Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Drug Design, Synthesis and Characterization
2.2. Biological Assessments
2.3. Docking Simulations
2.4. Prediction of Physicochemical Properties
3. Materials and Methods
3.1. Chemistry
3.1.1. General Methods
3.1.2. General Procedure for the Preparation of Squaramides 5a–e
3.1.3. General Procedures for the Preparation of Coumarin Derivatives 16a–p
3.2. CA Inhibition Assays
3.3. Antiproliferative Assays
3.4. Docking Simulations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wurm, F.R.; Klok, H.-A. Be squared: Expanding the horizon of squaric acid-mediated conjugations. Chem. Soc. Rev. 2013, 42, 8220–8236. [Google Scholar] [CrossRef] [PubMed]
- Storer, R.I.; Aciro, C.; Jones, L.H. Squaramides: Physical properties, synthesis and applications. Chem. Soc. Rev. 2011, 40, 2330–2346. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.A.; Kumawat, L.K.; Mao, N.; Stephens, J.C.; Elmes, R.B.P. The versatility of squaramides: From supramolecular chemistry to chemical biology. Chemistry 2019, 5, 1398–1485. [Google Scholar] [CrossRef]
- Kumawat, L.K.; Abogunrin, A.A.; Kickham, M.; Pardeshi, J.; Fenelon, O.; Schroeder, M.; Elmes, R.B.P. Squara-mide—naphthalimide conjugates as “turn-on” fluorescent sensors for bromide through an aggregation-disaggregation approach. Front. Chem. 2019, 7, 354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaleskaya, M.; Jagleniec, D.; Romański, J. Macrocyclic squaramides as ion pair receptors and fluorescent sensors selective towards sulfates. Dalton Trans. 2021, 50, 3904–3915. [Google Scholar] [CrossRef] [PubMed]
- Zaleskaya, M.; Jagleniec, D.; Karbarz, M.; Dobrzycki, Ł.; Romański, J. Squaramide based ion pair receptors possessing ferrocene as a signaling unit. Inorg. Chem. Front. 2020, 7, 972–983. [Google Scholar] [CrossRef]
- Jiang, M.; Li, P.; Wu, P.; Zhang, F.; Tian, X.; Deng, C.; Wang, J. A squaramide-based metal–organic framework as a luminescent sensor for the detection of lactose in aqueous solution and in milk. Chem. Commun. 2018, 54, 9131–9134. [Google Scholar] [CrossRef] [Green Version]
- Alemán, J.; Parra, A.; Jiang, H.; Jørgensen, K.A. Squaramides: Bridging from molecular recognition to bifunctional organoca-talysis. Chem. Eur. J. 2011, 17, 6890–6899. [Google Scholar] [CrossRef]
- Alegre-Requena, J.V.; Marqués-López, E.; Herrera, R.P. “Push−pull π+/π−” (PPππ) systems in catalysis. ACS Catal. 2017, 7, 6430–6439. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.-Q.; Du, D.-M. Recent advances in squaramide-catalyzed asymmetric Mannich reactions. Adv. Synth. Catal. 2020, 362, 4487–4512. [Google Scholar] [CrossRef]
- Sonsona, I.G.; Vicenzi, A.; Guidotti, M.; Bisag, G.D.; Fochi, M.; Herrera, R.P.; Bernardi, L. Investigation of squaramide catalysts in the aldol reaction en route to funapide. Eur. J. Org. Chem. 2022, 2022, e202101254. [Google Scholar] [CrossRef]
- Auria-Luna, F.; Mohammadi, S.; Divar, M.; Gimeno, M.C.; Herrera, R.P. Asymmetric fluorination reactions promoted by chiral hydrogen-bonding-based organocatalysts. Adv. Synth. Catal. 2020, 362, 5275–5300. [Google Scholar] [CrossRef]
- Biswas, A.; Ghosh, A.; Shankhdhar, R.; Chatterjee, I. Squaramide catalyzed asymmetric synthesis of five- and six-membered rings. Asian J. Org. Chem. 2021, 10, 1345–1376. [Google Scholar] [CrossRef]
- Chasák, J.; Šlachtová, V.; Urban, M.; Brulíková, L. Squaric acid analogues in medicinal chemistry. Eur. J. Med. Chem. 2021, 209, 112872. [Google Scholar] [CrossRef] [PubMed]
- Agnew-Francis, K.A.; Williams, C.M. Squaramides as bioisosteres in contemporary drug design. Chem. Rev. 2020, 120, 11616–11650. [Google Scholar] [CrossRef] [PubMed]
- Molodtsov, V.; Fleming, P.R.; Eyermann, C.J.; Ferguson, A.D.; Foulk, A.; McKinney, D.C.; Masse, C.E.; Buurman, E.T.; Mura-kami, K.S. X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein. J. Med. Chem. 2015, 58, 3156–3171. [Google Scholar] [CrossRef] [Green Version]
- Fournier, J.-F.; Bhurruth-Alcor, Y.; Musicki, B.; Aubert, J.; Aurelly, M.; Bouix-Peter, C.; Bouquet, K.; Chantalat, L.; Delorme, M.; Drean, B.; et al. Squaramides as novel class I and IIB histone deacetylase inhibitors for topical treatment of cutaneous T-cell lymphoma. Bioorg. Med. Chem. Lett. 2018, 28, 2985–2992. [Google Scholar] [CrossRef]
- Svobodova, B.; Mezeiova, E.; Hepnarova, V.; Hrabinova, M.; Muckova, L.; Kobrlova, T.; Jun, D.; Soukup, O.; Jimeno, M.L.; Marco-Contelles, J.; et al. Exploring structure-activity relationship in tacrine-squaramide derivatives as potent cholin-esterase inhibitors. Biomolecules 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Olmo, F.; Rotger, C.; Ramírez-Macías, I.; Martínez, L.; Marín, C.; Carreras, L.; Urbanová, K.; Vega, M.; Chaves-Lemaur, G.; Sampedro, Á.; et al. Synthesis and biological evaluation of N,N‘-squaramides with high in vivo efficacy and low toxicity: Toward a low-cost drug against chagas disease. J. Med. Chem. 2014, 57, 987–999. [Google Scholar] [CrossRef]
- Li, P.; Wang, B.; Li, G.; Fu, L.; Zhang, D.; Lin, Z.; Huang, H.; Lu, Y. Design, synthesis and biological evaluation of diamino substituted cyclobut-3-ene-1,2-dione derivatives for the treatment of drug-resistant tuberculosis. Eur. J. Med. Chem. 2020, 206, 112538. [Google Scholar] [CrossRef]
- Biselli, S.; Alencastre, I.; Tropmann, K.; Erdmann, D.; Chen, M.; Littmann, T.; Maia, A.F.; Gómez-Lázaro, M.; Tanaka, M.; Ozawa, T.; et al. Fluorescent H2 receptor squaramide-type antagonists: Synthesis, characterization, and applications. ACS Med. Chem. Lett. 2020, 11, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Moreira, V.; Alegre-Requena, J.V.; Herrera, R.P.; Marzo, I.; Gimeno, M.C. Synthesis of luminescent squaramide monoesters: Cytotoxicity and cell imaging studies in HeLa cells. RSC Adv. 2016, 6, 14171–14177. [Google Scholar] [CrossRef] [Green Version]
- Morales, K.; Samper, K.G.; Peña, Q.; Hernando, J.; Lorenzo, J.; Rodríguez-Diéguez, A.; Capdevila, M.; Figueredo, M.; Palacios, Ó.; Bayón, P. Squaramide-based Pt(II) complexes as potential oxygen-regulated light-triggered photocages. Inorg. Chem. 2018, 57, 15517–15525. [Google Scholar] [CrossRef]
- Grus, T.; Lahnif, H.; Klasen, B.; Moon, E.-S.; Greifenstein, L.; Roesch, F. Squaric acid-based radiopharmaceuticals for tumor imaging and therapy. Bioconjug. Chem. 2021, 32, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Lee, C.; Lim, S.W.; Adhikari, A.; Andring, J.T.; McKenna, R.; Ghim, C.-M.; Kim, C.U. Elucidating the role of metal ions in carbonic anhydrase catalysis. Nat. Commun. 2020, 11, 4557. [Google Scholar] [CrossRef] [PubMed]
- Boone, C.D.; Pinard, M.; McKenna, R.; Silverman, D. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. Subcell. Biochem. 2014, 75, 31–52. [Google Scholar] [PubMed]
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 2023–2032. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin. Ther. Pat. 2018, 28, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Nocentini, A.; Supuran, C.T.; Capasso, C. An overview on the recently discovered iota-carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2021, 36, 1988–1995. [Google Scholar] [CrossRef]
- Nocentini, A.; Donald, W.A.; Supuran, C.T. Human carbonic anhydrases: Tissue distribution, physiological role, and druggability. In Carbonic Anhydrases-Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Supuran, C.T., Nocentini, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 151–185. [Google Scholar]
- Aspatwar, A.; Tolvanen, M.E.E.; Parkkila, S. An update on carbonic anhydrase-related proteins VIII, X and XI. J. Enzym. Inhib. Med. Chem. 2013, 28, 1129–1142. [Google Scholar] [CrossRef]
- Kumar, S.; Rulhania, S.; Jaswal, S.; Monga, V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur. J. Med. Chem. 2021, 209, 112923. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, A.; Cuffaro, D.; Ciccone, L.; Orlandini, E.; Nencetti, S.; Nuti, E.; Rossello, A.; Supuran, C.T. Activation of carbonic anhydrases from human brain by amino alcohol oxime ethers: Towards human carbonic anhydrase VII selective activators. J. Enzym. Inhib. Med. Chem. 2021, 36, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Akocak, S.; Supuran, C.T. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: A review. J. Enzym. Inhib. Med. Chem. 2019, 34, 1652–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci. 2021, 135, 1233–1249. [Google Scholar] [CrossRef]
- Supuran, C.T. Multitargeting approaches involving carbonic anhydrase inhibitors: Hybrid drugs against a variety of disorders. J. Enzym. Inhib. Med. Chem. 2021, 36, 1702–1714. [Google Scholar] [CrossRef]
- Supuran, C.T. How many carbonic anhydrase inhibition mechanisms exist? J. Enzym. Inhib. Med. Chem. 2016, 31, 345–360. [Google Scholar] [CrossRef]
- Supuran, C.T.; Capasso, C. Antibacterial carbonic anhydrase inhibitors: An update on the recent literature. Expert Opin. Ther. Pat. 2020, 30, 963–982. [Google Scholar] [CrossRef]
- Mincione, F.; Nocentini, A.; Supuran, C.T. Advances in the discovery of novel agents for the treatment of glaucoma. Expert Opin. Drug Discov. 2021, 16, 1209–1225. [Google Scholar] [CrossRef]
- Di Cesare Mannelli, L.; Micheli, L.; Carta, F.; Cozzi, A.; Ghelardini, C.; Supuran, C.T. Carbonic anhydrase inhibition for the management of cerebral ischemia: In vivo evaluation of sulfonamide and coumarin inhibitors. J. Enzym. Inhib. Med. Chem. 2016, 31, 894–899. [Google Scholar] [CrossRef] [Green Version]
- Berrino, E.; Milazzo, L.; Micheli, L.; Vullo, D.; Angeli, A.; Bozdag, M.; Nocentini, A.; Menicatti, M.; Bartolucci, G.; Mannelli, L.D.C.; et al. Synthesis and evaluation of carbonic anhydrase inhibitors with carbon monoxide releasing properties for the management of rheumatoid arthritis. J. Med. Chem. 2019, 62, 7233–7249. [Google Scholar] [CrossRef]
- Costa, G.; Carta, F.; Ambrosio, F.A.; Artese, A.; Ortuso, F.; Moraca, F.; Rocca, R.; Romeo, I.; Lupia, A.; Maruca, A.; et al. A computer-assisted discovery of novel potential anti-obesity compounds as selective carbonic anhydrase VA inhibitors. Eur. J. Med. Chem. 2019, 181, 111565. [Google Scholar] [CrossRef] [PubMed]
- Akgül, Ö.; Lucarini, E.; Di Cesare Mannelli, L.; Ghelardini, C.; D’Ambrosio, K.; Buonanno, M.; Monti, S.M.; De Simone, G.; Angeli, A.; Supuran, C.T.; et al. Sultam based carbonic anhydrase VII inhibitors for the management of neuropathic pain. Eur. J. Med. Chem. 2022, 227, 113956. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, L.; Cerri, C.; Nencetti, S.; Orlandini, E. Carbonic anhydrase inhibitors and epilepsy: State of the art and future per-spectives. Molecules 2021, 26, 6380. [Google Scholar] [CrossRef] [PubMed]
- Tawfik, H.O.; Petreni, A.; Supuran, C.T.; El-Hamamsy, M.H. Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. Eur. J. Med. Chem. 2022, 232, 114190. [Google Scholar] [CrossRef]
- Lee, S.-H.; Griffiths, J.R. How and why are cancers acidic? Carbonic anhydrase IX and the homeostatic control of tumour ex-tracellular pH. Cancers 2020, 12, 1616. [Google Scholar] [CrossRef]
- Sarnella, A.; Ferrara, Y.; Auletta, L.; Albanese, S.; Cerchia, L.; Alterio, V.; De Simone, G.; Supuran, C.T.; Zannetti, A. Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. J. Exp. Clin. Cancer Res. 2022, 41, 122. [Google Scholar] [CrossRef]
- Lemon, N.; Canepa, E.; Ilies, M.A.; Fossati, S. Carbonic anhydrases as potential targets against neurovascular unit dysfunction in Alzheimer’s disease and stroke. Front. Aging Neurosci. 2021, 13, 772278. [Google Scholar] [CrossRef]
- Nocentini, A.; Angeli, A.; Carta, F.; Winum, J.-Y.; Zalubovskis, R.; Carradori, S.; Capasso, C.; Donald, W.A.; Supuran, C.T. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. J. Enzym. Inhib. Med. Chem. 2021, 36, 561–580. [Google Scholar] [CrossRef]
- Supuran, C.T. Exploring the multiple binding modes of inhibitors to carbonic anhydrases for novel drug discovery. Expert Opin. Drug Discov. 2020, 15, 671–686. [Google Scholar] [CrossRef]
- Supuran, C.T. Coumarin carbonic anhydrase inhibitors from natural sources. J. Enzym. Inhib. Med. Chem. 2020, 35, 1462–1470. [Google Scholar] [CrossRef]
- Lomelino, C.L.; Supuran, C.T.; McKenna, R. Non-classical inhibition of carbonic anhydrase. Int. J. Mol. Sci. 2016, 17, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Z.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Conformational restriction: An effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem. 2014, 6, 885–901. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Lu, Q.-B.; Honek, J.F. Squarate-based carbocyclic nucleosides: Syntheses, computational analyses and anticancer/antiviral evaluation. Bioorg. Med. Chem. Lett. 2017, 27, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Sopeña, S.; Martin, E.; Escudero-Adán, E.C.; Kleij, A.W. Pushing the limits with squaramide-based organocatalysts in cyclic carbonate synthesis. ACS Catal. 2017, 7, 3532–3539. [Google Scholar] [CrossRef]
- Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018, 23, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambare, A.S.; Khan, F.A.K.; Zambare, S.P.; Shinde, S.D.; Sangshetti, J.N. Recent advances in the synthesis of coumarin de-rivatives via Pechmann condensation. Curr. Org. Chem. 2016, 20, 798–828. [Google Scholar] [CrossRef] [Green Version]
- Krasavin, M.; Kalinin, S.; Sharonova, T.; Supuran, C.T. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J. Enzym. Inhib. Med. Chem. 2020, 35, 1555–1561. [Google Scholar] [CrossRef]
- Larcher, A.; Nocentini, A.; Supuran, C.T.; Winum, J.-Y.; van der Lee, A.; Vasseur, J.J.; Laurencin, D.; Smietana, M. Bis-benzoxaboroles: Design, synthesis, and biological evaluation as carbonic anhydrase inhibitors. ACS Med. Chem. Lett. 2019, 10, 1205–1210. [Google Scholar] [CrossRef]
- Supuran, C.T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 2017, 16, 48. [Google Scholar] [CrossRef] [Green Version]
- Supuran, C.T. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J. Exp. Pharmacol. 2020, 12, 603–617. [Google Scholar] [CrossRef]
- Chafe, S.C.; Vizeacoumar, F.S.; Venkateswaran, G.; Nemirovsky, O.; Awrey, S.; Brown, W.S.; McDonald, P.C.; Carta, F.; Metcalfe, A.; Karasinska, J.M.; et al. Genome-wide synthetic lethal screen unveils novel CAIX-NFS1/xCT axis as a targetable vulnerability in hypoxic solid tumors. Sci. Adv. 2021, 7, eabj0364. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; McDonald, P.C.; Oloumi, A.; Chia, S.; Ostlund, C.; Ahmadi, A.; Kyle, A.; dem Keller, U.A.; Leung, S.; Huntsman, D.; et al. Targeting tumor hypoxia: Suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011, 71, 3364–3376. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.C.; Chia, S.; Bedard, P.L.; Chu, Q.; Lyle, M.; Tang, L.; Singh, M.; Zhang, Z.; Supuran, C.T.; Renouf, D.J.; et al. A phase 1 study of SLC-0111, a novel inhibitor of carbonic anhydrase IX, in patients with advanced solid tumors. Am. J. Clin. Oncol. 2020, 43, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Salaroglio, I.C.; Mujumdar, P.; Annovazzi, L.; Kopecka, J.; Mellai, M.; Schiffer, D.; Poulsen, S.-A.; Riganti, C. Carbonic anhydrase XII inhibitors overcome P-glycoprotein–mediated resistance to temozolomide in glioblastoma. Mol. Cancer Ther. 2018, 17, 2598–2609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amawi, H.; Sim, H.M.; Tiwari, A.K.; Ambudkar, S.V.; Shukla, S. ABC Transporter-mediated multidrug-resistant cancer. Adv. Exp. Med. Biol. 2019, 1141, 549–580. [Google Scholar] [PubMed]
- Nocentini, A.; Trallori, E.; Singh, S.; Lomelino, C.L.; Bartolucci, G.; Di Cesare Mannelli, L.; Ghelardini, C.; McKenna, R.; Gratteri, P.; Supuran, C.T. 4-Hydroxy-3-nitro-5-ureido-benzenesulfonamides selectively target the tumor-associated carbonic anhydrase isoforms IX and XII showing hypoxia-enhanced antiproliferative profiles. J. Med. Chem. 2018, 61, 10860–10874. [Google Scholar] [CrossRef]
- Maresca, A.; Temperini, C.; Vu, H.; Pham, N.B.; Poulsen, S.A.; Scozzafava, A.; Quinn, R.J.; Supuran, C.T. Non-zinc mediated inhibition of carbonic anhydrases: Coumarins are a new class of suicide inhibitors. J. Am. Chem. Soc. 2009, 131, 3057–3062. [Google Scholar] [CrossRef] [Green Version]
- Meleddu, R.; Deplano, S.; Maccioni, E.; Ortuso, F.; Cottiglia, F.; Secci, D.; Onali, A.; Sanna, E.; Angeli, A.; Angius, R.; et al. Selective inhibition of carbonic anhydrase IX and XII by coumarin and psoralen derivatives. J. Enzym. Inhib. Med. Chem. 2021, 36, 685–692. [Google Scholar] [CrossRef]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the General Solubility Equation: In silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012, 52, 420–428. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.swissadme.ch/index.php (accessed on 26 June 2022).
- Pan, X.; Wang, H.; Li, C.; Zhang, J.Z.H.; Ji, C. MolGpka: A web server for small molecule pKa prediction using a graph-convolutional neural network. J. Chem. Inf. Model. 2021, 61, 3159–3165. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://xundrug.cn/molgpka (accessed on 26 June 2022).
- Fulmer, G.R.; Miller, A.J.M.; Sherden, N.H.; Gottlieb, H.E.; Nudelman, A.; Stoltz, B.M.; Bercaw, J.E.; Goldberg, K.L. NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the Or-ganometallic Chemist. Organometallics 2010, 29, 2176–2179. [Google Scholar] [CrossRef] [Green Version]
- Elshaflu, H.; Todorović, T.R.; Nikolić, M.; Lolić, A.; Višnjevac, A.; Hagenow, S.; Padrón, J.M.; García-Sosa, A.T.; Djordjević, I.S.; Grubišić, S.; et al. Selenazolyl-hydrazones as novel selective MAO inhibitors with antiproliferative and an-tioxidant activities: Experimental and in-silico studies. Front. Chem. 2018, 6, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes-Aguilar, A.; Merino-Montiel, P.; Montiel-Smith, S.; Meza-Reyes, S.; Vega-Báez, J.L.; Puerta, A.; Fernandes, M.X.; Padrón, J.M.; Petreni, A.; Nocentini, A.; et al. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J. Enzym. Inhib. Med. Chem. 2022, 37, 168–177. [Google Scholar] [CrossRef]
Compound | Ki (nM) | S.I.b | ||||||
hCA I | hCA II | hCA IX | hCA XII | I/IX | I/XII | II/IX | II/XII | |
5a R = H, n = 2, p-SO2NH2 | 211 | 720 | 75.3 | 96.8 | 2.8 | 2.2 | 9.6 | 7.4 |
5b R = OMe, n = 2, p-SO2NH2 | 373 | 724 | 92.5 | 158 | 4.0 | 2.4 | 7.8 | 4.6 |
5c R = Cl, n = 2, p-SO2NH2 | 881 | 819 | 490 | 90.2 | 1.8 | 9.8 | 1.7 | 9.1 |
5d R = Br, n = 2, p-SO2NH2 | 457 | 910 | 67.6 | 85.5 | 6.8 | 5.3 | 14 | 11 |
5e R = I, n = 2, p-SO2NH2 | 471 | 856 | 92.7 | 90.3 | 5.1 | 5.2 | 9.2 | 9.5 |
6 | 43.2 | 56.2 | 83.0 | 87.8 | 0.52 | 0.49 | 0.68 | 0.64 |
8 R = H, n = 0, p-SO2NH2 | 98.0 | 65.9 | 19.5 | 6.57 | 5.0 | 15 | 3.4 | 10 |
10 | 79.9 | 40.9 | 26.2 | 5.78 | 3.0 | 14 | 1.6 | 7.1 |
11 R = H, n = 0, m-SO2NH2 | 580 | 95.5 | 29.4 | 9.15 | 20 | 63 | 3.2 | 10 |
AAZ | 250.0 | 12.0 | 25.0 | 5.7 | 10 | 44 | 0.48 | 2.1 |
Compound | Ki (nM) | |||
hCA I | hCA II | hCA IX | hCA XII | |
16a R1 = R3 = H, R2 = Me, n = 3 | >10,000 | >10,000 | 79.3 | 42.1 |
16b R1 = R3 = H, R2 = Me, n = 5 | >10,000 | >10,000 | 44.1 | 14.3 |
16c R1 = R3 = H, R2 = Me, n = 9 | >10,000 | >10,000 | 19.2 | 7.23 |
16d R1 = R3 = H, R2 = Me, n = 12 | >10,000 | >10,000 | 18.1 | 7.91 |
16e R1 = OMe, R2 = Me, R3 = H, n = 5 | >10,000 | >10,000 | 59.7 | 19.5 |
16f R1 = F, R2 = Me, R3 = H, n = 5 | >10,000 | >10,000 | 43.7 | 15.9 |
16g R1 = Cl, R2 = Me, R3 = H, n = 5 | >10,000 | >10,000 | 65.3 | 24.4 |
16h R1 = Br, R2 = Me, R3 = H, n = 5 | >10,000 | >10,000 | 46.2 | 13.9 |
16i R1 = I, R2 = Me, R3 = H, n = 5 | >10,000 | >10,000 | 57.0 | 21.5 |
16j R1 = H, R2 = R3 = Me, n = 5 | >10,000 | >10,000 | 107 | 58.3 |
16k R1 = OMe, R2 = R3 = Me, n = 5 | >10,000 | >10,000 | 86.5 | 45.4 |
16l R1 = F, R2 = R3 = Me, n = 5 | >10,000 | >10,000 | 113 | 62.9 |
16m R1 = Cl, R2 = R3 = Me, n = 5 | >10,000 | >10,000 | 96.6 | 43.0 |
16n R1 = Br, R2 = R3 = Me, n = 5 | >10,000 | >10,000 | 132 | 69.6 |
16o R1 = I, R2 = R3 = Me, n = 5 | >10,000 | >10,000 | 92.1 | 50.8 |
16p R1 = R3 = H, R2 = Ph, n = 5 | >10,000 | >10,000 | 267 | 87.9 |
Structure | Non-Hydrolyzed Form | Hydrolyzed Form at the Cavity | Hydrolyzed Form Outside the Cavity |
Energy (kcal/mol) | −7.24 | −10.00 | −6.90 |
Compound | Physicochemical Properties | |||||||||
Mw (g/mol) | Consensus logP | logS (Ali) | TPSA (Å2) | #H-Bond Acceptor | #H-Bond Donor | Druglikeness (Lipinski) | pKa1 | pKa2 | pKa3 | |
5a | 371.41 | 1.27 | −4.33 (m.s.) a | 126.74 | 5 | 3 | Yes | 10.2 | 10.8 | 10.0 |
5b | 401.44 | 1.26 | −4.49 (m.s.) | 135.97 | 6 | 3 | Yes | 10.2 | 10.8 | 10.0 |
5c | 405.86 | 1.87 | −4.97 (m.s.) | 126.74 | 5 | 3 | Yes | 9.9 | 10.7 | 10.0 |
5d | 450.31 | 1.96 | −5.05 (m.s.) | 126.74 | 5 | 3 | Yes | 9.9 | 10.7 | 10.0 |
5e | 497.31 | 1.93 | −5.00 (m.s.) | 126.74 | 5 | 3 | Yes | 10.0 | 10.7 | 10.0 |
6 | 478.54 | 0.37 | −4.69 (m.s.) | 195.28 | 8 | 4 | Yes | 9.7 | 9.7 | 9.8 |
8 | 343.36 | 0.88 | −3.91 (s.) b | 126.74 | 5 | 3 | Yes | 10.7 | 10.3 | 10.2 |
10 | 282.27 | −0.16 | −2.33 (s.) | 123.94 | 6 | 2 | Yes | - | 10.3 | 10.0 |
11 | 343.36 | 0.89 | −3.91 (s.) | 126.74 | 5 | 3 | Yes | 10.7 | 10.2 | 9.9 |
16a | 404.42 | 2.81 | −5.17 (m.s.) | 97.64 | 5 | 2 | Yes | 10.4 | 11.5 | - |
16b | 432.47 | 3.45 | −5.92 (m.s.) | 97.64 | 5 | 2 | Yes | 10.4 | 11.7 | - |
16c | 488.57 | 4.88 | −7.97 (p.s.) c | 97.64 | 5 | 2 | Yes | 10.4 | 11.8 | - |
16d | 530.65 | 5.98 | −9.65 (p.s.) | 97.64 | 5 | 2 | Yes (1 violation Mw > 500) | 10.4 | 11.8 | - |
16e | 462.49 | 3.49 | −6.08 (p.s.) | 106.87 | 6 | 2 | Yes | 10.5 | 11.7 | - |
16f | 450.46 | 3.79 | −6.02 (p.s.) | 97.64 | 6 | 2 | Yes | 10.3 | 11.6 | - |
16g | 466.91 | 4.06 | −6.57 (p.s.) | 97.64 | 5 | 2 | Yes | 10.2 | 11.6 | - |
16h | 511.36 | 4.17 | −6.63 (p.s.) | 97.64 | 5 | 2 | Yes (1 violation Mw > 500) | 10.2 | 11.6 | - |
16i | 558.36 | 4.16 | −6.59 (p.s.) | 97.64 | 5 | 2 | Yes (1 violation Mw > 500) | 10.2 | 11.6 | - |
16j | 446.50 | 3.87 | −6.30 (p.s.) | 97.64 | 5 | 2 | Yes | 10.4 | 11.7 | - |
16k | 476.52 | 3.81 | −6.47 (p.s.) | 106.87 | 6 | 2 | Yes | 10.5 | 11.7 | - |
16l | 464.49 | 4.15 | −6.41 (p.s.) | 97.64 | 6 | 2 | Yes | 10.3 | 11.6 | - |
16m | 480.94 | 4.36 | −6.96 (p.s.) | 97.64 | 5 | 2 | Yes | 10.2 | 11.5 | - |
16n | 525.39 | 4.44 | −7.02 (p.s.) | 97.64 | 5 | 2 | Yes (1 violation Mw > 500) | 10.2 | 11.6 | - |
16o | 572.39 | 4.52 | −6.98 (p.s.) | 97.64 | 5 | 2 | Yes (1 violation Mw > 500) | 10.2 | 11.6 | - |
16p | 494.54 | 4.51 | −7.23 (p.s.) | 97.64 | 5 | 2 | Yes | 10.4 | 11.7 | - |
AAZ | 222.25 | −0.62 | −2.47 (s.) | 151.66 | 6 | 2 | Yes | - | - | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrighi, G.; Puerta, A.; Petrini, A.; Hicke, F.J.; Nocentini, A.; Fernandes, M.X.; Padrón, J.M.; Supuran, C.T.; Fernández-Bolaños, J.G.; López, Ó. Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. Int. J. Mol. Sci. 2022, 23, 7685. https://doi.org/10.3390/ijms23147685
Arrighi G, Puerta A, Petrini A, Hicke FJ, Nocentini A, Fernandes MX, Padrón JM, Supuran CT, Fernández-Bolaños JG, López Ó. Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. International Journal of Molecular Sciences. 2022; 23(14):7685. https://doi.org/10.3390/ijms23147685
Chicago/Turabian StyleArrighi, Giulia, Adrián Puerta, Andrea Petrini, Francisco J. Hicke, Alessio Nocentini, Miguel X. Fernandes, José M. Padrón, Claudiu T. Supuran, José G. Fernández-Bolaños, and Óscar López. 2022. "Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations" International Journal of Molecular Sciences 23, no. 14: 7685. https://doi.org/10.3390/ijms23147685
APA StyleArrighi, G., Puerta, A., Petrini, A., Hicke, F. J., Nocentini, A., Fernandes, M. X., Padrón, J. M., Supuran, C. T., Fernández-Bolaños, J. G., & López, Ó. (2022). Squaramide-Tethered Sulfonamides and Coumarins: Synthesis, Inhibition of Tumor-Associated CAs IX and XII and Docking Simulations. International Journal of Molecular Sciences, 23(14), 7685. https://doi.org/10.3390/ijms23147685