Fine Mapping and Gene Analysis of restorer-of-fertility Gene CaRfHZ in Pepper (Capsicum annuum L.)
Abstract
:1. Introduction
2. Results
2.1. The Inheritance Analysis of Fertility Restoration in CMS Line HZ1A
2.2. BSA and Genetic Linkage Mapping of the CaRfHZ Gene
2.3. Fine Mapping of the CaRfHZ Gene
2.4. Analysis of the Annotation Genes
3. Discussion
3.1. Comparison of CaRfHZ Mapping Interval and the Published Rf Gene Position in Pepper
3.2. Prediction and Characteristics of the Candidate Gene
3.3. Application of the Related Markers of CaRfHZ Gene in Pepper Breeding
4. Materials and Methods
4.1. Plant Materials
4.2. Pollen Fertility Evaluation
4.3. Inheritance Analysis of Fertility Restoration
4.4. Nucleic Acid Extraction
4.5. SSR and InDel Markers
4.6. BSA and Linkage Analysis of CaRfHZ Gene
4.7. Candidate Gene Amplification and qRT-PCR
4.8. Analysis of Candidate Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.J.; Zhang, D. Molecular control of male fertility for hybrid crop breeding. Trends Plant Sci. 2018, 23, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zou, Y.; Li, X.; Zhang, Q.; Chen, L.; Wu, H.; Su, D.; Chen, Y.; Guo, J.; Luo, D. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 2006, 18, 676–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazama, T.; Toriyama, K. A fertility restorer gene, Rf4, which is widely used for hybrid rice breeding, encodes a pentatricopeptide repeat protein. Rice 2014, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Wang, K.; Huang, W.; Liu, G.; Gao, Y.; Wang, J.; Huang, Q.; Ji, Y.; Qin, X.; Wan, L.; et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 2012, 24, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Yu, C.; Hu, J.; Wang, L.; Dan, Z.; Zhou, W.; He, C.; Zeng, Y.; Yao, G.; Qi, J. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue cytoplasmic male sterility in rice. Proc. Natl. Acad. Sci. USA 2015, 112, 14984–14989. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Wise, R.P.; Schnable, P.S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 1996, 272, 1334–1336. [Google Scholar] [CrossRef] [PubMed]
- Zabala, G.; Gabay-Laughnan, S.; Laughnan, J.R. The nuclear gene Rf3 affects the expression of the mitochondrial chimeric sequence R implicated in S-type male sterility in maize. Genetics 1997, 147, 847–860. [Google Scholar] [CrossRef]
- Yang, G.; Fu, T.; Yi, B.; Hong, D. Mitochondria-targeted PPR protein restores pol cytoplasmic male sterility by reducing orf224 transcript levels in oilseed rape. Mol. Plant 2016, 9, 1082–1084. [Google Scholar]
- Uyttewaal, M.; Arnal, N.; Quadrado, M.; Martin-Canadell, A.; Vrielynck, N.; Hiard, S.; Gherbi, H.; Bendahmane, A.; Budar, F.; Mireau, H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 2008, 20, 3331–3345. [Google Scholar] [CrossRef] [Green Version]
- Melonek, J.; Duarte, J.; Martin, J.; Beuf, L.; Murigneux, A.; Varenne, P.; Comadran, J.; Specel, S.; Levadoux, S.; Bernath-Levin, K.; et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat. Commun. 2021, 12, 1036. [Google Scholar] [CrossRef]
- Wang, T.L.; He, T.T.; Ding, X.L.; Zhang, Q.Q.; Yang, L.S.; Nie, Z.X.; Zhao, T.J.; Gai, J.Y.; Yang, S.P. Confirmation of GmPPR576 as a fertility restorative gene of cytoplasmic male sterility in soybean. J. Exp. Bot. 2021, 72, 7729–7742. [Google Scholar] [CrossRef] [PubMed]
- Jaqueth, J.S.; Hou, Z.; Zheng, P.; Ren, R.; Nagel, B.A.; Cutter, G.; Niu, X.; Vollbrecht, E.; Greene, T.W.; Kumpatla, S.P. Fertility restoration of maize CMS-C altered by a single amino acid substitution within the Rf4 bHLH transcription factor. Plant J. 2020, 101, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Luo, D.; Zhou, D.; Zhang, Q.; Tian, D.; Zheng, X.; Chen, L.; Liu, Y.G. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol. Plant 2014, 7, 1497–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, X.; Tian, S.; Zhang, W.; Zheng, Q.; Wang, H.; Feng, Y.; Lin, Y.; Tang, J.; Wang, Y.; Yan, J.; et al. The main restorer Rf3 of maize S-type cytoplasmic male sterility encodes a PPR protein that functions in the reduction of the transcripts of orf355. Mol. Plant 2021, 14, 1961–1964. [Google Scholar] [CrossRef] [PubMed]
- Peterson, P. Cytoplasmically inherited male sterility in capsicum. Am. Nat. 1958, 92, 111–119. [Google Scholar] [CrossRef]
- Xu, F.; Yang, X.; Zhao, N.; Hu, Z.; Mackenzie, S.A.; Zhang, M.; Yang, J. Exploiting sterility and fertility variation in cytoplasmic male sterile vegetable crops. Hortic. Res. 2022, 9, uhab039. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhang, B.X.; Lefebvre, V.; Huang, S.W.; Daubeze, A.M.; Palloix, A. QTL analysis of fertility restoration in cytoplasmic male sterile pepper. Theor. Appl. Genet. 2004, 109, 1058–1063. [Google Scholar] [CrossRef]
- Wei, B.; Wang, L.; Chen, L.; Zhang, R. Genetic analysis on the restoration of cytoplasmic male sterility with mixed model of major gene plus polygene in pepper. Acta Hortic. Sin. 2013, 40, 2263–2268. [Google Scholar]
- Gulyas, G.; Pakozdi, K.; Lee, J.S.; Hirata, Y. Analysis of fertility restoration using cytoplasmic male-sterile red pepper (Capsicum annuum L.) lines. Breed. Sci. 2006, 56, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Ruan, M.; Wang, R.; Yao, Z.; Li, Z.; Wan, H.; Cheng, Y.; Yang, Y.; Zhou, G. Genetic analysis and molecular mapping of the restorer gene for cytoplasmic male sterility in pepper. Mol. Plant Breed. 2017, 15, 4985–4991. [Google Scholar]
- Zhang, B.; Huang, S.; Yang, G.; Guo, J. Two RAPD markers linked to a major fertility restoration gene in pepper. Euphytica 2000, 113, 155–161. [Google Scholar]
- Kim, D.S.; Kim, D.H.; Yoo, J.H.; Kim, B.D. Cleaved amplified polymorphic sequence and amplified fragment length polymorphism markers linked to the fertility restorer gene in chili pepper (Capsicum annuum L.). Mol. Cells 2006, 21, 135–140. [Google Scholar]
- Lee, J.; Yoon, J.B.; Park, H.G. A CAPS marker associated with the partial restoration of cytoplasmic male sterility in chili pepper (Capsicum annuum L.). Mol. Breed. 2008, 21, 95–104. [Google Scholar] [CrossRef]
- Yang, J.; Wang, W.; Shen, H. SSR marker mapping and marker-assisted selection of Rf gene in pepper. Chin. Cucurbits Veg. 2010, 23, 1–5. [Google Scholar]
- Jo, Y.D.; Kim, Y.M.; Park, M.N.; Yoo, J.H.; Park, M.; Kim, B.D.; Kang, B.C. Development and evaluation of broadly applicable markers for restorer-of-fertility in pepper. Mol. Breed. 2010, 25, 187–201. [Google Scholar] [CrossRef]
- Qin, C.; Yu, C.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc. Natl. Acad. Sci. USA 2014, 111, 5135–5140. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Park, M.; Yeom, S.I.; Kim, Y.M.; Lee, J.M.; Lee, H.A.; Seo, E.; Choi, J.; Cheong, K.; Kim, K.T.; et al. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat. Genet. 2014, 46, 270–278. [Google Scholar] [CrossRef]
- Jo, Y.D.; Ha, Y.; Lee, J.H.; Park, M.; Bergsma, A.C.; Choi, H.I.; Goritschnig, S.; Kloosterman, B.; van Dijk, P.J.; Choi, D.; et al. Fine mapping of Restorer-of-fertility in pepper (Capsicum annuum L.) identified a candidate gene encoding a pentatricopeptide repeat (PPR)-containing protein. Theor. Appl. Genet. 2016, 129, 2003–2017. [Google Scholar] [CrossRef]
- Zhang, Z.H.; An, D.L.; Cao, Y.C.; Yu, H.L.; Zhu, Y.S.; Mei, Y.J.; Zhang, B.X.; Wang, L.H. Development and application of KASP markers associated with Restorer-of-fertility gene in Capsicum annuum L. Physiol. Mol. Biol. Plant 2021, 27, 2757–2765. [Google Scholar] [CrossRef]
- Kang, M.C.; Kang, H.J.; Jung, S.Y.; Lee, H.Y.; Kang, M.Y.; Jo, Y.D.; Kang, B.C. The Unstable Restorer-of-fertility locus in pepper (Capsicum annuum L.) is delimited to a genomic region containing PPR genes. Theor. Appl. Genet. 2022, 135, 1923–1937. [Google Scholar] [CrossRef]
- Wu, L.; Wang, P.; Wang, Y.; Cheng, Q.; Lu, Q.; Liu, J.; Li, T.; Ai, Y.; Yang, W.; Sun, L.; et al. Genome-wide correlation of 36 agronomic traits in the 287 pepper (Capsicum) accessions obtained from the SLAF-seq-Based GWAS. Int. J. Mol. Sci. 2019, 20, 5675. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Chen, Y.; Hu, Y.; Zhou, Z.; Hu, F.; Dong, J.; Chen, W.; Cui, J.; Wu, Z.; Hu, K. Fine mapping of restorer-of-fertility gene based on high-density genetic mapping and collinearity analysis in pepper (Capsicum annuum L.). Theor. Appl. Genet. 2020, 133, 889–902. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Cao, Y.; Yu, H.; Bai, R.; Zhao, H.; Zhang, B.; Wang, L. Fine mapping of the male fertility restoration gene CaRf032 in Capsicum annuum L. Theor. Appl. Genet. 2020, 133, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Bosland, P.W.; Zhang, Z.; Wang, Y.; Zhang, G.; Wang, L.; Yu, J. A predicted NEDD8 conjugating enzyme gene identified as a Capsicum candidate Rf gene using bulk segregant RNA sequencing. Hortic. Res. 2020, 7, 210. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Chen, J.; Song, Y.; Fu, H.; Wang, H.; Niu, Q.; Zhu, W. Comparative transcriptome analysis of the anthers from the cytoplasmic male-sterile pepper line HZ1A and its maintainer line HZ1B. Horticulturae 2021, 7, 580. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, Z.; Li, B.; Qin, C.; Wu, Z.; Trejo-Saavedra, D.L.; Luo, X.; Cui, J.; Rivera-Bustamante, R.F.; Li, S.; et al. A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci. Rep. 2016, 6, 18919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, Z.; Shi, Y.; Tian, H.; Liu, L.; Bian, X.; Xu, Y.; Zheng, X.; Gan, L.; Shen, Y.; et al. Hybrid sterility in rice (Oryza sativa L.) involves the tetratricopeptide repeat domain containing protein. Genetics 2016, 203, 1439–1451. [Google Scholar] [CrossRef] [Green Version]
- Kurek, I.; Dulberger, R.; Azem, A.; Tzvi, B.B.; Sudhakar, D.; Christou, P.; Breiman, A. Deletion of the C-terminal 138 amino acids of the wheat FKBP73 abrogates calmodulin binding, dimerization and male fertility in transgenic rice. Plant Mol. Biol. 2002, 48, 369–381. [Google Scholar] [CrossRef]
- Lin, Z.; Ho, C.W.; Grierson, D. AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis. J. Exp. Bot. 2009, 60, 3697–3714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, B.; Zhang, Z.; Cao, Y.; Yu, H.; Feng, X. Status in breeding and production of Capsicum spp. in China during ‘The Thirteenth Five-year Plan’ period and future prospect. China Veg. 2021, 2, 21–29. [Google Scholar]
- Zhou, X.; Ma, Y.; Dai, X.; Li, X.; Yang, S. Spread and industry development of pepper in China. Acta Hortic. Sinica 2020, 47, 1715–1726. [Google Scholar]
- Peterson, R.; Slovin, J.P.; Chen, C. A simplified method for differential staining of aborted and non-aborted pollen grains. J. Plant Biol. 2010, 1, e13. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, S.; Phillippy, A.; Delcher, A.L.; Smoot, M.; Shumway, M.; Antonescu, C.; Salzberg, S.L. Versatile and open software for comparing large genomes. Genome Biol. 2004, 5, R12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Shen, B.Z.; Dai, X.K.; Mei, M.H.; Maroof, M.A.S.; Li, Z.B. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc. Natl. Acad. Sci. USA 1994, 91, 8675–8679. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Zhao, T.; Liu, M.; Dai, J.; He, T.; Lyu, D.; Zhao, J.; Yang, S.; Gai, J. Molecular mapping of a novel male-sterile gene msNJ in soybean [Glycine max (L.) Merr.]. Plant Reprod. 2019, 32, 371–380. [Google Scholar] [CrossRef]
- Kosambi, D.D. The estimation of map distance from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Liu, R.H.; Meng, J.L. MapDraw: A Microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 2003, 25, 317–321. [Google Scholar]
- Lv, J.H.; Liu, Z.B.; Liu, Y.H.; Ou, L.J.; Deng, M.H.; Wang, J.; Song, J.S.; Ma, Y.Q.; Chen, W.C.; Zhang, Z.Q.; et al. Comparative transcriptome analysis between cytoplasmic male-sterile line and its maintainer during the floral bud development of pepper. Hortic. Plant J. 2020, 6, 89–98. [Google Scholar] [CrossRef]
Gene Name | Mapping Method | Range | Flanking Markers | Mapping Interval (Zunla-1 V2.0) | Candidate Genes | Locations of Candidate Genes (Zunla-1 V2.0) | References |
---|---|---|---|---|---|---|---|
Rf | CAPS, SSR, SCAR markers and BSA | 498.60 kb | pep20~pep43 | Chr06: 214,671,854.. 215,170,454 | Capana06g002962 Capana06g002963 Capana06g002965 | Chr06: 214,791,005..214,791,707 Chr06: 214,928,883..214,932,088 Chr06: 215,102,194..215,102,754 | [20] |
CaPPR6 | BSA–AFLP and comparative mapping | 128.96 kb | S423~S424 | Nearby Chr06: 216,988,988 | CaPPR6 | Chr06: 214,033,734..214,035,560 | [28,29] |
Rfu | CAPS, SCAR markers | 398.00 kb | 4162-SCAR ~G16-CAPS | Nearby Chr06: 214,076,189 | CA00g30080 | - | [30] |
Rf | SLAF-seq, and GWAS | 858.26 kb | P06-247 ~PW6-126 | Chr06: 214,868,888.. 215,727,145 | Capana06g002967 Capana06g002969 | Chr06: 215,172,352..215,173,332 Chr06: 215,340,394..215,340,521 | [31] |
CaRf | Conjoint analysis of recombinants and collinearity | 270.10 kb | S3~S1 | Nearby Chr06: 217,065,420 | Capana06g003028 | Chr06: 217,273,835..217,280,134 | [32] |
CaRf032 | Genome resequencing and recombination analysis | 148.05 kb | S1402~S1354 | Chr06: 213,923,525.. 214,071,576 | CA00g82510 | Chr06: 214,033,838..214,035,589 | [33] |
NEDD8 | Bulked segregant RNA sequencing | 5.1 Mb | KS18~KS22 | Chr06: 210,576,870.. 215,685,280 | Capana06g002866 | Chr06: 210,452,333..210,452,887 | [34] |
Year and Season | Line Name | No. of Plants | Expected Ratio | χ2 | Probability | ||
---|---|---|---|---|---|---|---|
Total | Fertile | Sterile | |||||
2020 Autumn | P20210 | 66 | 53 | 13 | 3:1 | 0.73 | 0.39 |
P20217 | 63 | 53 | 10 | 2.33 | 0.13 | ||
P20218 | 97 | 65 | 22 | 0.00 | 0.95 | ||
2021 Spring | P211014 | 134 | 102 | 32 | 3:1 | 0.04 | 0.84 |
P211017 | 370 | 279 | 91 | 0.01 | 0.90 | ||
P211091 | 129 | 102 | 27 | 0.93 | 0.33 | ||
P211103 | 168 | 134 | 34 | 1.79 | 0.18 | ||
P211115 | 160 | 128 | 32 | 1.88 | 0.17 | ||
P211129 | 161 | 121 | 40 | 0.00 | 0.96 | ||
P211157 | 218 | 165 | 53 | 0.02 | 0.88 | ||
P211162 | 102 | 75 | 27 | 0.05 | 0.82 | ||
Total | 1658 | 1277 | 381 | 3:1 | 3.50 | 0.06 |
Marker | Position (bp) | Recombinant Individuals | Genetic Distance (cM) | |
---|---|---|---|---|
Primary mapping | P06g8405 | 203,656,182 | 3 HO | 6.71 |
P06g8077 | 212,732,221 | 2 HO, 1 HE | 5.58 | |
P06g8089 | 204,569,609 | 2 HO | 4.46 | |
P06g8229 | 208,899,271 | 2 HE | 2.22 | |
CaRfHZ | ||||
P06g8264 | 209,767,667 | 0 | 0.00 | |
P06g8490 | 214,353,887 | 0 | 0.00 | |
P06g8494 | 214,428,701 | 0 | 0.00 | |
P06g8497 | 214,494,826 | 0 | 0.00 | |
P06g8536 | 215,672,797 | 0 | 0.00 | |
P06g8527 | 215,336,423 | 0 | 0.00 | |
P06g8560 | 215,995,316 | 1 HE | 1.11 | |
P06g8618 | 216,556,879 | 2 HO | 4.46 | |
Fine mapping | P06g8229 | 208,899,271 | 43 HE | 6.43 |
P06g8335 | 210,959,629 | 35 HE | 5.23 | |
P06g8405 | 212,732,234 | 24 HE | 3.58 | |
P06g8434 | 213,257,869 | 23 HE | 3.43 | |
P06g8219 | 208,736,376 | 22 HE | 3.28 | |
P06gInDel-15 | 213,906,630 | 20 HE | 2.98 | |
P06g8528 | 215,338,579 | 6 HE | 0.89 | |
P06gInDel-38 | 214,431,109 | 4 HE | 0.60 | |
P06g8490 | 214,353,887 | 4 HE | 0.60 | |
P06g8499 | 214,498,896 | 4 HE | 0.60 | |
P06g8508 | 214,872,305 | 3 HE | 0.45 | |
P06gInDel-46 | 214,885,975 | 2 HE | 0.30 | |
P06gInDel-48 | 214,903,798 | 2 HE | 0.30 | |
P06gInDel-56 | 214,950,959 | 2 HE | 0.30 | |
P06gInDel-66 | 215,097,259 | 1 HE | 0.15 | |
CaRfHZ | ||||
P06g8527 | 215,336,423 | 0 | 0.00 | |
P06gInDel-79 | 215,419,831 | 0 | 0.00 | |
P06gInDel-81 | 215,498,386 | 0 | 0.00 | |
P06gInDel-89 | 215,631,069 | 1 HE | 0.15 | |
P06gInDel-90 | 215,633,948 | 1 HE | 0.15 | |
P06gInDel-91 | 215,636,889 | 2 HE | 0.30 | |
P06gInDel-92 | 215,669,032 | 2 HE | 0.30 | |
P06gInDel-94 | 215,669,384 | 2 HE | 0.30 | |
P06gInDel-95 | 215,674,072 | 2 HE | 0.30 | |
P06g8543 | 215,710,422 | 3 HE | 0.45 | |
P06gInDel-99 | 215,741,617 | 3 HE | 0.45 | |
P06g8549 | 215,773,438 | 3 HE | 0.45 | |
P06g8560 | 215,995,331 | 6 HE | 0.89 |
Gene ID | Position (bp) | Annotation Description |
---|---|---|
Capana06g002965 | Chr06:215,102,194..215,102,754 | Unknown protein |
Capana06g002967 | Chr06:215,172,352..215,173,332 | CW-type zinc finger protein |
Capana06g002968 | Chr06:215,328,827..215,334,970 | Tetratricopeptide repeat protein |
Capana06g002969 | Chr06:215,340,394..215,341,013 | Unknown protein |
Line name | Type | Capana06g002965 | Capana06g002967 | Capana06g002968 | Capana06g002969 | |||||
---|---|---|---|---|---|---|---|---|---|---|
129 bp | 436 bp | 504 bp | 935 bp | 20 bp | 467 bp | 144 bp | 196 bp | 318 bp | ||
HZ1A | CMS line | A | T | G | G | G | T | G | T | G |
HZ1C | Restorer line | C | C | A | A | C | G | A | G | A |
P21204 | Maintainer line | C | T | G | G | G | G | G | G | G |
P21238 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21239 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21241 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21243 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21244 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21246 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21270 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21273 | Maintainer line | A | T | G | A | G | T | A | T | G |
P21215 | Restorer line | A | T | G | A | C | G | A | G | A |
P21240 | Restorer line | A | T | G | A | C | G | A | G | A |
P21247 | Restorer line | A | T | G | A | C | G | A | G | A |
P21274 | Restorer line | A | T | G | A | G | T | A | T | G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, Z.; Song, Y.; Wang, H.; Chen, J.; Niu, Q.; Zhu, W. Fine Mapping and Gene Analysis of restorer-of-fertility Gene CaRfHZ in Pepper (Capsicum annuum L.). Int. J. Mol. Sci. 2022, 23, 7633. https://doi.org/10.3390/ijms23147633
Nie Z, Song Y, Wang H, Chen J, Niu Q, Zhu W. Fine Mapping and Gene Analysis of restorer-of-fertility Gene CaRfHZ in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences. 2022; 23(14):7633. https://doi.org/10.3390/ijms23147633
Chicago/Turabian StyleNie, Zhixing, Yunpeng Song, Hong Wang, Jianying Chen, Qingliang Niu, and Weimin Zhu. 2022. "Fine Mapping and Gene Analysis of restorer-of-fertility Gene CaRfHZ in Pepper (Capsicum annuum L.)" International Journal of Molecular Sciences 23, no. 14: 7633. https://doi.org/10.3390/ijms23147633
APA StyleNie, Z., Song, Y., Wang, H., Chen, J., Niu, Q., & Zhu, W. (2022). Fine Mapping and Gene Analysis of restorer-of-fertility Gene CaRfHZ in Pepper (Capsicum annuum L.). International Journal of Molecular Sciences, 23(14), 7633. https://doi.org/10.3390/ijms23147633