Transcriptomic Analyses Reveal Long Non-Coding RNA in Peripheral Blood Mononuclear Cells as a Novel Biomarker for Diagnosis and Prognosis of Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Results
2.1. Identification of lncRNA Candidate Biomarkers in PBMCs
2.2. Prediction of Regulatory Network and Function Analysis of lncRNAs
2.3. Validation of Candidate lncRNAs in Clinical Samples
2.4. Association of lncRNA Expressions with Clinical Parameters of HCC
2.5. The Expressions of lncRNAs as Diagnostic Markers for HCC
2.6. Prognostic Role of lncRNAs of Patients with HCC
3. Discussion
4. Materials and Methods
4.1. Specimen Collection
4.2. PBMCs Preparation
4.3. Cell Culture
4.4. RNA Preparation and RNA-Sequencing
4.5. Data Processing and Analysis
4.6. Quantification RT-PCR for lncRNAs Validation
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 2019, 156, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Galle, P.R.; Foerster, F.; Kudo, M.; Chan, S.L.; Llovet, J.M.; Qin, S.; Schelman, W.R.; Chintharlapalli, S.; Abada, P.B.; Sherman, M. Biology and significance of alpha-fetoprotein in hepatocellular carcinoma. Liver Int. 2019, 39, 2214–2229. [Google Scholar] [CrossRef] [Green Version]
- Kunadirek, P.; Ariyachet, C.; Sriphoosanaphan, S.; Pinjaroen, N.; Sirichindakul, P.; Nookaew, I.; Chuaypen, N.; Tangkijvanich, P. Identification of BHLHE40 expression in peripheral blood mononuclear cells as a novel biomarker for diagnosis and prognosis of hepatocellular carcinoma. Sci. Rep. 2021, 11, 11201. [Google Scholar] [CrossRef] [PubMed]
- Ulitsky, I.; Bartel, D.P. lincRNAs: Genomics, evolution, and mechanisms. Cell 2013, 154, 26–46. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.-C.; Ni, J.-J.; Cui, W.-Y.; Wang, B.-Y.; Zhuo, W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am. J. Cancer Res. 2019, 9, 1354. [Google Scholar]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Su, D.N.; Wu, S.P.; Chen, H.T.; He, J.H. HOTAIR, a long non-coding RNA driver of malignancy whose expression is activated by FOXC1, negatively regulates miRNA-1 in hepatocellular carcinoma. Oncol. Lett. 2016, 12, 4061–4067. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, M.T.; Riillo, C.; Scionti, F.; Grillone, K.; Polerà, N.; Caracciolo, D.; Arbitrio, M.; Tagliaferri, P.; Tassone, P. miRNAs and lncRNAs as novel therapeutic targets to improve cancer immunotherapy. Cancers 2021, 13, 1587. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Liu, M.; Fu, X.; Chen, G.; Wu, S.; Dong, J. Establishment of a lncRNA-Based Prognostic Gene Signature Associated With Altered Immune Responses in HCC. Front. Immunol. 2022, 13, 880288. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, D.-H.; Wu, N.; Xiao, J.-H.; Wang, X.; Ma, W. ceRNA in cancer: Possible functions and clinical implications. J. Med. Genet. 2015, 52, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, K.R.; Dreszer, T.R.; Long, J.C.; Malladi, V.S.; Sloan, C.A.; Raney, B.J.; Cline, M.S.; Karolchik, D.; Barber, G.P.; Clawson, H. ENCODE whole-genome data in the UCSC Genome Browser: Update 2012. Nucleic Acids Res. 2012, 40, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, L.; Gu, J.; Zhang, H.; Yuan, J.; Lian, Q.; Lv, G.; Wang, S.; Wu, Y.; Yang, Y.-C.T. Recurrently deregulated lncRNAs in hepatocellular carcinoma. Nat. Commun. 2017, 8, 14421. [Google Scholar] [CrossRef] [Green Version]
- Panzitt, K.; Tschernatsch, M.M.; Guelly, C.; Moustafa, T.; Stradner, M.; Strohmaier, H.M.; Buck, C.R.; Denk, H.; Schroeder, R.; Trauner, M. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 2007, 132, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.M.; Matboli, M.; Sallam, M.; Montasser, I.F.; Saad, A.S.; El-Tawdi, A.H. Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma. Transl. Res. 2016, 168, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Tzartzeva, K.; Obi, J.; Rich, N.E.; Parikh, N.D.; Marrero, J.A.; Yopp, A.; Waljee, A.K.; Singal, A.G. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: A meta-analysis. Gastroenterology 2018, 154, 1706–1718. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.-S.; Wu, Y.-C.; Tung, S.-Y.; Wei, K.-L.; Hsieh, Y.-Y.; Huang, H.-C.; Chen, W.-M.; Shen, C.-H.; Lu, C.-H.; Wu, C.-S. Alpha-fetoprotein measurement benefits hepatocellular carcinoma surveillance in patients with cirrhosis. Off. J. Am. Coll. Gastroenterol. ACG 2015, 110, 836–844. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Li, H.; Han, X.; Chen, S.; Yang, B.; Hu, Z.; Zhu, H.; Cai, C.; Chen, J. Characterization of LncRNA expression profile and identification of novel LncRNA biomarkers to diagnose coronary artery disease. Atherosclerosis 2018, 275, 359–367. [Google Scholar] [CrossRef]
- Long, Y.; Liu, J.; Jiang, H.; Xin, L.; Wan, L.; Sun, Y.; Zhang, P.; Wen, J.; Huang, D.; Sun, Y. Network analysis and transcriptome profiling in peripheral blood mononuclear cells of patients with rheumatoid arthritis. Exp. Ther. Med. 2021, 21, 170. [Google Scholar] [CrossRef]
- You, Y.; Zhao, X.; Wu, Y.; Mao, J.; Ge, L.; Guo, J.; Zhao, C.; Chen, D.; Song, Z. Integrated transcriptome profiling revealed that elevated long non-coding RNA-AC007278. 2 expression repressed CCR7 transcription in systemic lupus erythematosus. Front. Immunol. 2021, 12, 1595. [Google Scholar] [CrossRef]
- Čelešnik, H.; Potočnik, U. Peripheral Blood Transcriptome in Breast Cancer Patients as a Source of Less Invasive Immune Biomarkers for Personalized Medicine, and Implications for Triple Negative Breast Cancer. Cancers 2022, 14, 591. [Google Scholar] [CrossRef] [PubMed]
- Twine, N.C.; Stover, J.A.; Marshall, B.; Dukart, G.; Hidalgo, M.; Stadler, W.; Logan, T.; Dutcher, J.; Hudes, G.; Dorner, A.J. Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res. 2003, 63, 6069–6075. [Google Scholar] [PubMed]
- Han, Z.; Feng, W.; Hu, R.; Ge, Q.; Ma, W.; Zhang, W.; Xu, S.; Zhan, B.; Zhang, L.; Sun, X. RNA-seq profiling reveals PBMC RNA as a potential biomarker for hepatocellular carcinoma. Sci. Rep. 2021, 11, 17797. [Google Scholar] [CrossRef] [PubMed]
- Sakai, Y.; Honda, M.; Fujinaga, H.; Tatsumi, I.; Mizukoshi, E.; Nakamoto, Y.; Kaneko, S. Common transcriptional signature of tumor-infiltrating mononuclear inflammatory cells and peripheral blood mononuclear cells in hepatocellular carcinoma patients. Cancer Res. 2008, 68, 10267–10279. [Google Scholar] [CrossRef] [Green Version]
- Oda, S.; Uchida, Y.; Aleo, M.D.; Koza-Taylor, P.H.; Matsui, Y.; Hizue, M.; Marroquin, L.D.; Whritenour, J.; Uchida, E.; Yokoi, T. An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch. Toxicol. 2021, 95, 149–168. [Google Scholar] [CrossRef]
- Shaath, H.; Toor, S.; Nair, V.S.; Elkord, E.; Alajez, N.M. Transcriptomic analyses revealed systemic alterations in gene expression in circulation and tumor microenvironment of colorectal cancer patients. Cancers 2019, 11, 1994. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Lian, B.; Zhang, Y.; Li, W.; Gu, J.; He, X.; Xie, L. Application of microRNA and mRNA expression profiling on prognostic biomarker discovery for hepatocellular carcinoma. BMC Genom. 2014, 15, S13. [Google Scholar] [CrossRef] [Green Version]
- Braconi, C.; Kogure, T.; Valeri, N.; Huang, N.; Nuovo, G.; Costinean, S.; Negrini, M.; Miotto, E.; Croce, C.; Patel, T. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011, 30, 4750–4756. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, S.; Chen, J.; Ma, S.; Liu, F.; Liu, C.; Gao, Y. Comprehensive analysis of the MIR4435-2HG/miR-1-3p/MMP9/miR-29-3p/DUXAP8 ceRNA network axis in hepatocellular carcinoma. Discov. Oncol. 2021, 12, 38. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Do, D.N.; Nguyen, T.T.; Nguyen, T.L.; Nguyen-Thanh, T.; Nguyen, H.T. Immune–related biomarkers shared by inflammatory bowel disease and liver cancer. PLoS ONE 2022, 17, e0267358. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Zhou, J.-K.; Peng, Y.; He, W.; Huang, C. The role of long noncoding RNAs in hepatocellular carcinoma. Mol. Cancer 2020, 19, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.; Hou, P.-F.; Meng, S.; Chen, F.; Jiang, T.; Li, M.-L.; Liu, J.-J.; Zheng, J.-N.; Bai, J. Emerging roles of p53 related lncRNAs in cancer progression: A systematic review. Int. J. Biol. Sci. 2019, 15, 1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papoutsoglou, P.; Moustakas, A. Long non-coding RNAs and TGF-β signaling in cancer. Cancer Sci. 2020, 111, 2672–2681. [Google Scholar] [CrossRef]
- Ke, D.; Li, H.; Zhang, Y.; An, Y.; Fu, H.; Fang, X.; Zheng, X. The combination of circulating long noncoding RNAs AK001058, INHBA-AS1, MIR4435-2HG, and CEBPA-AS1 fragments in plasma serve as diagnostic markers for gastric cancer. Oncotarget 2017, 8, 21516. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yu, X.; Zhang, Q.; Sun, Z.; He, Y.; Guo, W. MIR4435-2HG: A newly proposed lncRNA in human cancer. Biomed. Pharmacother. 2022, 150, 112971. [Google Scholar] [CrossRef]
- Chen, D.; Tang, P.; Wang, Y.; Wan, F.; Long, J.; Zhou, J.; Zhuang, M.; Chen, X. Downregulation of long non-coding RNA MR4435-2HG suppresses breast cancer progression via the Wnt/β-catenin signaling pathway. Oncol. Lett. 2021, 21, 373. [Google Scholar] [CrossRef]
- Qian, H.; Chen, L.; Huang, J.; Wang, X.; Ma, S.; Cui, F.; Luo, L.; Ling, L.; Luo, K.; Zheng, G. The lncRNA MIR4435-2HG promotes lung cancer progression by activating β-catenin signalling. J. Mol. Med. 2018, 96, 753–764. [Google Scholar] [CrossRef]
- Yang, M.; He, X.; Huang, X.; Wang, J.; He, Y.; Wei, L. LncRNA MIR4435-2HG-mediated upregulation of TGF-β1 promotes migration and proliferation of nonsmall cell lung cancer cells. Environ. Toxicol. 2020, 35, 582–590. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, H.; Huang, X.; Tong, W.; Liang, X.; Li, J.; Zhang, C.; Chen, M. lncRNA MIR4435-2HG promotes cancer cell migration and invasion in prostate carcinoma by upregulating TGF-β1. Oncol. Lett. 2019, 18, 4016–4021. [Google Scholar] [CrossRef] [Green Version]
- Farzaneh, Z.; Vosough, M.; Agarwal, T.; Farzaneh, M. Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches. Cancer Cell Int. 2021, 21, 208. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Liang, C.; Jin, Y.; Pan, Y.; Tong, D.; Kong, Q.; Zhou, J. The lncRNA MIR4435-2HG is upregulated in hepatocellular carcinoma and promotes cancer cell proliferation by upregulating miRNA-487a. Cell. Mol. Biol. Lett. 2019, 24, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.; Ding, Y.; Lu, F.; Yuan, H.; Luan, W. Long noncoding RNA MIR4435-2HG promotes hepatocellular carcinoma proliferation and metastasis through the miR-22-3p/YWHAZ axis. Am. J. Transl. Res. 2020, 12, 6381. [Google Scholar]
- Li, C.; Hu, J.; Hu, X.; Zhao, C.; Mo, M.; Zu, X.; Li, Y. LncRNA SNHG9 is a prognostic biomarker and correlated with immune infiltrates in prostate cancer. Transl. Androl. Urol. 2021, 10, 215. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, D.; Jiang, Z.; Zhang, J. SNHG9/miR-199a-5p/Wnt2 axis regulates cell growth and aerobic glycolysis in glioblastoma. J. Neuropathol. Exp. Neurol. 2019, 78, 939–948. [Google Scholar] [CrossRef]
- Wang, R.; Chen, C.; Kang, W.; Meng, G. SNHG9 was upregulated in NSCLC and associated with DDP-resistance and poor prognosis of NSCLC patients. Am. J. Transl. Res. 2020, 12, 4456. [Google Scholar]
- Lin, Y.; Holden, V.; Dhilipkannah, P.; Deepak, J.; Todd, N.W.; Jiang, F. A non-coding RNA landscape of bronchial epitheliums of lung cancer patients. Biomedicines 2020, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.G.; Bhandari, R.; Ya, L.; Zhixuan, B.; Qiuhui, P.; Jiabei, Z. SNHG9 promotes Hepatoblastoma Tumorigenesis via miR-23a-5p/Wnt3a Axis. J. Cancer 2021, 12, 6031. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Ni, Y. lncRNA SNHG9 Promotes Cell Proliferation, Migration, and Invasion in Human Hepatocellular Carcinoma Cells by Increasing GSTP1 Methylation, as Revealed by CRISPR-dCas9. Front. Mol. Biosci. 2021, 8, 209. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data; Babraham Bioinformatics, Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.-C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koduru, S.V.; Leberfinger, A.N.; Kawasawa, Y.I.; Mahajan, M.; Gusani, N.J.; Sanyal, A.J.; Ravnic, D.J. Non-coding RNAs in various stages of liver disease leading to hepatocellular carcinoma: Differential expression of miRNAs, piRNAs, lncRNAs, circRNAs, and sno/mt-RNAs. Sci. Rep. 2018, 8, 7967. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef]
- Karagkouni, D.; Paraskevopoulou, M.D.; Tastsoglou, S.; Skoufos, G.; Karavangeli, A.; Pierros, V.; Zacharopoulou, E.; Hatzigeorgiou, A.G. DIANA-LncBase v3: Indexing experimentally supported miRNA targets on non-coding transcripts. Nucleic Acids Res. 2020, 48, D101–D110. [Google Scholar] [CrossRef]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Ideker, T. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, X.; Wan, Y.; Zhang, S.; Zhao, Y.; Fan, R.; Cui, Q.; Zhou, Y. TAM 2.0: Tool for MicroRNA set analysis. Nucleic Acids Res. 2018, 46, W180–W185. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | Healthy Controls | Patients without HCC | Patients with HCC | p |
---|---|---|---|---|
(n = 100) | (n = 100) | (n = 100) | ||
Age (years) | 56.3 ± 3.4 | 56.7 ± 8.4 | 57.7 ± 8.6 | 0.053 |
Gender (Male) | 80 (80.0) | 85 (85.0) | 85 (85.0) | 0.549 |
Total bilirubin (mg/dL) | 0.9 ± 0.7 | 1.0 ± 0.7 | 0.729 | |
Serum albumin (g/dL) | 4.1 ± 0.6 | 3.6 ± 0.5 | <0.001 * | |
Aspartate aminotransferase (IU/L) | 36.6 ± 30.2 | 64.5 ± 53.5 | <0.001 * | |
Alanine aminotransferase (IU/L) | 42.9 ± 42.3 | 44.8 ± 25.8 | 0.709 | |
Alkaline phosphatase (IU/L) | 77.3 ± 50.6 | 125.3 ± 70.8 | <0.001 * | |
Platelet count (109/L) | 223.2 ± 74.6 | 176.0 ± 93.9 | 0.002 * | |
Alpha fetoprotein (ng/mL) | 8.5 ± 13.9 | 6928.1 ± 28,444.2 | 0.016 * | |
Presence of cirrhosis | 11 (11.0) | 80 (80.0) | <0.001 * | |
BCLC stage (0-A/B/C) | - | 35 (35.0)/49 (49.0)/15 (15.0) | - |
Marker | AUROC | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) | Cut-Off | 95% CI | p |
---|---|---|---|---|---|---|---|---|---|
MIR-4435-2HG | 0.80 | 75.00 | 75.00 | 75.00 | 75.00 | 75.00 | 1.5781 | 0.74–0.87 | <0.001 * |
SNHG9 | 0.68 | 66.00 | 67.00 | 66.67 | 66.34 | 66.50 | 1.3579 | 0.60–0.76 | <0.001 * |
lnc-LCP2-1 | 0.61 | 64.29 | 42.64 | 37.82 | 68.75 | 50.25 | 1.5105 | 0.71–0.85 | 0.007 * |
lnc-POLD3-2 | 0.78 | 74.00 | 75.00 | 74.75 | 74.26 | 74.50 | −4.7687 | 0.30–0.46 | <0.001 * |
AFP (ng/mL) | 0.81 | 48.00 | 88.00 | 80.33 | 62.86 | 68.16 | 20.0000 | 0.75–0.87 | <0.001 * |
Variables | Category | Overall Survival | |||
---|---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | ||||
OR (95% CI) | p | OR (95% CI) | p | ||
Age (years) | <60 vs. ≥60 | 0.967 (0.49–1.92) | 0.925 | ||
Gender | Male vs. Female | 1.69 (0.69–4.14) | 0.250 | ||
Total bilirubin (mg/dL) | <1.2 vs. ≥1.2 | 1.27 (0.61–2.68) | 0.523 | ||
Serum albumin (g/dL) | <3.5 vs. ≥3.5 | 0.45 (0.22–0.93) | 0.031 * | 1.31 (0.48–3.59) | 0.598 |
Aspartate aminotransferase (IU/L) | <60 vs. ≥60 | 2.86 (1.44–5.68) | 0.003 * | 2.04 (0.77–5.44) | 0.154 |
Alanine aminotransferase (IU/L) | <50 vs. ≥50 | 1.95 (0.94–4.06) | 0.071 | ||
Platelet count (109/L) | ≥100 vs. <100 | 1.41 (0.58–3.42) | 0.446 | ||
Presence of cirrhosis | No vs. Yes | 0.34 (0.19–0.77) | 0.008 * | 0.25 (0.84–0.73) | 0.011 * |
Alpha fetoprotein (ng/mL) | <100 vs. ≥100 | 2.76 (1.34–5.67) | 0.006 * | 2.13 (0.78–5.82) | 0.140 |
Tumor size (cm) | <5.0 vs. ≥5.0 | 3.32 (1.57–7.01) | 0.020 * | 0.64 (0.19–2.21) | 0.481 |
BCLC stage | 0-A vs. B-C | 4.30 (2.47–7.47) | 0.001 * | 5.54 (1.66–46.16) | 0.015 * |
MIR4435-2HG | <2.4 vs. ≥2.4 | 2.20 (1.04–4.66) | 0.039 * | 0.75 (0.29–1.97) | 0.560 |
SNHG9 | <1.9 vs. ≥1.9 | 4.81 (2.16–10.71) | 0.001 * | 3.25 (1.40–7.53) | 0.006 * |
lnc-LCP2-1 | <1.1 vs. ≥1.1 | 1.56 (0.75–3.22) | 0.231 | ||
lnc-POLD3-2 | <2.0 vs. ≥2.0 | 1.22 (0.61–2.44) | 0.575 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kunadirek, P.; Pinjaroen, N.; Nookaew, I.; Tangkijvanich, P.; Chuaypen, N. Transcriptomic Analyses Reveal Long Non-Coding RNA in Peripheral Blood Mononuclear Cells as a Novel Biomarker for Diagnosis and Prognosis of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2022, 23, 7882. https://doi.org/10.3390/ijms23147882
Kunadirek P, Pinjaroen N, Nookaew I, Tangkijvanich P, Chuaypen N. Transcriptomic Analyses Reveal Long Non-Coding RNA in Peripheral Blood Mononuclear Cells as a Novel Biomarker for Diagnosis and Prognosis of Hepatocellular Carcinoma. International Journal of Molecular Sciences. 2022; 23(14):7882. https://doi.org/10.3390/ijms23147882
Chicago/Turabian StyleKunadirek, Pattapon, Nutcha Pinjaroen, Intawat Nookaew, Pisit Tangkijvanich, and Natthaya Chuaypen. 2022. "Transcriptomic Analyses Reveal Long Non-Coding RNA in Peripheral Blood Mononuclear Cells as a Novel Biomarker for Diagnosis and Prognosis of Hepatocellular Carcinoma" International Journal of Molecular Sciences 23, no. 14: 7882. https://doi.org/10.3390/ijms23147882
APA StyleKunadirek, P., Pinjaroen, N., Nookaew, I., Tangkijvanich, P., & Chuaypen, N. (2022). Transcriptomic Analyses Reveal Long Non-Coding RNA in Peripheral Blood Mononuclear Cells as a Novel Biomarker for Diagnosis and Prognosis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 23(14), 7882. https://doi.org/10.3390/ijms23147882