Rashba Splitting and Electronic Valley Characteristics of Janus Sb and Bi Topological Monolayers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Atomic Geometry and Stability
2.2. Internal Gradient of Electrostatic Potential
2.3. Band Structure
2.4. Valley-Contrast Circular Dichroism
3. Theoretical Methodology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salem, A.K.; Searson, P.C.; Leong, K.W. Multifunctional nanorods for gene delivery. Nat. Mater. 2003, 2, 668–671. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.H.; Martin, D.C.; Lahann, J. Biphasic Janus particles with nanoscale anisotropy. Nat. Mater. 2005, 4, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Nisisako, T.; Hatsuzawa, T. A microfluidic cross-flowing emulsion generator for producing biphasic droplets and anisotropically shaped polymer particles. Microfluid. Nanofluid. 2010, 9, 427–437. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Q.; Zhang, F.; Zhang, D.M.; Wang, Y.S.; Sun, Y.L.; Dong, W.F.; Liu, J.Q.; Huo, Q.S.; Sun, H.B. High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles. J. Mater. Chem. 2012, 22, 23741–23744. [Google Scholar] [CrossRef]
- Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. Hybrid hairy Janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces 2015, 7, 21218–21225. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, J.; Yang, M.; Xie, Q.; Peng, H.; Liu, Z. Janus graphene from asymmetric two-dimensional chemistry. Nat. Commun. 2013, 4, 1443. [Google Scholar] [CrossRef] [Green Version]
- Bissett, M.A.; Takesaki, Y.; Tsuji, M.; Ago, H. Increased chemical reactivity achieved by asymmetrical ‘Janus’ functionalisation of graphene. RSC Adv. 2014, 4, 52215–52219. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.F. Band gap modulation of Janus graphene nanosheets by interlayer hydrogen bonding and the external electric field: A computational study. J. Mater. Chem. C 2015, 3, 3416–3421. [Google Scholar] [CrossRef]
- Chico, L.; Latgé, A.; Brey, L. Symmetries of quantum transport with Rashba spin-orbit: Graphene spintronics. Phys. Chem. Chem. Phys. 2015, 17, 16469–16475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, M.H.; Li, C.M.; Sun, W.F. Spin-orbit coupling and spin-polarized electronic structures of Janus vanadium-dichalcogenide monolayers: First-principles calculations. Nanomaterials 2022, 12, 382. [Google Scholar] [CrossRef]
- Hu, W.; Xia, N.; Wu, X.J.; Li, Z.Y.; Yang, J.L. Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys. Chem. Chem. Phys. 2014, 16, 6957–6962. [Google Scholar] [CrossRef]
- Kaloni, T.P.; Schreckenbach, G.; Freund, M.S. Large enhancement and tunable band gap in silicene by small organic molecule adsorption. J. Phys. Chem. C 2014, 118, 23361–23367. [Google Scholar] [CrossRef] [Green Version]
- Özçelik, V.O.; Kecik, D.; Durgun, E.; Ciraci, S. Adsorption of group IV elements on graphene, silicene, germanene, and stanene: Dumbbell formation. J. Phys. Chem. C 2015, 119, 845–853. [Google Scholar] [CrossRef] [Green Version]
- Denis, P.A. Stacked functionalized silicene: A powerful system to adjust the electronic structure of silicene. Phys. Chem. Chem. Phys. 2015, 17, 5393–5402. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.Z.; Yan, J.A.; Gao, S.P. Band gap characters and ferromagnetic/antiferromagnetic coupling in group-IV monolayers tuned by chemical species and hydrogen adsorption configurations. Nanoscale Res. Lett. 2015, 10, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Fu, H.; Xu, Y.; Zhou, Q.; Meng, S.; Li, H.; Chen, L.; Wu, K. From silicene to half-silicane by hydrogenation. ACS Nano 2015, 9, 11192–11199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.B.; Song, Z.B.; Dou, L.M. The tunable electronic structure and mechanical properties of halogenated silicene: A first-principles study. J. Mater. Chem. C 2015, 3, 3087–3094. [Google Scholar] [CrossRef]
- Özçelik, V.O.; Cahangirov, S.; Ciraci, S. Stable single-layer honeycomblike structure of silica. Phys. Rev. Lett. 2014, 112, 246803. [Google Scholar] [CrossRef] [Green Version]
- Stephan, R.; Hanf, M.C.; Sonnet, P. Opening the way to molecular cycloaddition of large molecules on supported silicene. J. Chem. Phys. 2015, 143, 154706. [Google Scholar] [CrossRef]
- Wu, J.; Xie, L.M.; Li, Y.; Wang, H.; Ouyang, Y.; Guo, J.; Dai, H.G. Controlled chlorine plasma reaction for noninvasive graphene doping. J. Am. Chem. Soc. 2011, 133, 19668–19671. [Google Scholar] [CrossRef]
- Freitas, R.R.Q.; Rivelino, R.; de Brito Mota, F.; de Castilho, M.C. Topological insulating phases in two-dimensional bismuth containing single layers preserved by hydrogenation. J. Phys. Chem. C 2015, 119, 23599–23606. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Jiang, H.; Yao, Y.G. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 2011, 84, 195430. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.C.; Feng, W.X.; Yao, Y.G. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 2011, 107, 076802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.F.; Liu, Z.; Liu, F. Organic topological insulators in organometallic lattices. Nat. Commun. 2013, 4, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Yan, B.; Zhang, H.J.; Wang, J.; Xu, G.; Tang, P.; Duan, W.; Zhang, S.C. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804. [Google Scholar] [CrossRef]
- Yang, F.; Miao, L.; Wang, Z.F.; Yao, M.Y.; Zhu, F.; Song, Y.R.; Wang, M.X.; Xu, J.P.; Fedorov, A.V.; Sun, Z.; et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 2012, 109, 016801. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.H.; Jansen, M.; Felser, C. A large-energy-gap oxide topological insulator based on the superconductor BaBiO3. Nat. Phys. 2013, 9, 709–711. [Google Scholar] [CrossRef] [Green Version]
- Gong, Q.; Zhang, G. Spin-orbit coupling electronic structures of organic-group functionalized Sb and Bi topological monolayers. Nanomaterials 2022, 12, 2041. [Google Scholar] [CrossRef]
- Klintenberg, M.; Lebegue, S.; Katsnelson, M.; Eriksson, O. Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with group IA and group VIIA elements. Phys. Rev. B 2010, 81, 085433. [Google Scholar] [CrossRef] [Green Version]
- Baroni, S.; de Gironcoli, S.; dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.D.; Dai, Y.; Kou, L.Z.; Frauenheim, T.; Heine, T. Robust two-dimensional topological insulators in methyl functionalized bismuth, antimony, and lead bilayer films. Nano Lett. 2015, 15, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Cohen, R.E. More accurate generalized gradient approximation for solids. Phys. Rev. B 2006, 73, 235116. [Google Scholar] [CrossRef] [Green Version]
- Tran, F.; Laskowski, R.; Blaha, P.; Schwarz, K. Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 2007, 75, 115131. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.S.; Qteish, A.; Payne, M.C.; Heine, V. Optimized and transferable nonlocal separable ab initio pseudopotentials. Phys. Rev. B 1993, 47, 4174–4180. [Google Scholar] [CrossRef] [PubMed]
- Milman, V.; Lee, M.H.; Payne, M.C. Ground-state properties of CoSi2 determined by a total-energy pseudopotential method. Phys. Rev. B 1994, 49, 16300–16308. [Google Scholar] [CrossRef]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative minimization techniques for ab initio total energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations—A reply. Phys. Rev. B 1977, 16, 1748. [Google Scholar]
- Packwood, D.; Kermode, J.; Mones, L.; Bernstein, N.; Woolley, J.; Gould, N.; Ortner, C.; Csanyi, G. A universal preconditioner for simulating condensed phase materials. J. Chem. Phys. 2016, 144, 164109. [Google Scholar] [CrossRef] [Green Version]
Monolayers | a/Å | dMX/Å | hM/Å | h/Å | Ecoh/eV·unitcell−1 | qM/e | ||
---|---|---|---|---|---|---|---|---|
M1 | M2 | X | ||||||
SbH | 5.218 | 1.719 | 0.092 | 3.346 | 9.409 | 0.13 | 0.13 | −0.13 |
HSb2CH3 | 5.207 | 2.173 | 0.003 | 4.252 | 9.245 | 0.29 | 0.09 | −0.53 |
HSb2OH | 5.219 | 1.912 | 0.003 | 4.596 | 9.591 | 0.71 | −0.13 | −0.71 |
BiH | 5.467 | 1.851 | 0.175 | 3.526 | 7.771 | 0.73 | 0.73 | −0.73 |
HBi2CH3 | 5.478 | 2.333 | 0.046 | 4.475 | 7.534 | 1.08 | 0.48 | −0.93 |
HBi2OH | 5.494 | 2.120 | 0.034 | 4.656 | 7.619 | 1.18 | 0.46 | −1.32 |
Monolayers | RG/eV·Å | λv/meV | λc/meV | ED(K)/eV | Eg(global)/eV |
---|---|---|---|---|---|
SbH | 0 | 0 | 0 | 0.426 | 0.426 |
HSb2CH3 | 0 | 0.060 | 0.065 | 0.351 | 0.351 |
HSb2OH | 0 | 0.194 | 0.229 | 0.194 | 0.194 |
BiH | 0 | 0 | 0 | 1.372 | 0.918 |
HBi2CH3 | 0.224 | 0.124 | 0.123 | 1.219 | 0.809 |
HBi2OH | 0 | 0.093 | 0.177 | 1.323 | 0.824 |
TRIP | Parity δ | P | |||||
---|---|---|---|---|---|---|---|
G | +1 | +1 | −1 | +1 | −1 | +1 | −1 |
3 M | +1 | −1 | +1 | −1 | +1 | −1 | +1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, Q.; Zhang, G. Rashba Splitting and Electronic Valley Characteristics of Janus Sb and Bi Topological Monolayers. Int. J. Mol. Sci. 2022, 23, 7629. https://doi.org/10.3390/ijms23147629
Gong Q, Zhang G. Rashba Splitting and Electronic Valley Characteristics of Janus Sb and Bi Topological Monolayers. International Journal of Molecular Sciences. 2022; 23(14):7629. https://doi.org/10.3390/ijms23147629
Chicago/Turabian StyleGong, Qi, and Guiling Zhang. 2022. "Rashba Splitting and Electronic Valley Characteristics of Janus Sb and Bi Topological Monolayers" International Journal of Molecular Sciences 23, no. 14: 7629. https://doi.org/10.3390/ijms23147629
APA StyleGong, Q., & Zhang, G. (2022). Rashba Splitting and Electronic Valley Characteristics of Janus Sb and Bi Topological Monolayers. International Journal of Molecular Sciences, 23(14), 7629. https://doi.org/10.3390/ijms23147629