACGCC | TTTGGCACGAGGATTCACACA |
Cxcr3 | AACGTCAAGTGCTAGATGCCT | TCTCGTTTTCCCCATAATCG |
Fosl1 | AGGGCATGTACCGAGACTA | GTGGAACTTCTGCTGCTGG |
Fos | CCCATCCTTACGGACTCCC | GAGATAGCTGCTCTACTTTGCC |
Tmem119 | ACCCAGAGCTGGTTCCATAG | CGGCTACATCCTCCAGGAAG |
Grin1 | ACTCCCAACGACCACTTCAC | GTAGACGCGCATCATCTCAA |
Slc1a2 | GGTCATCTTGGATGGAGGTC | ATACTGGCTGCACCAATGC |
Cdh5 | TGGCCAAAGACCCTGACAA | TTCGGAAGAATTGGCCTCTGT |
Gfap | ACCAGCTTACGGCCAACAGT | CCGAGGTCCTGTGCAAAGTT |
P2ry1 | GGCAGGCTCAAGAAGAAGAAT | TCCCAGTGCCAGAGTAGAAGA |
Ndrg2 | ACACCTTATGGCTCGGTCAC | TCTCTTGCATATCCCCGAAC |
C3 | GCAGACCTTAGCGACCAAGT | CCGCAATGACTGTTGGTGTC |
H2-D1 | TCCGAGATTGTAAAGCGTGAAGA | ACAGGGCAGTGCAGGGATAG |
Ggta1 | GTGAACAGCATGAGGGGTTT | GTTTTGTTGCCTCTGGGTGT |
Gbp2 | CAGCTGCACTATGTGACGGA | AGCCCACAAAGTTAGCGGAA |
Amigo2 | CCGATAACAGGCTGCTGGAG | AGAATATACCCCGGCGTCCT |
Ptx3 | CTGCCCGCAGGTTGTGAAA | AGCTTCATTGGTCTCACAGGA |
S100a10 | CATGATGCTTACGTTTCACAGGTT | TGGTCCAGGTCCTTCATTATTTTG |
Ptgs2 | GGGAGTCTGGAACATTGTGAA | GTGCACATTGTAAGTAGGTGGACT |
Egr1 | AGCAGCGCCTTCAATCCTCA | GTCGTTTGGCTGGGATAACT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komori, R.; Matsuo, T.; Yokota-Nakatsuma, A.; Hashimoto, R.; Kubo, S.; Kozawa, C.; Kono, T.; Ishihara, Y.; Itoh, K. Regulation of Inflammation-Related Genes through Fosl1 Suppression in a Levetiracetam-Treated Pilocarpine-Induced Status Epilepticus Mouse Model. Int. J. Mol. Sci. 2022, 23, 7608. https://doi.org/10.3390/ijms23147608
Komori R, Matsuo T, Yokota-Nakatsuma A, Hashimoto R, Kubo S, Kozawa C, Kono T, Ishihara Y, Itoh K. Regulation of Inflammation-Related Genes through Fosl1 Suppression in a Levetiracetam-Treated Pilocarpine-Induced Status Epilepticus Mouse Model. International Journal of Molecular Sciences. 2022; 23(14):7608. https://doi.org/10.3390/ijms23147608
Chicago/Turabian StyleKomori, Rie, Taira Matsuo, Aya Yokota-Nakatsuma, Ritsuka Hashimoto, Shizuka Kubo, Chihiro Kozawa, Tomomi Kono, Yasuhiro Ishihara, and Kouichi Itoh. 2022. "Regulation of Inflammation-Related Genes through Fosl1 Suppression in a Levetiracetam-Treated Pilocarpine-Induced Status Epilepticus Mouse Model" International Journal of Molecular Sciences 23, no. 14: 7608. https://doi.org/10.3390/ijms23147608
APA StyleKomori, R., Matsuo, T., Yokota-Nakatsuma, A., Hashimoto, R., Kubo, S., Kozawa, C., Kono, T., Ishihara, Y., & Itoh, K. (2022). Regulation of Inflammation-Related Genes through Fosl1 Suppression in a Levetiracetam-Treated Pilocarpine-Induced Status Epilepticus Mouse Model. International Journal of Molecular Sciences, 23(14), 7608. https://doi.org/10.3390/ijms23147608