Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Sucrose-Crosslinked Polyurethanes
2.2. Infrared Spectroscopy
2.3. Swelling Experiments
2.4. Water Uptake Experiments
2.5. Morphology
2.6. Mechanical Properties
2.7. Thermo- and Thermomechanical Properties of SUPURs 1–10
2.8. Porosity Measurement of Scaffolds
2.9. Cell Viability Assay
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.2.1. Synthesis of Polylactic Acid Diol (PLAD)
3.2.2. Synthesis of PU-Prepolymer for SUPUR 1
3.2.3. Crosslinking by Sucrose
3.2.4. Synthesis of SUPUR Scaffolds by Salt Leaching
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jurak, M.; Wiącek, A.E.; Ładniak, A.; Przykaza, K.; Klaudia Szafran, K. What affects the biocompatibility of polymers? Adv. Coll. Int. Sci. 2021, 294, 102451. [Google Scholar] [CrossRef] [PubMed]
- Giroto, S.A.; Vallea, F.S.; Ribeiro, T.; Ribeiro, C.; Mattoso, H.C.L. Towards urea and glycerol utilization as “building blocks” for polyurethane production: A detailed study about reactivity and structure for environmentally friendly polymer synthesis. React. Func. Polym. 2020, 153, 104629. [Google Scholar] [CrossRef]
- Maitz., M.F. Applications of synthetic polymers in clinical medicine. Biosurface Biotribol. 2015, 1, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, K.; Almajid, A.A. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl. Compos. Mater. 2013, 20, 107–128. [Google Scholar] [CrossRef]
- Jafferson, J.M.; Chatterjee, D. A review on polymeric materials in additive manufacturing. Mat. Today Proc. 2021, 46, 1349–1365. [Google Scholar] [CrossRef]
- Vassallo, V.; Tsianaka, A.; Alessio, N.; Grübel, J.; Cammarota, M.; Tovar, G.; Southan, A.; Schiraldi, C. Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. J. Biomed. Mater. Res. Part A 2022, 110, 1210–1223. [Google Scholar] [CrossRef]
- Xu, J.; Hao, T.; Liu, C.; Bi, J.; Sun, J.; Wen, Z.; Hou, Z.; Wei, J. pH-Responsive and degradable polyurethane film with good tensile properties for drug delivery in vitro. Mat. Today Commun. 2021, 29, 102969. [Google Scholar] [CrossRef]
- Guo, L.; Liang, Z.; Yang, L.; Du, W.; Yu, T.; Tang, H.; Li, C.; Qiu, H. The role of natural polymers in bone tissue engineering. J. Control Release 2021, 338, 571–582. [Google Scholar] [CrossRef]
- Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 290602. [Google Scholar] [CrossRef]
- Meng, Z.; Hea, J.; Cai, Z.; Wang, F.; Zhang, J.; Wang, L.; Ling, R.; Li, D. Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Mater. Des. 2020, 89, 108508. [Google Scholar] [CrossRef]
- Tariverdian, T.; Sefat, F.; Gelinsky, M.; Mozafari, M. Scaffold for bone tissue engineering. In Handbook of Tissue Engineering Scaffolds: Volume One; Elsevier Ltd.: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kumbar, S.; Laurencin, C.; Deng, M. Natural and Synthetic Biomedical Polymers, 1st ed.; Newnes: Oxford, UK, 2014; ISBN 978-0-12-396983-5. [Google Scholar]
- Sordi, B.M.; Cruz, A.; Fredel, C.M.; Magini, R.; Sharpe, T.P. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mat. Sci. Eng. C 2021, 124, 112055. [Google Scholar] [CrossRef] [PubMed]
- Palaveniene, A.; Songailiene, K.; Baniukaitiene, O.; Tamburaci, S.; Kimna, C.; Tihminlioglu, F.; Liesiene, J. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds. Int. J. Biol. Macromol. 2020, 152, 1194–1204. [Google Scholar] [CrossRef]
- Das, A.; Mahanwar, P. A brief discussion on advances in polyurethane applications. Adv. Ind. Eng. Polym. Res. 2020, 3, 93–101. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, H.; He, S.; Liu, X.; Liu, W.; Huang, M.; Zhu, C. Polyurethane as smart biocoatings: Effects of hard segments on phase structures and properties. Prog. Org. Coat. 2021, 150, 106000. [Google Scholar] [CrossRef]
- Barikani, M.; Mohammadi, M. Synthesis and characterization of starch-modified polyurethane. Carbohydr. Polym. 2007, 68, 773–780. [Google Scholar] [CrossRef]
- Norouz, F.; Halabian, R.; Salimi, A.; Ghollasi, M. A new nanocomposite scaffold based on polyurethane and clay nanoplates for osteogenic differentiation of human mesenchymal stem cells in vitro. Mat. Sci. Eng. C 2019, 103, 109857. [Google Scholar] [CrossRef]
- Salehi, O.M.A.; Keshel, H.S.; Sefat, F.; Tayebi, L. Use of polycaprolactone in corneal tissue engineering: A review. Mat. Today Commun. 2021, 27, 102402. [Google Scholar] [CrossRef]
- Dwivedi, R.; Kumar, S.; Pandey, R.; Mahajan, A.; Nandana, D.; Katti, S.D.; Mehrotra, D. Polycaprolactone as biomaterial for bone scaffolds: Review of literature. J. Oral. Biol. Cran. Res. 2020, 10, 381–388. [Google Scholar] [CrossRef]
- Albuquerque, L.T.; Marques Júnior, E.J.; Queiroz, P.L.; Ricardo, S.D.A.; Rocha, P.V.M. Polylactic acid production from biotechnological routes: A review. Int. J. Biol. Macromol. 2021, 186, 933–951. [Google Scholar] [CrossRef]
- Goudar, N.; Vanjeri, N.V.; Hiremani, D.V.; Gasti, T.; D’souza, J.O.; Chougale, B.R.; Masti, P.S. Evaluation of spectroscopic, microscopic and hydrophobic properties of cetrimide and polyethylene glycol-400 plasticized ethyl cellulose films. Chem. Data Coll. 2021, 36, 100796. [Google Scholar] [CrossRef]
- Gittens, A.R.; Scheideler, L.; Hyzy, L.S.; Geis-Gerstorfer, J.; Schwartz, Z.; Boyan, D.B. A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta Biomaterialia 2014, 10, 2907–2918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solanki, A.; Das, M.; Thakore, S. A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr. Polym. 2018, 181, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.A.; Kamath, V.B.; Thakore, S. Carbohydrate crosslinked biocompatible polyurethanes: Synthesis, characterization, and drug delivery studies. J. Appl. Polym. Sci. 2015, 132, 42223. [Google Scholar] [CrossRef]
- Boyd, S.A.; Su, B.; Sandy, R.J.; Ireland, J.A. Cellulose Nanofibre Mesh for Use in Dental Materials. Coatings 2012, 2, 120–137. [Google Scholar] [CrossRef] [Green Version]
- de Olivera Barud, H.G.; da Silva, R.R.; Costa Borges, M.A.; Castro, G.R.; Lima Ribeiro, S.J.; de Silva Barud, H. Bacterial Nanocellulose in Dentistry: Perspectives and Challenges. Molecules 2020, 26, 49. [Google Scholar] [CrossRef]
- Marcuello, C.; Foulon, L.; Chabbert, B.; Molinari, M.; Aguié-Béghin, A. Langmuir-Blodgett Procedure to Precisely Control the Coverage of Functionalized AFM Cantilevers for SMFS Measurements: Application with Cellulose Nanocrystals. Langmuir 2018, 34, 9376–9386. [Google Scholar] [CrossRef]
- Solanki, A.; Mehta, J.; Thakore, S. Structure–property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydr. Polym. 2014, 110, 338–344. [Google Scholar] [CrossRef]
- Kizuka, K.; Inoue, S.-I. Synthesis and Properties of Polyurethane Elastomers Containing Sucrose as a Cross-Linker. Open J. Org. Polym. Mat. 2015, 5, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Nagy, L.; Nagy, M.; Vadkerti, B.; Daróczi, L.; Deák, G.; Zsuga, M.; Kéki, S. Designed Polyurethanes for Potential Biomedical and Pharmaceutical Applications: Novel Synthetic Strategy for Preparing Sucrose Containing Biocompatible and Biodegradable Polyurethane Networks. Polymers 2019, 11, 825. [Google Scholar] [CrossRef] [Green Version]
- Lakatos, C.; Kordován, M.K.; Czifrák, K.; Nagy, L.; Vadkerti, B.; Daróczi, L.; Zsuga, M.; Kéki, S. Synthesis of Sucrose-HDI Cooligomers: New Polyols for Novel Polyurethane Networks. Int. J. Mol. Sci. 2022, 23, 1444. [Google Scholar] [CrossRef]
- Nagy, L.; Vadkerti, B.; Lakatos, C.; Fehér, P.; Zsuga, M.; Kéki, S. Kinetically Equivalent Functionality and Reactivity of Commonly Used Biocompatible Polyurethane Crosslinking Agents. Int. J. Mol. Sci. 2021, 22, 4059. [Google Scholar] [CrossRef] [PubMed]
- Karger-Kocsis, J.; Kéki, S. Review of Progress in Shape Memory Epoxies and Their Composites. Polymers 2018, 10, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güney, A.; Kiziltay, A.; Hasirci, N.; Tanir, T.E. Synthesis and characterization of polycaprolactone-based segmented Polyurethanes. Turkish J. Chem. 2019, 43, 452–463. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Haeri, M.; Haeri, M. ImageJ Plugin for Analysis of Porous Scaffolds used in Tissue Engineering. J. Open Res. Softw. 2015, 3, e1. [Google Scholar] [CrossRef] [Green Version]
- Trường Đại Học Bách khoa, Đại học Quốc gia Thành phố H Chí Minh. Tổng hợp Polylactic acid (PLA)—Diol từ axit lactic và 1,4 Butanediol. (Synthesis of Polylactic acid (PLA)—Diol from lactic acid and 1,4 Butanediol). Sci. Technol. Dev. 2016, 19, M2-2016. [Google Scholar]
- Báez, J.E.; Marcos-Fernández, Á.; Martínez-Richa, A.; Galindo-Iranzo, P. Poly(ε-caprolactone) Diols (HOPCLOH) and Their Poly(ester-urethanes) (PEUs): The Effect of Linear Aliphatic Diols [HO–(CH2)m–OH] as Initiators. Polym. Plast. Technol. Eng. 2017, 56, 889–898. [Google Scholar] [CrossRef]
- Canillo, V.; Chiellini, F.; Fabbri, P.; Sola, A. Production of Bioglass® 45S5—Polycaprolactone composite scaffolds via salt-leaching. Compos. Struct. 2010, 92, 1823–1832. [Google Scholar] [CrossRef]
- Lakatos, C.; Czifrák, K.; Karger-Kocsis, J.; Daróczi, L.; Zsuga, M.; Kéki, S. Shape memory crosslinked polyurethanes containing thermoreversible Diels-Alder couplings. J. Appl. Polym. Sci. 2016, 133, 44145. [Google Scholar] [CrossRef]
- Kelch, S.; Steuer, S.; Schmidt, M.A.; Lendlein, A. Shape-Memory Polymer Networks from Oligo[(ε-hydroxycaproate)-co-glycolate]dimethacrylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate. Biomacromolecules 2007, 8, 1018–1027. [Google Scholar] [CrossRef] [Green Version]
- Sekkar, V.; Gopalakrishnan, S.; Devi, A.K. Studies on allophanate–urethane networks based on hydroxyl terminated polybutadiene: Effect of isocyanate type on the network characteristics. Eur. Polym. J. 2003, 39, 1281–1290. [Google Scholar] [CrossRef]
- Castro, M.; Lu, J.; Bruzaud, S.; Kunar, B.; Feller, J.-F. Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon 2009, 47, 1930–1942. [Google Scholar] [CrossRef]
- Kadar, K.; Kiraly, M.; Porcsalmy, B.; Molnar, B.; Racz, G.Z.; Blazsek, J. Differentiation potential of stem cells from human dental origin—promise for tissue engineering. J. Physiol. Pharmacol. 2009, 60 (Suppl. S7), 167–175. [Google Scholar] [PubMed]
- Kerenyi, F.; Tarapcsak, S.; Hrubi, E.; Barathne, S.A.; Hegedus, V.; Balogh, S. Comparison of sorting of fluorescently and magnetically labeled dental pulp stem cells. Fogorv Sz. 2016, 109, 29–33. [Google Scholar]
Sample Name | Density (g/cm3) | Q | G (%) | v1 | Crosslink Density (νe) (mol/cm3) |
---|---|---|---|---|---|
SUPUR 1 | 1.23 | 1.72 | 97.7 | 0.420 | 2.2 × 10−3 |
SUPUR 2 | 1.16 | 1.74 | 95.8 | 0.452 | 2.6 × 10−3 |
SUPUR 3 | 1.15 | 1.80 | 95.1 | 0.442 | 2.5 × 10−3 |
SUPUR 4 | 1.09 | 1.88 | 92.3 | 0.459 | 2.7 × 10−3 |
SUPUR 5 | 0.97 | 2.36 | 90.6 | 0.411 | 2.1 × 10−3 |
SUPUR 6 | 1.14 | 1.88 | 96.9 | 0.412 | 2.1 × 10−3 |
SUPUR 7 | 1.18 | 2.13 | 85.5 | 0.386 | 1.8 × 10−3 |
SUPUR 8 | 1.16 | 2.16 | 88.4 | 0.373 | 1.7 × 10−3 |
SUPUR 9 | 1.18 | 2.25 | 86.4 | 0.357 | 1.5 × 10−3 |
SUPUR 10 | 1.18 | 2.27 | 74.8 | 0.416 | 2.1 × 10−3 |
Sample Name | E (MPa) | εR (%) | σR (MPa) |
---|---|---|---|
SUPUR 1 | 3.8 ± 0.1 | 919 ± 11 | 23 ± 0.5 |
SUPUR 2 | 4.6 ± 0.6 | 988 ± 63 | 26 ± 2.9 |
SUPUR 3 | 4.5 ± 0.3 | 921 ± 37 | 22 ± 2.0 |
SUPUR 4 | 2.6 ± 0.5 | 905 ± 16 | 16 ± 1.8 |
SUPUR 5 | 44 ± 5.5 | 10 ± 6 | 5 ± 0.5 |
SUPUR 6 | 6.9 ± 0.1 | 829 ± 11 | 27 ± 0.8 |
SUPUR 7 | 3.1 ± 0.1 | 1020 ± 26 | 17 ± 0.5 |
SUPUR 8 | 2.9 ± 0.1 | 1047 ± 18 | 17 ± 0.7 |
SUPUR 9 | 1.7 ± 0.2 | 935 ± 46 | 10 ± 1.3 |
SUPUR 10 | 1.3 ± 0.1 | 1095 ± 48 | 7 ± 1.5 |
Sample Name | Tg (°C) | Tm (°C) |
---|---|---|
PCD(2) | - | 47 |
SUPUR 1 | −53.8 | 18.1 |
SUPUR 2 | −54.1 | 17.3 |
SUPUR 3 | −54.1 | 17.3 |
SUPUR 4 | −55.1 | 14.4 |
SUPUR 5 | −54.6 | 15.1 |
SUPUR 6 | −54.3 | 22.7 |
SUPUR 7 | −52.7 | 25.0 |
SUPUR 8 | −48.5 | - |
SUPUR 9 | −41.3 | - |
SUPUR 10 | −37.6 | - |
Sample Name | νd (mol/cm3) |
---|---|
SUPUR 1 | 3.9 × 10−3 |
SUPUR 2 | 3.8 × 10−3 |
SUPUR 3 | 3.3 × 10−3 |
SUPUR 4 | 3.2 × 10−3 |
SUPUR 6 | 3.1 × 10−3 |
SUPUR 7 | 1.9 × 10−3 |
SUPUR 8 | 2.4 × 10−3 |
SUPUR 9 | 1.9 × 10−3 |
Parameters | SUPUR 1 | SUPUR 2 | SUPUR 3 | SUPUR 4 | SUPUR 5 |
---|---|---|---|---|---|
Count | 93 | 77 | 73 | 46 | 72 |
Major diameter (µm) | 236 ± 64 | 250 ± 67 | 243 ± 57 | 245 ± 100 | 246 ± 78 |
Minor diameter (µm) | 146 ± 44 | 169 ± 47 | 164 ± 50 | 154 ± 38 | 139 ± 46 |
Ellipse angle | 98.7 ± 52 | 83.2 ± 52 | 101 ± 51 | 82.8 ± 54 | 85.0 ± 55 |
Feret max (µm) | 262 ± 75 | 274 ± 78 | 273 ± 72 | 284 ± 117 | 307 ± 130 |
Feret min (µm) | 160 ± 49 | 182 ± 50 | 182 ± 57 | 181 ± 55 | 177 ± 74 |
Feret angle | 107 ± 49 | 74.9 ± 54 | 106 ± 47 | 66.8 ± 49 | 83.0 ± 56 |
Parameters | SUPUR 6 | SUPUR 7 | SUPUR 8 | SUPUR 9 | SUPUR 10 |
---|---|---|---|---|---|
Count | 70 | 86 | - | - | - |
Major diameter (µm) | 295 ± 86 | 259 ± 72 | - | - | - |
Minor diameter (µm) | 195 ± 64 | 169 ± 45 | - | - | - |
Ellipse angle | 86 ± 45 | 73.7 ± 39 | - | - | - |
Feret max (µm) | 314 ± 93 | 287 ± 80 | - | - | - |
Feret min (µm) | 207 ± 68 | 188 ± 51 | - | - | - |
Feret angle | 89 ± 45 | 75.9 ± 38 | - | - | - |
Sample Name | Prepolymer | PCD-PEG/Sucrose Mole Ratio |
---|---|---|
PCD/PEG/HDI Mole Ratio | ||
SUPUR 1 | 0.9/0.1/2.0 | 10/1 |
SUPUR 2 | 0.8/0.2/2.0 | 10/1 |
SUPUR 3 | 0.7/0.3/2.0 | 10/1 |
SUPUR 4 | 0.6/0.4/2.0 | 10/1 |
SUPUR 5 | 0.5/0.5/2.0 | 10/1 |
Sample Name | Prepolymer | PCD-PLAD/Sucrose Mole Ratio |
---|---|---|
PCD/PLAD/HDI Mole Ratio | ||
SUPUR 6 | 0.9/0.1/2.0 | 10/1 |
SUPUR 7 | 0.8/0.2/2.0 | 10/1 |
SUPUR 8 | 0.7/0.3/2.0 | 10/1 |
SUPUR 9 | 0.6/0.4/2.0 | 10/1 |
SUPUR 10 | 0.5/0.5/2.0 | 10/1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordován, M.Á.; Hegedűs, C.; Czifrák, K.; Lakatos, C.; Kálmán-Szabó, I.; Daróczi, L.; Zsuga, M.; Kéki, S. Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application. Int. J. Mol. Sci. 2022, 23, 7904. https://doi.org/10.3390/ijms23147904
Kordován MÁ, Hegedűs C, Czifrák K, Lakatos C, Kálmán-Szabó I, Daróczi L, Zsuga M, Kéki S. Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application. International Journal of Molecular Sciences. 2022; 23(14):7904. https://doi.org/10.3390/ijms23147904
Chicago/Turabian StyleKordován, Marcell Árpád, Csaba Hegedűs, Katalin Czifrák, Csilla Lakatos, Ibolya Kálmán-Szabó, Lajos Daróczi, Miklós Zsuga, and Sándor Kéki. 2022. "Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application" International Journal of Molecular Sciences 23, no. 14: 7904. https://doi.org/10.3390/ijms23147904
APA StyleKordován, M. Á., Hegedűs, C., Czifrák, K., Lakatos, C., Kálmán-Szabó, I., Daróczi, L., Zsuga, M., & Kéki, S. (2022). Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application. International Journal of Molecular Sciences, 23(14), 7904. https://doi.org/10.3390/ijms23147904