Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System
Abstract
:1. Introduction
2. Results
2.1. Comparison of the SD Region of LG1 in As, Cz, and Sm
2.2. Expression of the Figla-like Gene
2.3. The Figla-like Gene Is Male-Specific in Different Purebred Species and Hybrids of Tilapia
2.4. Origin Validation of Species and Strains by Cox1 Sequence
2.5. Figla-like Gene and Barcode Sequence Comparison
2.6. The Figla-like Gene in Sarotherodon and Coptodon
3. Discussion
4. Materials and Methods
4.1. Fish
4.2. Comparison of the SD Region among On Amherst, Cz, and Sm Strains
4.3. Assembly of the Figla-like Gene and Barcode Sequences in Different Species
4.4. Amplifying and Resequencing of Figla-like and LG1x Sequences
4.5. Sequence Alignments and Phylogenetic Analysis
4.6. Electronic PCR
4.7. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herpin, A.; Schartl, M. Vertebrate sex determination: Questioning the hierarchy. FEBS J. 2011, 278, 1001. [Google Scholar] [CrossRef]
- Capel, B. Vertebrate sex determination: Evolutionary plasticity of a fundamental switch. Nat. Rev. Genet. 2017, 18, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.A.M. How to evolve new vertebrate sex determining genes. Dev. Dyn. 2013, 242, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, J.K.; Fernald, R.D. Fish sex: Why so diverse? Curr. Opin. Neurobiol. 2009, 19, 648. [Google Scholar] [CrossRef]
- Strüssmann, C.A.; Nakamura, M. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol. Biochem. 2002, 26, 13–29. [Google Scholar] [CrossRef]
- Devlin, R.H.; Nagahama, Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 2002, 208, 191–364. [Google Scholar] [CrossRef]
- Gubbay, J.; Collignon, J.; Koopman, P.; Capel, B.; Economou, A.; Münsterberg, A.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990, 346, 245–250. [Google Scholar] [CrossRef]
- Sinclair, A.H.; Berta, P.; Palmer, M.S.; Hawkins, J.R.; Griffiths, B.L.; Smith, M.J.; Foster, J.W.; Frischauf, A.M.; Lovell-Badge, R.; Goodfellow, P.N. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990, 346, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Zhang, J.; Bachtrog, D.; An, N.; Huang, Q.; Jarvis, E.D.; Gilbert, M.T.P.; Zhang, G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 2014, 346, 1246338. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.A.; Roeszler, K.N.; Ohnesorg, T.; Cummins, D.M.; Farlie, P.G.; Doran, T.J.; Sinclair, A.H. The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 2009, 461, 267–271. [Google Scholar] [CrossRef]
- Curzon, A.Y.; Dor, L.; Shirak, A.; Rosenfeld, H.; Ashkenazi, I.M.; Ron, M.; Seroussi, E. A novel c.1759T > G variant in follicle-stimulating hormone-receptor gene is concordant with male determination in the Flathead grey mullet (Mugil cephalus). G3 Genes Genomes Genet. 2020, 11, jkaa044. [Google Scholar] [CrossRef]
- Curzon, A.Y.; Shirak, A.; Benet-Perlberg, A.; Naor, A.; Low-Tanne, S.I.; Sharkawi, H.; Ron, M.; Seroussi, E. Gene variant of barrier to autointegration factor 2 (banf2w) is concordant with female determination in cichlids. Int. J. Mol. Sci. 2021, 22, 7073. [Google Scholar] [CrossRef] [PubMed]
- Rafati, N.; Chen, J.; Herpin, A.; Pettersson, M.E.; Han, F.; Feng, C.; Wallerman, O.; Rubin, C.J.; Péron, S.; Cocco, A.; et al. Reconstruction of the birth of a male sex chromosome present in Atlantic herring. Proc. Natl. Acad. Sci. USA 2020, 117, 24359–24368. [Google Scholar] [CrossRef] [PubMed]
- Curzon, A.Y.; Shirak, A.; Dor, L.; Zak, T.; Perelberg, A.; Seroussi, E.; Ron, M. A duplication of the anti-müllerian hormone gene is associated with genetic sex determination of different Oreochromis niloticus strains. Heredity 2020, 125, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Sakaizumi, M. Evolution of the sex-determining gene in the teleostean genus Oryzias. Gen. Comp. Endocrinol. 2016, 239, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Ser, J.R.; Roberts, R.B.; Kocher, T.D. Multiple interacting loci control sex determination in Lake Malawi cichlid fish. Evolution 2010, 64, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Brawand, D.; Wagner, C.E.; Li, Y.I.; Malinsky, M.; Keller, I.; Fan, S.; Simakov, O.; Ng, A.Y.; Lim, Z.W.; Bezault, E.; et al. The genomic substrate for adaptive radiation in african cichlid fish. Nature 2015, 513, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Megbowon, I.; Mojekwu, T.O. Tilapia sex reversal using methyl testosterone (MT) and its effect on fish, man and environment. Biotechnology 2014, 13, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Shirak, A.; Zak, T.; Dor, L.; Benet-Perlberg, A.; Weller, J.I.; Ron, M.; Seroussi, E. Quantitative trait loci on LGs 9 and 14 affect the reproductive interaction between two Oreochromis species, O. niloticus and O. aureus. Heredity 2018, 122, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Suseno, D.; Luqman, E.; Lamid, M.; Mukti, A.; Suprayudi, M. Residual impact of 17α-methyltestosterone and histopathological changes in sex- reversed Nile tilapia (Oreochromis niloticus). Asian-Pac. J. Rep. 2020, 9, 37. [Google Scholar] [CrossRef]
- Scott, A.G.; Penman, D.J.; Beardmore, J.A.; Skibinski, D.O.F. The ‘YY’ supermale in Oreochromis niloticus (L.) and its potential in aquaculture. Aquaculture 1989, 78, 237–251. [Google Scholar] [CrossRef]
- Ezaz, M.T.; Myers, J.M.; Powell, S.F.; McAndrew, B.J.; Penman, D.J. Sex ratios in the progeny of androgenetic and gynogenetic YY male Nile Tilapia, Oreochromis niloticus L. Aquaculture 2004, 232, 205–214. [Google Scholar] [CrossRef]
- Pruginin, Y.; Rothbard, S.; Wohlfarth, G.; Halevy, A.; Moav, R.; Hulata, G. All-male broods of Tilapia nilotica × T. aurea Hybrids. Aquaculture 1975, 6, 11–21. [Google Scholar] [CrossRef]
- Hickling, C.F. The Malacca tilapia hybrids. J. Genet. 1960, 57, 1–10. [Google Scholar] [CrossRef]
- Fishelson, L. Hybrids of two species of fishes of the genus tilapia (Cichlidae, Teleostei). Fish. Bull. 1962, 4, 14–19. [Google Scholar]
- Mires, D. Israel’s aquaculture 1995—Recent developments and future prospects. Isr. J. Aquac. 1996, 47, 78–83. [Google Scholar]
- Mires, D. Development of pond fish polyculture in israel. In Proceedings of the Pond Aquacultre, Proceedings of a Symposium Held as Arbonne-la-Foret, Arbonne-la-Foret, France, 11–13 March 1980. [Google Scholar]
- Lahav, M.; Lahav, E. The development of all-male tilapia hybrids in Nir David. Isr. J. Aquac. 1990, 42, 58–61. [Google Scholar]
- Curzon, A.Y.; Shirak, A.; Zak, T.; Dor, L.; Benet-Perlberg, A.; Naor, A.; Low-Tanne, S.I.; Sharkawi, H.; Ron, M.; Seroussi, E. All-male production by marker-assisted selection for sex determining loci of admixed Oreochromis niloticus and Oreochromis aureus Stocks. Anim. Genet. 2021, 52, 361–364. [Google Scholar] [CrossRef]
- Hammerman, I.S.; Avtalion, R.R. Sex determination in Sarotherodon (Tilapia). Theor. Appl. Genet. 1979, 55, 177–187. [Google Scholar] [CrossRef]
- Gammerdinger, W.J.; Kocher, T.D. Unusual diversity of sex chromosomes in african cichlid fishes. Genes 2018, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Gammerdinger, W.J.; Conte, M.A.; Acquah, E.A.; Roberts, R.B.; Kocher, T.D. Structure and decay of a proto-Y region in tilapia, Oreochromis niloticus. BMC Genom. 2014, 15, 975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, M.A.; Gammerdinger, W.J.; Bartie, K.L.; Penman, D.J.; Kocher, T.D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genom. 2017, 18, 341. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Xu, L.; Zhao, L.; Zhu, Z.; Wu, X.; Min, Q.; Wang, D.; Zhou, Q. High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Mol. Ecol. Resour. 2021, 21, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Eshel, O.; Shirak, A.; Dor, L.; Band, M.; Zak, T.; Markovich-Gordon, M.; Chalifa-Caspi, V.; Feldmesser, E.; Weller, J.I.; Seroussi, E.; et al. Identification of male-specific amh duplication, sexually differentially expressed genes and micrornas at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genom. 2014, 15, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Sun, Y.; Zhao, J.; Shi, H.; Zeng, S.; Ye, K.; Jiang, D.; Zhou, L.; Sun, L.; Tao, W.; et al. A tandem duplicate of anti-müllerian hormone with a missense SNP on the Y chromosome is esential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet. 2015, 11, e1005678. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.Y.; Hulata, G.; Kocher, T.D. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 2004, 92, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Avtalion, R.R.; Hammerman, I.S. Sex determination in Sarotherodon (Tilapia). I. Introduction to a theory of autosomal influence. Bamidgeh 1978, 30, 110–115. [Google Scholar]
- Taslima, K.; Khan, M.G.Q.; McAndrew, B.J.; Penman, D.J. Evidence of two XX/XY sex-determining loci in the Stirling stock of Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 532, 735995. [Google Scholar] [CrossRef]
- Sissao, R.; D’Cotta, H.; Baroiller, J.F.; Toguyeni, A. Mismatches between the genetic and phenotypic sex in the wild Kou population of Nile tilapia Oreochromis niloticus. PeerJ 2019, 2019, e7709. [Google Scholar] [CrossRef] [Green Version]
- Triay, C.; Conte, M.A.; Baroiller, J.F.; Bezault, E.; Clark, F.E.; Penman, D.J.; Kocher, T.D.; D’cotta, H. Structure and sequence of the sex determining locus in two wild populations of Nile tilapia. Genes 2020, 11, 1017. [Google Scholar] [CrossRef]
- Lee, B.Y.; Penman, D.J.; Kocher, T.D. Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Anim. Genet. 2003, 34, 379–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triay, C.; Courcelle, M.; Caminade, P.; Bezault, E.; Baroiller, J.F.; Kocher, T.D.; D’Cotta, H. Polymorphism of sex determination amongst wild populations suggests its rapid turnover within the Nile tilapia species. Front. Genet. 2022, 13, 820772. [Google Scholar] [CrossRef] [PubMed]
- Landi, M.; Dimech, M.; Arculeo, M.; Biondo, G.; Martins, R.; Carneiro, M.; Carvalho, G.R.; Lo Brutto, S.; Costa, F.O. DNA barcoding for species assignment: The case of mediterranean marine fishes. PLoS ONE 2014, 9, e106135. [Google Scholar] [CrossRef] [PubMed]
- Keskin, E.; Atar, H.H. DNA barcoding commercially important aquatic invertebrates of Turkey. Mitochondrial DNA 2013, 24, 440–450. [Google Scholar] [CrossRef]
- Lowenstein, J.H.; Amato, G.; Kolokotronis, S.O. The real maccoyii: Identifying Tuna sushi with DNA barcodes—contrasting characteristic attributes and genetic distances. PLoS ONE 2009, 4, e7866. [Google Scholar] [CrossRef] [Green Version]
- Shirak, A.; Cohen-Zinder, M.; Barroso Bertolini, R.M.; Seroussi, E.; Ron, M.; Hulata, G. DNA barcoding of Israeli indigenous and introduced cichlids. Isr. J. Aquac. 2009, 61, 83–88. [Google Scholar]
- Zhang, J.; Hanner, R. Molecular approach to the identification of fish in the South China sea. PLoS ONE 2012, 7, e30621. [Google Scholar] [CrossRef]
- Shirak, A.; Dor, L.; Seroussi, E.; Ron, M.; Hulata, G.; Golani, D. DNA barcoding of fish species from the Mediterranean coast of Israel. Mediterr. Mar. Sci. 2016, 17, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Day, J.J.; Ford, A.G.P.; Bullen, T.R.; Pang, L.; Genner, M.J.; Bills, R.; Flouri, T.; Ngatunga, B.P.; Rüber, L.; Schliewen, U.K.; et al. Molecular phylogeny of Oreochromis (Cichlidae: Oreochromini) reveals mito-nuclear discordance and multiple colonisation of adverse aquatic environments. Mol. Phylogenet. Evol. 2019, 136, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Trewavas, E. Genetic groupings of tilapiini used in aquaculture. Aquaculture 1982, 27, 79–81. [Google Scholar] [CrossRef]
- Pouyaud, L.; Agnèse, J.F. Phylogenetic relationships between 21 species of three tilapiine genera tilapia, Sarotherodon and Oreochromis using allozyme data. J. Fish Biol. 1995, 47, 26–38. [Google Scholar] [CrossRef]
- Dunz, A.R.; Schliewen, U.K. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as “Tilapia” . Mol. Phylogenet. Evol. 2013, 68, 64–80. [Google Scholar] [CrossRef] [PubMed]
- Gammerdinger, W.J.; Conte, M.A.; Baroiller, J.F.; D’Cotta, H.; Kocher, T.D. Comparative analysis of a sex chromosome from the Blackchin tilapia, Sarotherodon melanotheron. BMC Genom. 2016, 17, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, B.Y.; Coutanceau, J.P.; Ozouf-Costaz, C.; D’Cotta, H.; Baroiller, J.F.; Kocher, T.D. Genetic and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus). Mar. Biotechnol. 2011, 13, 557–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, K.; Liao, M.; Liu, F.; Ye, B.; Sun, F.; Yue, G.H. Charactering the ZFAND3 gene mapped in the sex-determining locus in hybrid tilapia (Oreochromis Spp.). Sci. Rep. 2016, 6, 25471. [Google Scholar] [CrossRef] [Green Version]
- Gammerdinger, W.J.; Conte, M.A.; Sandkam, B.A.; Penman, D.J.; Kocher, T.D. Characterization of sex chromosomes in three deeply diverged species of pseudocrenilabrinae (Teleostei: Cichlidae). Hydrobiologia 2019, 832, 397–408. [Google Scholar] [CrossRef]
- Lee, B.Y.; Kocher, T.D. Exclusion of Wilms Tumour (WT1b) and ovarian Cytochrome P450 aromatase (Cyp19a1) as candidates for sex determination genes in Nile tilapia (Oreochromis niloticus). Anim. Genet. 2007, 38, 85–86. [Google Scholar] [CrossRef]
- Lee, B.Y.; Lee, W.J.; Streelman, J.T.; Carleton, K.L.; Howe, A.E.; Hulata, G.; Slettan, A.; Stern, J.E.; Terai, Y.; Kocher, T.D. A second-generation genetic linkage map of tilapia (Oreochromis Spp.). Genetics 2005, 170, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Palaiokostas, C.; Bekaert, M.; Khan, M.G.Q.; Taggart, J.B.; Gharbi, K.; McAndrew, B.J.; Penman, D.J. Mapping and validation of the major sex-determining region in Nile tilapia (Oreochromis niloticus L.) using RAD sequencing. PLoS ONE 2013, 8, e68389. [Google Scholar] [CrossRef]
- Palaiokostas, C.; Bekaert, M.; Khan, M.G.Q.; Taggart, J.B.; Gharbi, K.; McAndrew, B.J.; Penman, D.J. A novel sex-determining QTL in Nile tilapia (Oreochromis niloticus). BMC Genom. 2015, 16, 171. [Google Scholar] [CrossRef] [Green Version]
- Cnaani, A.; Lee, B.Y.; Zilberman, N.; Ozouf-Costaz, C.; Hulata, G.; Ron, M.; D’Hont, A.; Baroiller, J.F.; D’Cotta, H.; Penman, D.J.; et al. Genetics of sex determination in tilapiine species. Sex Dev. 2008, 2, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Sun, F.; Li, J.; Xia, J.H.; Lin, G.; Tu, R.J.; Yue, G.H. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis Spp.) and mapping of sex-determining loci. BMC Genom. 2013, 14, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curzon, A.Y.; Shirak, A.; Dor, L.; Zak, T.; Benet-Perelberg, A.; Seroussi, E.; Ron, M. Hybrid origin of the thai-chitralada tilapia strain using DNA barcoding and microsatellite analysis. Isr. J. Aquac. 2019, 71, 20988. [Google Scholar]
- Cnaani, A.; Tinman, S.; Avidar, Y.; Ron, M.; Hulata, G. Comparative study of biochemical parameters in response to stress in Oreochromis aureus, O. mossambicus and two strains of O. niloticus. Aquac. Res. 2004, 35, 1434–1440. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kishino, H.; Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Staden, R.; Beal, K.F.; Bonfield, J.K. The staden package, 1998. In Bioinformatics Methods and Protocols; Humana Press: Totowa, NJ, USA, 2000; pp. 115–130. [Google Scholar]
- Feliciano, J.; Ordoñez, F.; Marie, A.; Asis, J.M.; Catacutan, B.J.; dela Pena, J.; Santos, M.D. First report on the occurrence of invasive Black-chin tilapia Sarotherodon melanotheron (Ruppell, 1852) in Manila bay and of Mayan cichlid Cichlasoma urophthalmus (Gunther, 1892) in the Philippines. BioInvasions Rec. 2015, 4, 115–124. [Google Scholar] [CrossRef]
- Kide, N.G.; Dunz, A.; Agnèse, J.F.; Dilyte, J.; Pariselle, A.; Carneiro, C.; Correia, E.; Brito, J.C.; Yarba, L.O.; Kone, Y.; et al. Cichlids of the Banc d’Arguin national park, Mauritania: Insight into the diversity of the genus Coptodon. J. Fish Biol. 2016, 88, 1369–1393. [Google Scholar] [CrossRef]
- Kanamori, A.; Toyama, K.; Kitagawa, S.; Kamehara, A.; Higuchi, T.; Kamachi, Y.; Kinoshita, M.; Hori, H. Comparative genomics approach to the expression of figα, one of the earliest marker genes of oocyte differentiation in Medaka (Oryzias latipes). Gene 2008, 423, 180–187. [Google Scholar] [CrossRef]
- Bayne, R.A.L.; da Silva, S.J.M.; Anderson, R.A. Increased expression of the FIGLA transcription factor is associated with primordial follicle formation in the human fetal ovary. Mol. Hum. Reprod. 2004, 10, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Soyal, S.M.; Amleh, A.; Dean, J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 2000, 127, 4645–4654. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.F.; Soyal, S.M.; Dean, J. FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development 1997, 124, 4939–4947. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Gauthier, L.; Baibakov, B.; Jimenez-Movilla, M.; Dean, J. FIGLA, a basic helix-loop-helix transcription factor, balances sexually dimorphic gene expression in postnatal oocytes. Mol. Cell. Biol. 2010, 30, 3661–3671. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.; Davies, H.; Sims, L.P.; Levy, S.E.; Dean, J. Ovarian gene expression in the absence of FIGLA, an oocyte-specific transcription factor. BMC Dev. Biol. 2007, 7, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.; Sun, S.; Charkraborty, T.; Wu, L.; Sun, L.; Wei, J.; Nagahama, Y.; Wang, D.; Zhou, L. Figla favors ovarian differentiation by antagonizing spermatogenesis in a teleosts, Nile tilapia (Oreochromis niloticus). PLoS ONE 2015, 10, e0123900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Qiu, Y. Functional studies of figla in the ovarian differentiation and maintenance in Nile tilapia (Orechromis niloticus). J. Fish. China 2016, 40, 665–672. [Google Scholar]
- Matsuda, M.; Nagahama, Y.; Shinomiya, A.; Sato, T.; Matsuda, C.; Kobayashi, T.; Morrey, C.E.; Shibata, N.; Asakawa, S.; Shimizu, N.; et al. DMY Is a Y-specific DM-domain gene required for male development in the Medaka fish. Nature 2002, 417, 559–563. [Google Scholar] [CrossRef]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Michihiko, I. W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, G.; Shao, C.; Huang, Q.; Liu, G.; Zhang, P.; Song, W.; An, N.; Chalopin, D.; Volff, J.N.; et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 2014, 46, 253–260. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Zhang, N.; Shao, C.; Zhu, Y.; Dong, Z.; Wang, N.; Jia, X.; Xu, H.; Chen, S. Two Figla homologues have disparate functions during sex differentiation in Half-Smooth tongue sole (Cynoglossus semilaevis). Sci. Rep. 2016, 6, 28219. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, C.Y.; Zhao, Y.; Dean, J. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation. Nucleic Acids Res. 2020, 48, 3525–3541. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.L.; Batzel, P.; Titus, T.; Sydes, J.; Desvignes, T.; BreMiller, R.; Draper, B.; Postlethwait, J.H. A hormone that lost its receptor: Anti-Müllerian Hormone (AMH) in zebrafish gonad development and sex determination. Genetics 2019, 213, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Mojekwu, T.O.; Cunningham, M.J.; Bills, R.I.; Pretorius, P.C.; Hoareau, T.B. Utility of DNA barcoding in native Oreochromis species. J. Fish Biol. 2021, 98, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Deines, A.M.; Bbole, I.; Katongo, C.; Feder, J.L.; Lodge, D.M. Hybridisation between native Oreochromis species and introduced Nile tilapia O. niloticus in the Kafue River, Zambia. Afr. J. Aquat. Sci. 2014, 39, 23–34. [Google Scholar] [CrossRef]
- Angienda, P.O.; Lee, H.J.; Elmer, K.R.; Abila, R.; Waindi, E.N.; Meyer, A. genetic structure and gene flow in an endangered native tilapia fish (Oreochromis esculentus) compared to invasive Nile tilapia (Oreochromis niloticus) in Yala swamp, East Africa. Conserv. Genet. 2011, 12, 243–255. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, M.E.; Esterhuyse, M.M.; van der Waal, B.C.W.; Brink, D.; Volckaert, F.A.M. Hybridization and phylogeography of the Mozambique tilapia Oreochromis mossambicus in Southern Africa evidenced by mitochondrial and microsatellite DNA genotyping. Conserv. Genet. 2007, 8, 475–488. [Google Scholar] [CrossRef]
- Blackwell, T.; Ford, A.G.P.; Ciezarek, A.G.; Bradbeer, S.J.; Gracida Juarez, C.A.; Smith, A.M.; Ngatunga, B.P.; Shechonge, A.; Tamatamah, R.; Etherington, G.; et al. Newly discovered cichlid fish biodiversity threatened by hybridization with non-native species. Mol. Ecol. 2021, 30, 895–911. [Google Scholar] [CrossRef]
- Qin, M.; Zhang, Z.; Song, W.; Wong, Q.W.L.; Chen, W.; Shirgaonkar, N.; Ge, W. Roles of Figla/Figla in juvenile ovary development and follicle formation during Zebrafish gonadogenesis. Endocrinology 2018, 159, 3699–3722. [Google Scholar] [CrossRef] [Green Version]
- Ventura, T.; Sagi, A. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv. 2012, 30, 1543–1550. [Google Scholar] [CrossRef]
- Bao, L.; Tian, C.; Liu, S.; Zhang, Y.; Elaswad, A.; Yuan, Z.; Khalil, K.; Sun, F.; Yang, Y.; Zhou, T.; et al. The Y chromosome sequence of the Channel catfish suggests novel sex determination mechanisms in teleost fish. BMC Biol. 2019, 17, 6. [Google Scholar] [CrossRef] [Green Version]
- Pan, Q.; Feron, R.; Yano, A.; Guyomard, R.; Jouanno, E.; Vigouroux, E.; Wen, M.; Busne, J.M.; Bobe, J.; Concordet, J.P.; et al. Identification of the master sex determining gene in Northern pike (Esox lucius) reveals restricted sex chromosome differentiation. PLoS Genet. 2019, 15, e1008013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borovski, T.; Tadmor-Levi, R.; Shapiro, J.; Rubinstein, G.; Agyakwah, S.K.; Hulata, G.; David, L. Historical and recent reductions in genetic variation of the Sarotherodon galilaeus population in the Sea of Galilee. Conserv. Genet. 2018, 19, 1323–1333. [Google Scholar] [CrossRef]
- Depristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Position 3 | REF 4 | ALT | As F | M | Sm F | M | Cz F | M | Region | 5′ End | 3′ End |
---|---|---|---|---|---|---|---|---|---|---|---|
25,672,475 | C | T, G | 0/0 | 0/1 | 0/0 | 0/2 | 0/0 | 0/1 | depdc7a exon 8 | ||
26,488,670 | T | A | 1/1 | 0/1 | 1/1 | 0/1 | 1/1 | 0/1 | intergenic | csmd1 | figla-like |
26,490,716 | G | C | ./. | 0/0 | ./. | 1/1 | ./. | 1/1 | figla-like exon 2 | ||
26,490,863 | C | T | ./. | 0/0 | ./. | 1/1 | ./. | 1/1 | figla-like intron 2 | ||
26,509,215 | A | C | 0/0 | 0/1 | 0/0 | 0/1 | 0/0 | 0/1 | intergenic | figla-like | chs1 |
26,510,329 | C | *, T | 0/0 | 0/1 | 0/0 | 0/2 | 0/0 | 0/1 | intergenic | figla-like | chs1 |
Intron 1 | Exon | Intron | Size | |
---|---|---|---|---|
no. | Size | |||
…TCCAGCCATGAACC | 1 | 174 | TGGAACGgtatgta | 1290 |
cttacagATCAGAA | 2 | 147 | TGACAATgtaagta | 122 |
attttagGATGAAG | 3 | 931 | CAGTCCTTGAAATG… |
Marker | Primers | Assay | GenBank Accession | Positions | Amplicon Size (bp) | ||
---|---|---|---|---|---|---|---|
Start | End | ||||||
LG1y | F | AACCAAGCCAAAATGTGAGC | Duplex fragment analysis | LOC116310109 | 1520 | 1821 | 302 |
R | CATTCACTTGCCAGAGGTCA | ||||||
LG1x | F | TCTGTGAAGCACTTTGGCATA | Duplex fragment analysis | NC_031965.2 | 24,979,876 | 24,980,010 | 135 |
R | CTGCACCTCCTCCAATTGTT | ||||||
Reseq1 | F | CTTGCACTGGCCTTGAGTTT | Resequencing of Sg and Cs | NC_031965.2 | 26,489,072 | 26,490,461 | 1390 |
R | AAAAATACAGCCAATACATCTGGT | ||||||
Reseq2 | F | AAAACCAAACAAGGTCACAATTC | Resequencing of Sg and Cs | NC_031965.2 | 26,490,237 | 26,491,052 | 816 |
R | CATTTCAAGGACTGACAGCAA | ||||||
Reseq3 | F | TGACCTCTGGCAAGTGAATG | Resequencing of Sg | ERZ9148259 | 1556 | 2526 | 971 |
R | ATGCCTGGACTGGAAACAAG | ||||||
Reseq4 | F | TGACCTCTGGCAAGTGAATG | Resequencing of Cs | NC_031965.2 | 26,490,991 | 26,491,772 | 782 |
R | GCCGAGCAGAGCCTAGTTTA |
Species | Genotype 1 | Females | Males | p-Value 2 |
---|---|---|---|---|
OmI Family 1 | xy | 0 | 8 | 0.0002 |
xx | 7 | 0 | ||
OmI Family 2 | xy | 0 | 8 | 0.0003 |
xx | 6 | 0 | ||
Sg | xy | 0 | 15 | 0.0001 |
xx | 18 | 1 | ||
Cz3 | xy | 0 | 9 | <0.0001 |
xx | 13 | 0 | ||
As4 | xy | 0 | 58 | <0.0001 |
xx | 33 | 0 | ||
Cs5 | xy | 2 | 11 | 0.0001 |
xx | 12 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curzon, A.Y.; Shirak, A.; Benet-Perlberg, A.; Naor, A.; Low-Tanne, S.I.; Sharkawi, H.; Ron, M.; Seroussi, E. Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. Int. J. Mol. Sci. 2022, 23, 7636. https://doi.org/10.3390/ijms23147636
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. International Journal of Molecular Sciences. 2022; 23(14):7636. https://doi.org/10.3390/ijms23147636
Chicago/Turabian StyleCurzon, Arie Yehuda, Andrey Shirak, Ayana Benet-Perlberg, Alon Naor, Shay Israel Low-Tanne, Haled Sharkawi, Micha Ron, and Eyal Seroussi. 2022. "Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System" International Journal of Molecular Sciences 23, no. 14: 7636. https://doi.org/10.3390/ijms23147636
APA StyleCurzon, A. Y., Shirak, A., Benet-Perlberg, A., Naor, A., Low-Tanne, S. I., Sharkawi, H., Ron, M., & Seroussi, E. (2022). Absence of Figla-like Gene Is Concordant with Femaleness in Cichlids Harboring the LG1 Sex-Determination System. International Journal of Molecular Sciences, 23(14), 7636. https://doi.org/10.3390/ijms23147636