Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives
Abstract
:1. Introduction
2. The Pathogenesis of NMOSD
3. Cytotoxicity Pathway
4. Genetic Susceptibility to NMOSD
5. Potential Biomarkers in NMOSD
5.1. Surrogate Serum Biomarkers
5.2. OCT Biomarker
6. Optic Nerve Structure in NMOSD
7. Macular Structure in NMOSD
8. OCT Angiography in NMOSD
9. Animal Models of Neuromyelitis Optica
10. Animal Model of NMO
11. Limitations of the Animal Models of NMO
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, C.W.; Wang, H.P.; Chen, H.M.; Lin, J.W.; Lin, W.S. Epidemiology and Comorbidities of Adult Multiple Sclerosis and Neuromyelitis Optica in Taiwan, 2001–2015. Mult. Scler. Relat. Disord. 2020, 45, 102425. [Google Scholar] [CrossRef]
- Hor, J.Y.; Asgari, N.; Nakashima, I.; Broadley, S.A.; Leite, M.I.; Kissani, N.; Jacob, A.; Marignier, R.; Weinshenker, B.G.; Paul, F.; et al. Epidemiology of Neuromyelitis Optica Spectrum Disorder and Its Prevalence and Incidence Worldwide. Front. Neurol. 2020, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Jarius, S.; Wildemann, B. The Case of the Marquis De Causan (1804): An Early Account of Visual Loss Associated with Spinal Cord Inflammation. J. Neurol. 2012, 259, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Lennon, V.A.; Wingerchuk, D.M.; Kryzer, T.J.; Pittock, S.J.; Lucchinetti, C.F.; Fujihara, K.; Nakashima, I.; Weinshenker, B.G. A Serum Autoantibody Marker of Neuromyelitis Optica: Distinction from Multiple Sclerosis. Lancet 2004, 364, 2106–2112. [Google Scholar] [CrossRef]
- Roemer, S.F.; Parisi, J.E.; Lennon, V.A.; Benarroch, E.E.; Lassmann, H.; Bruck, W.; Mandler, R.N.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; et al. Pattern-Specific Loss of Aquaporin-4 Immunoreactivity Distinguishes Neuromyelitis Optica from Multiple Sclerosis. Brain 2007, 130, 1194–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennon, V.A.; Kryzer, T.J.; Pittock, S.J.; Verkman, A.S.; Hinson, S.R. Igg Marker of Optic-Spinal Multiple Sclerosis Binds to the Aquaporin-4 Water Channel. J. Exp. Med. 2005, 202, 473–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamann, S.; Zeuthen, T.; La Cour, M.; Nagelhus, E.A.; Ottersen, O.P.; Agre, P.; Nielsen, S. Aquaporins in Complex Tissues: Distribution of Aquaporins 1–5 in Human and Rat Eye. Am. J. Physiol. 1998, 274, C1332–C1345. [Google Scholar] [CrossRef] [PubMed]
- Nagelhus, E.A.; Mathiisen, T.M.; Ottersen, O.P. Aquaporin-4 in the Central Nervous System: Cellular and Subcellular Distribution and Coexpression with Kir4.1. Neuroscience 2004, 129, 905–913. [Google Scholar] [CrossRef]
- Nagelhus, E.A.; Veruki, M.L.; Torp, R.; Haug, F.M.; Laake, J.H.; Nielsen, S.; Agre, P.; Ottersen, O.P. Aquaporin-4 Water Channel Protein in the Rat Retina and Optic Nerve: Polarized Expression in Muller Cells and Fibrous Astrocytes. J. Neurosci. 1998, 18, 2506–2519. [Google Scholar] [CrossRef]
- Whittam, D.; Wilson, M.; Hamid, S.; Keir, G.; Bhojak, M.; Jacob, A. What’s New in Neuromyelitis Optica? A Short Review for the Clinical Neurologist. J. Neurol. 2017, 264, 2330–2344. [Google Scholar] [CrossRef]
- Nielsen, S.; Nagelhus, E.A.; Amiry-Moghaddam, M.; Bourque, C.; Agre, P.; Ottersen, O.P. Specialized Membrane Domains for Water Transport in Glial Cells: High-Resolution Immunogold Cytochemistry of Aquaporin-4 in Rat Brain. J. Neurosci. 1997, 17, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Trebst, C.; Jarius, S.; Berthele, A.; Paul, F.; Schippling, S.; Wildemann, B.; Borisow, N.; Kleiter, I.; Aktas, O.; Kumpfel, T.; et al. Update on the Diagnosis and Treatment of Neuromyelitis Optica: Recommendations of the Neuromyelitis Optica Study Group (Nemos). J. Neurol. 2014, 261, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Wingerchuk, D.M.; Banwell, B.; Bennett, J.L.; Cabre, P.; Carroll, W.; Chitnis, T.; De Seze, J.; Fujihara, K.; Greenberg, B.; Jacob, A.; et al. International Consensus Diagnostic Criteria for Neuromyelitis Optica Spectrum Disorders. Neurology 2015, 85, 177–189. [Google Scholar] [CrossRef]
- Hamid, S.H.; Elsone, L.; Mutch, K.; Solomon, T.; Jacob, A. The Impact of 2015 Neuromyelitis Optica Spectrum Disorders Criteria on Diagnostic Rates. Mult. Scler. 2017, 23, 228–233. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Jia, D.; Fan, M.; Li, T.; Tian, D.C.; Liu, Y.; Shi, F.D. The Occurrence of Myelin Oligodendrocyte Glycoprotein Antibodies in Aquaporin-4-Antibody Seronegative Neuromyelitis Optica Spectrum Disorder: A Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2021, 53, 103030. [Google Scholar] [CrossRef]
- Takahashi, T.; Fujihara, K.; Nakashima, I.; Misu, T.; Miyazawa, I.; Nakamura, M.; Watanabe, S.; Shiga, Y.; Kanaoka, C.; Fujimori, J.; et al. Anti-Aquaporin-4 Antibody Is Involved in the Pathogenesis of Nmo: A Study on Antibody Titre. Brain 2007, 130, 1235–1243. [Google Scholar] [CrossRef] [Green Version]
- Schmetzer, O.; Lakin, E.; Roediger, B.; Duchow, A.; Asseyer, S.; Paul, F.; Siebert, N. Anti-Aquaporin 4 Igg Is Not Associated with Any Clinical Disease Characteristics in Neuromyelitis Optica Spectrum Disorder. Front. Neurol. 2021, 12, 635419. [Google Scholar] [CrossRef]
- Rotstein, D.; Kim, S.H.; Hacohen, Y.; Levy, M. Editorial: Epidemiology of Atypical Demyelinating Diseases. Front. Neurol. 2021, 12, 662353. [Google Scholar] [CrossRef]
- Palace, J.; Lin, D.Y.; Zeng, D.; Majed, M.; Elsone, L.; Hamid, S.; Messina, S.; Misu, T.; Sagen, J.; Whittam, D.; et al. Outcome Prediction Models in Aqp4-Igg Positive Neuromyelitis Optica Spectrum Disorders. Brain 2019, 142, 1310–1323. [Google Scholar] [CrossRef] [Green Version]
- Kitley, J.; Woodhall, M.; Waters, P.; Leite, M.I.; Devenney, E.; Craig, J.; Palace, J.; Vincent, A. Myelin-Oligodendrocyte Glycoprotein Antibodies in Adults with a Neuromyelitis Optica Phenotype. Neurology 2012, 79, 1273–1277. [Google Scholar] [CrossRef]
- Probstel, A.K.; Dornmair, K.; Bittner, R.; Sperl, P.; Jenne, D.; Magalhaes, S.; Villalobos, A.; Breithaupt, C.; Weissert, R.; Jacob, U.; et al. Antibodies to Mog Are Transient in Childhood Acute Disseminated Encephalomyelitis. Neurology 2011, 77, 580–588. [Google Scholar] [CrossRef]
- Kaneko, K.; Sato, D.K.; Nakashima, I.; Nishiyama, S.; Tanaka, S.; Marignier, R.; Hyun, J.W.; Oliveira, L.M.; Reindl, M.; Seifert-Held, T.; et al. Myelin Injury without Astrocytopathy in Neuroinflammatory Disorders with Mog Antibodies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, E.J.; Kim, S.; Choi, L.K.; Kim, K.; Kim, H.W.; Kim, K.K.; Lim, Y.M. Serum Biomarkers in Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, S.; Hashimoto, B.; Izaki, S.; Oji, S.; Fukaura, H.; Nomura, K. Clinical and Immunological Differences between Mog Associated Disease and Anti Aqp4 Antibody-Positive Neuromyelitis Optica Spectrum Disorders: Blood-Brain Barrier Breakdown and Peripheral Plasmablasts. Mult. Scler. Relat. Disord. 2020, 41, 102005. [Google Scholar] [CrossRef] [PubMed]
- Fujihara, K.; Cook, L.J. Neuromyelitis Optica Spectrum Disorders and Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: Current Topics. Curr. Opin. Neurol. 2020, 33, 300–308. [Google Scholar] [CrossRef]
- De Lott, L.B.; Bennett, J.L.; Costello, F. The Changing Landscape of Optic Neuritis: A Narrative Review. J. Neurol. 2022, 269, 111–124. [Google Scholar] [CrossRef]
- Khanna, S.; Sharma, A.; Huecker, J.; Gordon, M.; Naismith, R.T.; Van Stavern, G.P. Magnetic Resonance Imaging of Optic Neuritis in Patients with Neuromyelitis Optica Versus Multiple Sclerosis. J. Neuroophthalmol. 2012, 32, 216–220. [Google Scholar] [CrossRef] [Green Version]
- Storoni, M.; Davagnanam, I.; Radon, M.; Siddiqui, A.; Plant, G.T. Distinguishing Optic Neuritis in Neuromyelitis Optica Spectrum Disease from Multiple Sclerosis: A Novel Magnetic Resonance Imaging Scoring System. J. Neuroophthalmol. 2013, 33, 123–127. [Google Scholar] [CrossRef]
- Chen, J.J.; Flanagan, E.P.; Jitprapaikulsan, J.; Lopez-Chiriboga, A.S.S.; Fryer, J.P.; Leavitt, J.A.; Weinshenker, B.G.; Mckeon, A.; Tillema, J.M.; Lennon, V.A.; et al. Myelin Oligodendrocyte Glycoprotein Antibody-Positive Optic Neuritis: Clinical Characteristics, Radiologic Clues, and Outcome. Am. J. Ophthalmol. 2018, 195, 8–15. [Google Scholar] [CrossRef]
- Kitley, J.; Waters, P.; Woodhall, M.; Leite, M.I.; Murchison, A.; George, J.; Küker, W.; Chandratre, S.; Vincent, A.; Palace, J. Neuromyelitis Optica Spectrum Disorders with Aquaporin-4 and Myelin-Oligodendrocyte Glycoprotein Antibodies: A Comparative Study. JAMA Neurol. 2014, 71, 276–283. [Google Scholar] [CrossRef]
- Sato, D.K.; Callegaro, D.; Lana-Peixoto, M.A.; Waters, P.J.; De Haidar Jorge, F.M.; Takahashi, T.; Nakashima, I.; Apostolos-Pereira, S.L.; Talim, N.; Simm, R.F.; et al. Distinction between Mog Antibody-Positive and Aqp4 Antibody-Positive Nmo Spectrum Disorders. Neurology 2014, 82, 474–481. [Google Scholar] [CrossRef]
- Jarius, S.; Ruprecht, K.; Kleiter, I.; Borisow, N.; Asgari, N.; Pitarokoili, K.; Pache, F.; Stich, O.; Beume, L.A.; Hummert, M.W.; et al. Mog-Igg in Nmo and Related Disorders: A Multicenter Study of 50 Patients. Part 2: Epidemiology, Clinical Presentation, Radiological and Laboratory Features, Treatment Responses, and Long-Term Outcome. J. Neuroinflamm. 2016, 13, 280. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.; Fryer, J.P.; Lennon, V.A.; Jenkins, S.M.; Quek, A.M.; Smith, C.Y.; Mckeon, A.; Costanzi, C.; Iorio, R.; Weinshenker, B.G.; et al. Updated Estimate of Aqp4-Igg Serostatus and Disability Outcome in Neuromyelitis Optica. Neurology 2013, 81, 1197–1204. [Google Scholar] [CrossRef] [Green Version]
- Selmaj, K.; Selmaj, I. Novel Emerging Treatments for Nmosd. Neurol. Neurochir. Pol. 2019, 53, 317–326. [Google Scholar] [CrossRef]
- Traboulsee, A.; Greenberg, B.M.; Bennett, J.L.; Szczechowski, L.; Fox, E.; Shkrobot, S.; Yamamura, T.; Terada, Y.; Kawata, Y.; Wright, P.; et al. Safety and Efficacy of Satralizumab Monotherapy in Neuromyelitis Optica Spectrum Disorder: A Randomised, Double-Blind, Multicentre, Placebo-Controlled Phase 3 Trial. Lancet Neurol. 2020, 19, 402–412. [Google Scholar] [CrossRef]
- Cree, B.a.C.; Bennett, J.L.; Kim, H.J.; Weinshenker, B.G.; Pittock, S.J.; Wingerchuk, D.M.; Fujihara, K.; Paul, F.; Cutter, G.R.; Marignier, R.; et al. Inebilizumab for the Treatment of Neuromyelitis Optica Spectrum Disorder (N-Momentum): A Double-Blind, Randomised Placebo-Controlled Phase 2/3 Trial. Lancet 2019, 394, 1352–1363. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Zhang, I.; Kielhorn, A.; Royston, M.; Levy, M.; Fujihara, K.; Nakashima, I.; Tanvir, I.; Paul, F.; Pittock, S.J. Network Meta-Analysis of Food and Drug Administration-Approved Treatment Options for Adults with Aquaporin-4 Immunoglobulin G-Positive Neuromyelitis Optica Spectrum Disorder. Neurol. Ther. 2022, 11, 123–135. [Google Scholar] [CrossRef]
- Pittock, S.J.; Lennon, V.A.; Mckeon, A.; Mandrekar, J.; Weinshenker, B.G.; Lucchinetti, C.F.; O’toole, O.; Wingerchuk, D.M. Eculizumab in Aqp4-Igg-Positive Relapsing Neuromyelitis Optica Spectrum Disorders: An Open-Label Pilot Study. Lancet Neurol. 2013, 12, 554–562. [Google Scholar] [CrossRef]
- Katz Sand, I.; Fabian, M.T.; Telford, R.; Kraus, T.A.; Chehade, M.; Masilamani, M.; Moran, T.; Farrell, C.; Ebel, S.; Cook, L.J.; et al. Open-Label, Add-on Trial of Cetirizine for Neuromyelitis Optica. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e441. [Google Scholar] [CrossRef] [Green Version]
- Herges, K.; De Jong, B.A.; Kolkowitz, I.; Dunn, C.; Mandelbaum, G.; Ko, R.M.; Maini, A.; Han, M.H.; Killestein, J.; Polman, C.; et al. Protective Effect of an Elastase Inhibitor in a Neuromyelitis Optica-Like Disease Driven by a Peptide of Myelin Oligodendroglial Glycoprotein. Mult. Scler. 2012, 18, 398–408. [Google Scholar] [CrossRef] [Green Version]
- Ransom, B.; Behar, T.; Nedergaard, M. New Roles for Astrocytes (Stars at Last). Trends Neurosci. 2003, 26, 520–522. [Google Scholar] [CrossRef]
- Asavapanumas, N.; Ratelade, J.; Papadopoulos, M.C.; Bennett, J.L.; Levin, M.H.; Verkman, A.S. Experimental Mouse Model of Optic Neuritis with Inflammatory Demyelination Produced by Passive Transfer of Neuromyelitis Optica-Immunoglobulin G. J. Neuroinflamm. 2014, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.L.; De Seze, J.; Lana-Peixoto, M.; Palace, J.; Waldman, A.; Schippling, S.; Tenembaum, S.; Banwell, B.; Greenberg, B.; Levy, M.; et al. Neuromyelitis Optica and Multiple Sclerosis: Seeing Differences through Optical Coherence Tomography. Mult. Scler. 2015, 21, 678–688. [Google Scholar] [CrossRef] [Green Version]
- Lucchinetti, C.F.; Mandler, R.N.; Mcgavern, D.; Bruck, W.; Gleich, G.; Ransohoff, R.M.; Trebst, C.; Weinshenker, B.; Wingerchuk, D.; Parisi, J.E.; et al. A Role for Humoral Mechanisms in the Pathogenesis of Devic’s Neuromyelitis Optica. Brain 2002, 125, 1450–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchinetti, C.F.; Guo, Y.; Popescu, B.F.G.; Fujihara, K.; Itoyama, Y.; Misu, T. The Pathology of an Autoimmune Astrocytopathy: Lessons Learned from Neuromyelitis Optica. Brain Pathol. 2014, 24, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Hinson, S.R.; Romero, M.F.; Popescu, B.F.; Lucchinetti, C.F.; Fryer, J.P.; Wolburg, H.; Fallier-Becker, P.; Noell, S.; Lennon, V.A. Molecular Outcomes of Neuromyelitis Optica (Nmo)-Igg Binding to Aquaporin-4 in Astrocytes. Proc. Natl. Acad. Sci. USA 2012, 109, 1245–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, J.M.; Tajima, M.; Verkman, A.S. Live-Cell Imaging of Aquaporin-4 Diffusion and Interactions in Orthogonal Arrays of Particles. Neuroscience 2010, 168, 892–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, Y.; Yasui, M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules 2022, 12, 591. [Google Scholar] [CrossRef]
- Mckeon, A.; Lennon, V.A.; Lotze, T.; Tenenbaum, S.; Ness, J.M.; Rensel, M.; Kuntz, N.L.; Fryer, J.P.; Homburger, H.; Hunter, J.; et al. Cns Aquaporin-4 Autoimmunity in Children. Neurology 2008, 71, 93–100. [Google Scholar] [CrossRef]
- Matiello, M.; Schaefer-Klein, J.; Sun, D.; Weinshenker, B.G. Aquaporin 4 Expression and Tissue Susceptibility to Neuromyelitis Optica. JAMA Neurol. 2013, 70, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Crane, J.M.; Van Hoek, A.N.; Skach, W.R.; Verkman, A.S. Aquaporin-4 Dynamics in Orthogonal Arrays in Live Cells Visualized by Quantum Dot Single Particle Tracking. Mol. Biol. Cell 2008, 19, 3369–3378. [Google Scholar] [CrossRef] [Green Version]
- Neely, J.D.; Christensen, B.M.; Nielsen, S.; Agre, P. Heterotetrameric Composition of Aquaporin-4 Water Channels. Biochemistry 1999, 38, 11156–11163. [Google Scholar] [CrossRef]
- Phuan, P.W.; Ratelade, J.; Rossi, A.; Tradtrantip, L.; Verkman, A.S. Complement-Dependent Cytotoxicity in Neuromyelitis Optica Requires Aquaporin-4 Protein Assembly in Orthogonal Arrays. J. Biol. Chem. 2012, 287, 13829–13839. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bazzi, S.A.; Schmitz, F.; Tanno, H.; Mcdaniel, J.R.; Lee, C.-H.; Joshi, C.; Kim, J.E.; Monson, N.; Greenberg, B.M.; et al. Molecular Level Characterization of Circulating Aquaporin-4 Antibodies in Neuromyelitis Optica Spectrum Disorder. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1034. [Google Scholar] [CrossRef]
- Zeka, B.; Lassmann, H.; Bradl, M. Muller Cells and Retinal Axons Can Be Primary Targets in Experimental Neuromyelitis Optica Spectrum Disorder. Clin. Exp. Neuroimmunol. 2017, 8, 3–7. [Google Scholar] [CrossRef]
- Wingerchuk, D.M. Neuromyelitis Optica: Potential Roles for Intravenous Immunoglobulin. J. Clin. Immunol. 2013, 33 (Suppl. 1), S33–S37. [Google Scholar] [CrossRef]
- You, Y.; Zhu, L.; Zhang, T.; Shen, T.; Fontes, A.; Yiannikas, C.; Parratt, J.; Barton, J.; Schulz, A.; Gupta, V.; et al. Evidence of Müller Glial Dysfunction in Patients with Aquaporin-4 Immunoglobulin G-Positive Neuromyelitis Optica Spectrum Disorder. Ophthalmology 2019, 126, 801–810. [Google Scholar] [CrossRef] [Green Version]
- Ratelade, J.; Asavapanumas, N.; Ritchie, A.M.; Wemlinger, S.; Bennett, J.L.; Verkman, A.S. Involvement of Antibody-Dependent Cell-Mediated Cytotoxicity in Inflammatory Demyelination in a Mouse Model of Neuromyelitis Optica. Acta Neuropathol. 2013, 126, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Duan, T.; Smith, A.J.; Verkman, A.S. Complement-Independent Bystander Injury in Aqp4-Igg Seropositive Neuromyelitis Optica Produced by Antibody-Dependent Cellular Cytotoxicity. Acta Neuropathol. Commun. 2019, 7, 112. [Google Scholar] [CrossRef]
- Asavapanumas, N.; Ratelade, J.; Verkman, A.S. Unique Neuromyelitis Optica Pathology Produced in Naive Rats by Intracerebral Administration of Nmo-Igg. Acta Neuropathol. 2014, 127, 539–551. [Google Scholar] [CrossRef] [Green Version]
- Seidel, U.J.; Schlegel, P.; Lang, P. Natural Killer Cell Mediated Antibody-Dependent Cellular Cytotoxicity in Tumor Immunotherapy with Therapeutic Antibodies. Front. Immunol. 2013, 4, 76. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Takaoka, A. Comparing Antibody and Small-Molecule Therapies for Cancer. Nat. Rev. Cancer 2006, 6, 714–727. [Google Scholar] [CrossRef]
- Huppert, J.; Closhen, D.; Croxford, A.; White, R.; Kulig, P.; Pietrowski, E.; Bechmann, I.; Becher, B.; Luhmann, H.J.; Waisman, A.; et al. Cellular Mechanisms of Il-17-Induced Blood-Brain Barrier Disruption. FASEB J. 2010, 24, 1023–1034. [Google Scholar] [CrossRef]
- Carlson, T.; Kroenke, M.; Rao, P.; Lane, T.E.; Segal, B. The Th17–Elr+ Cxc Chemokine Pathway Is Essential for the Development of Central Nervous System Autoimmune Disease. J. Exp. Med. 2008, 205, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Varrin-Doyer, M.; Spencer, C.M.; Schulze-Topphoff, U.; Nelson, P.A.; Stroud, R.M.; Cree, B.A.C.; Zamvil, S.S. Aquaporin 4-Specific T Cells in Neuromyelitis Optica Exhibit a Th17 Bias and Recognize Clostridium Abc Transporter. Ann. Neurol. 2012, 72, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzawa, A.; Mori, M.; Arai, K.; Sato, Y.; Hayakawa, S.; Masuda, S.; Taniguchi, J.; Kuwabara, S. Cytokine and Chemokine Profiles in Neuromyelitis Optica: Significance of Interleukin-6. Mult. Scler. J. 2010, 16, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Passos, G.R.D.; Sato, D.K.; Becker, J.; Fujihara, K. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications. Mediat. Inflamm. 2016, 2016, 5314541. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Gallagher, S.; Monson, N.L.; Herbst, R.; Wang, Y. Inebilizumab, a B Cell-Depleting Anti-Cd19 Antibody for the Treatment of Autoimmune Neurological Diseases: Insights from Preclinical Studies. J. Clin. Med. 2016, 5, 107. [Google Scholar] [CrossRef] [Green Version]
- Challa, D.K.; Bussmeyer, U.; Khan, T.; Montoyo, H.P.; Bansal, P.; Ober, R.J.; Ward, E.S. Autoantibody Depletion Ameliorates Disease in Murine Experimental Autoimmune Encephalomyelitis. mAbs 2013, 5, 655–659. [Google Scholar] [CrossRef] [Green Version]
- Hinson, S.R.; Pittock, S.J.; Lucchinetti, C.F.; Roemer, S.F.; Fryer, J.P.; Kryzer, T.J.; Lennon, V.A. Pathogenic Potential of Igg Binding to Water Channel Extracellular Domain in Neuromyelitis Optica. Neurology 2007, 69, 2221–2231. [Google Scholar] [CrossRef]
- Yao, X.; Verkman, A.S. Complement Regulator Cd59 Prevents Peripheral Organ Injury in Rats Made Seropositive for Neuromyelitis Optica Immunoglobulin G. Acta Neuropathol. Commun. 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Soltys, J.; Liu, Y.; Ritchie, A.; Wemlinger, S.; Schaller, K.; Schumann, H.; Owens, G.P.; Bennett, J.L. Membrane Assembly of Aquaporin-4 Autoantibodies Regulates Classical Complement Activation in Neuromyelitis Optica. J. Clin. Investig. 2019, 129, 2000–2013. [Google Scholar] [CrossRef] [Green Version]
- Phuan, P.W.; Zhang, H.; Asavapanumas, N.; Leviten, M.; Rosenthal, A.; Tradtrantip, L.; Verkman, A.S. C1q-Targeted Monoclonal Antibody Prevents Complement-Dependent Cytotoxicity and Neuropathology in In Vitro and Mouse Models of Neuromyelitis Optica. Acta Neuropathol. 2013, 125, 829–840. [Google Scholar] [CrossRef]
- Brachet, G.; Bourquard, T.; Gallay, N.; Reiter, E.; Gouilleux-Gruart, V.; Poupon, A.; Watier, H. Eculizumab Epitope on Complement C5: Progress towards a Better Understanding of the Mechanism of Action. Mol. Immunol. 2016, 77, 126–131. [Google Scholar] [CrossRef]
- Hillmen, P.; Young, N.S.; Schubert, J.; Brodsky, R.A.; Socie, G.; Muus, P.; Roth, A.; Szer, J.; Elebute, M.O.; Nakamura, R.; et al. The Complement Inhibitor Eculizumab in Paroxysmal Nocturnal Hemoglobinuria. N. Engl. J. Med. 2006, 355, 1233–1243. [Google Scholar] [CrossRef]
- Merle, N.S.; Noe, R.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part II: Role in Immunity. Front. Immunol. 2015, 6, 257. [Google Scholar] [CrossRef] [Green Version]
- Pache, F.; Ringelstein, M.; Aktas, O.; Kleiter, I.; Jarius, S.; Siebert, N.; Bellmann-Strobl, J.; Paul, F.; Ruprecht, K. C3 and C4 Complement Levels in Aqp4-Igg-Positive Nmosd and in Mogad. J. Neuroimmunol. 2021, 360, 577699. [Google Scholar] [CrossRef]
- Takai, Y.; Misu, T.; Kaneko, K.; Chihara, N.; Narikawa, K.; Tsuchida, S.; Nishida, H.; Komori, T.; Seki, M.; Komatsu, T.; et al. Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease: An Immunopathological Study. Brain 2020, 143, 1431–1446. [Google Scholar] [CrossRef]
- Kaneko, K.; Sato, D.K.; Nakashima, I.; Ogawa, R.; Akaishi, T.; Takai, Y.; Nishiyama, S.; Takahashi, T.; Misu, T.; Kuroda, H.; et al. Csf Cytokine Profile in Mog-Igg+ Neurological Disease Is Similar to Aqp4-Igg+ Nmosd but Distinct from Ms: A Cross-Sectional Study and Potential Therapeutic Implications. J. Neurol. Neurosurg. Psychiatry 2018, 89, 927–936. [Google Scholar] [CrossRef]
- Saadoun, S.; Waters, P.; Owens, G.P.; Bennett, J.L.; Vincent, A.; Papadopoulos, M.C. Neuromyelitis Optica Mog-Igg Causes Reversible Lesions in Mouse Brain. Acta Neuropathol. Commun. 2014, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Peschl, P.; Schanda, K.; Zeka, B.; Given, K.; Bohm, D.; Ruprecht, K.; Saiz, A.; Lutterotti, A.; Rostasy, K.; Hoftberger, R.; et al. Human Antibodies against the Myelin Oligodendrocyte Glycoprotein Can Cause Complement-Dependent Demyelination. J. Neuroinflamm. 2017, 14, 208. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.W.; Lopez, J.A.; Wendel, E.M.; Ramanathan, S.; Gross, C.C.; Klotz, L.; Reindl, M.; Dale, R.C.; Wiendl, H.; Rostásy, K.; et al. Complement Activation Is a Prominent Feature of Mogad. Ann. Neurol. 2021, 90, 976–982. [Google Scholar] [CrossRef]
- Carnero Contentti, E.; Correale, J. Neuromyelitis Optica Spectrum Disorders: From Pathophysiology to Therapeutic Strategies. J. Neuroinflamm. 2021, 18, 208. [Google Scholar] [CrossRef]
- Papadopoulos, M.C.; Bennett, J.L.; Verkman, A.S. Treatment of Neuromyelitis Optica: State-of-the-Art and Emerging Therapies. Nat. Rev. Neurol. 2014, 10, 493–506. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, B. Effect of Autologous Hematopoietic Stem Cell Transplantation on Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorder: A Prisma-Compliant Meta-Analysis. Bone Marrow Transplant. 2020, 55, 1928–1934. [Google Scholar] [CrossRef]
- Zubizarreta, I.; Flórez-Grau, G.; Vila, G.; Cabezón, R.; España, C.; Andorra, M.; Saiz, A.; Llufriu, S.; Sepulveda, M.; Sola-Valls, N.; et al. Immune Tolerance in Multiple Sclerosis and Neuromyelitis Optica with Peptide-Loaded Tolerogenic Dendritic Cells in a Phase 1b Trial. Proc. Natl. Acad. Sci. USA 2019, 116, 8463–8470. [Google Scholar] [CrossRef] [Green Version]
- Garren, H.; Robinson, W.H.; Krasulová, E.; Havrdová, E.; Nadj, C.; Selmaj, K.; Losy, J.; Nadj, I.; Radue, E.W.; Kidd, B.A.; et al. Phase 2 Trial of a DNA Vaccine Encoding Myelin Basic Protein for Multiple Sclerosis. Ann. Neurol. 2008, 63, 611–620. [Google Scholar] [CrossRef]
- Bar-Or, A.; Steinman, L.; Behne, J.M.; Benitez-Ribas, D.; Chin, P.S.; Clare-Salzler, M.; Healey, D.; Kim, J.I.; Kranz, D.M.; Lutterotti, A.; et al. Restoring Immune Tolerance in Neuromyelitis Optica: Part II. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e277. [Google Scholar] [CrossRef] [Green Version]
- Steinman, L.; Bar-Or, A.; Behne, J.M.; Benitez-Ribas, D.; Chin, P.S.; Clare-Salzler, M.; Healey, D.; Kim, J.I.; Kranz, D.M.; Lutterotti, A.; et al. Restoring Immune Tolerance in Neuromyelitis Optica: Part I. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e276. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, F.; Nishihara, H.; Kanda, T. Blood-Brain Barrier Dysfunction in Immuno-Mediated Neurological Diseases. Immunol. Med. 2018, 41, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Asavapanumas, N.; Tradtrantip, L.; Verkman, A.S. Targeting the Complement System in Neuromyelitis Optica Spectrum Disorder. Expert Opin. Biol. Ther. 2021, 21, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Saadoun, S.; Waters, P.; Bell, B.A.; Vincent, A.; Verkman, A.S.; Papadopoulos, M.C. Intra-Cerebral Injection of Neuromyelitis Optica Immunoglobulin G and Human Complement Produces Neuromyelitis Optica Lesions in Mice. Brain 2010, 133, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafouri-Fard, S.; Azimi, T.; Taheri, M. A Comprehensive Review on the Role of Genetic Factors in Neuromyelitis Optica Spectrum Disorder. Front. Immunol. 2021, 12, 737673. [Google Scholar] [CrossRef] [PubMed]
- Matiello, M.; Kim, H.J.; Kim, W.; Brum, D.G.; Barreira, A.A.; Kingsbury, D.J.; Plant, G.T.; Adoni, T.; Weinshenker, B.G. Familial Neuromyelitis Optica. Neurology 2010, 75, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, X.; Chen, C.; Sun, X.; Wang, J.; Li, R.; Chang, Y.; Fan, P.; Wang, Y.; Wu, Y.; Peng, L.; et al. Whole-Exome Sequencing Reveals the Major Genetic Factors Contributing to Neuromyelitis Optica Spectrum Disorder in Chinese Patients with Aquaporin 4-Igg Seropositivity. Eur. J. Neurol. 2021, 28, 2294–2304. [Google Scholar] [CrossRef] [PubMed]
- Zéphir, H.; Fajardy, I.; Outteryck, O.; Blanc, F.; Roger, N.; Fleury, M.; Rudolf, G.; Marignier, R.; Vukusic, S.; Confavreux, C.; et al. Is Neuromyelitis Optica Associated with Human Leukocyte Antigen? Mult. Scler. 2009, 15, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Masaki, K.; Isobe, N.; Sato, S.; Yamamoto, K.; Nakamura, Y.; Watanabe, M.; Suenaga, T.; Kira, J.I. Genetic Factors for Susceptibility to and Manifestations of Neuromyelitis Optica. Ann. Clin. Transl. Neurol. 2020, 7, 2082–2093. [Google Scholar] [CrossRef]
- Estrada, K.; Whelan, C.W.; Zhao, F.; Bronson, P.; Handsaker, R.E.; Sun, C.; Carulli, J.P.; Harris, T.; Ransohoff, R.M.; Mccarroll, S.A.; et al. A Whole-Genome Sequence Study Identifies Genetic Risk Factors for Neuromyelitis Optica. Nat. Commun. 2018, 9, 1929. [Google Scholar] [CrossRef]
- Ogawa, K.; Okuno, T.; Hosomichi, K.; Hosokawa, A.; Hirata, J.; Suzuki, K.; Sakaue, S.; Kinoshita, M.; Asano, Y.; Miyamoto, K.; et al. Next-Generation Sequencing Identifies Contribution of Both Class I and Ii Hla Genes on Susceptibility of Multiple Sclerosis in Japanese. J. Neuroinflamm. 2019, 16, 162. [Google Scholar] [CrossRef] [Green Version]
- Beppu, S.; Kinoshita, M.; Wilamowski, J.; Suenaga, T.; Yasumizu, Y.; Ogawa, K.; Ishikura, T.; Tada, S.; Koda, T.; Murata, H.; et al. High Cell Surface Expression and Peptide Binding Affinity of Hla-Dqa1*05:03, a Susceptible Allele of Neuromyelitis Optica Spectrum Disorders (Nmosd). Sci. Rep. 2022, 12, 106. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakamura, Y.; Sato, S.; Niino, M.; Fukaura, H.; Tanaka, M.; Ochi, H.; Kanda, T.; Takeshita, Y.; Yokota, T.; et al. Hla Genotype-Clinical Phenotype Correlations in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders Based on Japan Ms/Nmosd Biobank Data. Sci. Rep. 2021, 11, 607. [Google Scholar] [CrossRef]
- Yoshimura, S.; Isobe, N.; Matsushita, T.; Yonekawa, T.; Masaki, K.; Sato, S.; Kawano, Y.; Kira, J. Distinct Genetic and Infectious Profiles in Japanese Neuromyelitis Optica Patients According to Anti-Aquaporin 4 Antibody Status. J. Neurol. Neurosurg. Psychiatry 2013, 84, 29–34. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Li, Y.; Dong, S.A.; Yi, M.; Zhang, Q.X.; Feng, B.; Yang, L.; Shi, F.D.; Yang, C.S. Multi-Level Analyses of Genome-Wide Association Study to Reveal Significant Risk Genes and Pathways in Neuromyelitis Optica Spectrum Disorder. Front. Genet. 2021, 12, 690537. [Google Scholar] [CrossRef]
- Uzawa, A.; Mori, M.; Kuwabara, S. Cytokines and Chemokines in Neuromyelitis Optica: Pathogenetic and Therapeutic Implications. Brain Pathol. 2014, 24, 67–73. [Google Scholar] [CrossRef]
- Rocca, M.A.; Cacciaguerra, L.; Filippi, M. Moving Beyond Anti-Aquaporin-4 Antibodies: Emerging Biomarkers in the Spectrum of Neuromyelitis Optica. Expert Rev. Neurother. 2020, 20, 601–618. [Google Scholar] [CrossRef]
- Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.-H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; et al. A Distinct Lineage of Cd4 T Cells Regulates Tissue Inflammation by Producing Interleukin 17. Nat. Immunol. 2005, 6, 1133–1141. [Google Scholar] [CrossRef]
- Hou, M.M.; Li, Y.F.; He, L.L.; Li, X.Q.; Zhang, Y.; Zhang, S.X.; Li, X.Y. Proportions of Th17 Cells and Th17-Related Cytokines in Neuromyelitis Optica Spectrum Disorders Patients: A Meta-Analysis. Int. Immunopharmacol. 2019, 75, 105793. [Google Scholar] [CrossRef]
- Maciak, K.; Pietrasik, S.; Dziedzic, A.; Redlicka, J.; Saluk-Bijak, J.; Bijak, M.; Włodarczyk, T.; Miller, E. Th17-Related Cytokines as Potential Discriminatory Markers between Neuromyelitis Optica (Devic’s Disease) and Multiple Sclerosis—A Review. Int. J. Mol. Sci. 2021, 22, 8946. [Google Scholar] [CrossRef]
- Fujihara, K.; Bennett, J.L.; De Seze, J.; Haramura, M.; Kleiter, I.; Weinshenker, B.G.; Kang, D.; Mughal, T.; Yamamura, T. Interleukin-6 in Neuromyelitis Optica Spectrum Disorder Pathophysiology. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e841. [Google Scholar] [CrossRef]
- Takeshita, Y.; Fujikawa, S.; Serizawa, K.; Fujisawa, M.; Matsuo, K.; Nemoto, J.; Shimizu, F.; Sano, Y.; Tomizawa-Shinohara, H.; Miyake, S.; et al. New Bbb Model Reveals That Il-6 Blockade Suppressed the Bbb Disorder, Preventing Onset of Nmosd. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1076. [Google Scholar] [CrossRef]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; Mcclanahan, T.; Kastelein, R.A.; Cua, D.J. Il-23 Drives a Pathogenic T Cell Population That Induces Autoimmune Inflammation. J. Exp. Med. 2005, 201, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. Il-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef]
- El-Behi, M.; Ciric, B.; Dai, H.; Yan, Y.; Cullimore, M.; Safavi, F.; Zhang, G.-X.; Dittel, B.N.; Rostami, A. The Encephalitogenicity of Th17 Cells Is Dependent on Il-1- and Il-23-Induced Production of the Cytokine Gm-Csf. Nat. Immunol. 2011, 12, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.; Fernandes, G.; Kasahara, T.M.; Barros, P.O.; Dias, A.S.O.; Araujo, A.; Ornelas, A.M.M.; Aguiar, R.S.; Alvarenga, R.; Bento, C.a.M. The Expansion of Circulating Il-6 and Il-17-Secreting Follicular Helper T Cells Is Associated with Neurological Disabilities in Neuromyelitis Optica Spectrum Disorders. J. Neuroimmunol. 2019, 330, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Mori, M.; Uzawa, A.; Masuda, H.; Muto, M.; Ohtani, R.; Kuwabara, S. Increased Cerebrospinal Fluid Metalloproteinase-2 and Interleukin-6 Are Associated with Albumin Quotient in Neuromyelitis Optica: Their Possible Role on Blood-Brain Barrier Disruption. Mult. Scler. 2017, 23, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Kimura, A.; Naka, T.; Kishimoto, T. Il-6-Dependent and -Independent Pathways in the Development of Interleukin 17-Producing T Helper Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 12099–12104. [Google Scholar] [CrossRef] [Green Version]
- Takeshita, Y.; Obermeier, B.; Cotleur, A.C.; Spampinato, S.F.; Shimizu, F.; Yamamoto, E.; Sano, Y.; Kryzer, T.J.; Lennon, V.A.; Kanda, T.; et al. Effects of Neuromyelitis Optica-Igg at the Blood-Brain Barrier in Vitro. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e311. [Google Scholar] [CrossRef] [Green Version]
- Uzawa, A.; Mori, M.; Kuwabara, S. Role of Interleukin-6 in the Pathogenesis of Neuromyelitis Optica. Clin. Exp. Neuroimmunol. 2013, 4, 167–172. [Google Scholar] [CrossRef]
- Kaplin, A.I.; Deshpande, D.M.; Scott, E.; Krishnan, C.; Carmen, J.S.; Shats, I.; Martinez, T.; Drummond, J.; Dike, S.; Pletnikov, M.; et al. Il-6 Induces Regionally Selective Spinal Cord Injury in Patients with the Neuroinflammatory Disorder Transverse Myelitis. J. Clin. Investig. 2005, 115, 2731–2741. [Google Scholar] [CrossRef] [Green Version]
- Moinfar, Z.; Zamvil, S.S. Microglia Complement Astrocytes in Neuromyelitis Optica. J. Clin. Investig. 2020, 130, 3961–3964. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Tan, W.; Zhou, Y. The Role and Mechanisms of Microglia in Neuromyelitis Optica Spectrum Disorders. Int. J. Med. Sci. 2021, 18, 3059–3065. [Google Scholar] [CrossRef]
- Takano, R.; Misu, T.; Takahashi, T.; Sato, S.; Fujihara, K.; Itoyama, Y. Astrocytic Damage Is Far More Severe Than Demyelination in Nmo: A Clinical Csf Biomarker Study. Neurology 2010, 75, 208–216. [Google Scholar] [CrossRef]
- Wang, J.; Cui, C.; Lu, Y.; Chang, Y.; Wang, Y.; Li, R.; Shan, Y.; Sun, X.; Long, Y.; Wang, H.; et al. Therapeutic Response and Possible Biomarkers in Acute Attacks of Neuromyelitis Optica Spectrum Disorders: A Prospective Observational Study. Front. Immunol. 2021, 12, 720907. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakamura, Y.; Michalak, Z.; Isobe, N.; Barro, C.; Leppert, D.; Matsushita, T.; Hayashi, F.; Yamasaki, R.; Kuhle, J.; et al. Serum Gfap and Neurofilament Light as Biomarkers of Disease Activity and Disability in Nmosd. Neurology 2019, 93, e1299–e1311. [Google Scholar] [CrossRef]
- Aktas, O.; Smith, M.A.; Rees, W.A.; Bennett, J.L.; She, D.; Katz, E.; Cree, B.a.C.; N-MOmentum Scientific Group and the N-MOmentum Study Investigators. Serum Glial Fibrillary Acidic Protein: A Neuromyelitis Optica Spectrum Disorder Biomarker. Ann. Neurol. 2021, 89, 895–910. [Google Scholar] [CrossRef]
- Schindler, P.; Grittner, U.; Oechtering, J.; Leppert, D.; Siebert, N.; Duchow, A.S.; Oertel, F.C.; Asseyer, S.; Kuchling, J.; Zimmermann, H.G.; et al. Serum Gfap and Nfl as Disease Severity and Prognostic Biomarkers in Patients with Aquaporin-4 Antibody-Positive Neuromyelitis Optica Spectrum Disorder. J. Neuroinflamm. 2021, 18, 105. [Google Scholar] [CrossRef]
- Fu, C.C.; Gao, C.; Zhang, H.H.; Mao, Y.Q.; Lu, J.Q.; Petritis, B.; Huang, A.S.; Yang, X.G.; Long, Y.M.; Huang, R.P. Serum Molecular Biomarkers in Neuromyelitis Optica and Multiple Sclerosis. Mult. Scler. Relat. Disord. 2022, 59, 103527. [Google Scholar] [CrossRef]
- Sonar, S.A.; Shaikh, S.; Joshi, N.; Atre, A.N.; Lal, G. Ifn-Gamma Promotes Transendothelial Migration of Cd4+ T Cells across the Blood-Brain Barrier. Immunol. Cell Biol. 2017, 95, 843–853. [Google Scholar] [CrossRef]
- Bonney, S.; Seitz, S.; Ryan, C.A.; Jones, K.L.; Clarke, P.; Tyler, K.L.; Siegenthaler, J.A. Gamma Interferon Alters Junctional Integrity Via Rho Kinase, Resulting in Blood-Brain Barrier Leakage in Experimental Viral Encephalitis. mBio 2019, 10, e01675-19. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Yang, T.; Wang, J.; Zhao, T.; Wang, L.; Kang, Y.; Cheng, C.; Fan, Y. Elevated Plasma Chemokines for Eosinophils in Neuromyelitis Optica Spectrum Disorders during Remission. Front. Neurol. 2018, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Specovius, S.; Zimmermann, H.G.; Oertel, F.C.; Chien, C.; Bereuter, C.; Cook, L.J.; Lana Peixoto, M.A.; Fontenelle, M.A.; Kim, H.J.; Hyun, J.W.; et al. Cohort Profile: A Collaborative Multicentre Study of Retinal Optical Coherence Tomography in 539 Patients with Neuromyelitis Optica Spectrum Disorders (Croctino). BMJ Open 2020, 10, e035397. [Google Scholar] [CrossRef]
- Oertel, F.C.; Specovius, S.; Zimmermann, H.G.; Chien, C.; Motamedi, S.; Bereuter, C.; Cook, L.; Lana Peixoto, M.A.; Fontanelle, M.A.; Kim, H.J.; et al. Retinal Optical Coherence Tomography in Neuromyelitis Optica. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1068. [Google Scholar] [CrossRef]
- Graves, J.S.; Oertel, F.C.; Van Der Walt, A.; Collorone, S.; Sotirchos, E.S.; Pihl-Jensen, G.; Albrecht, P.; Yeh, E.A.; Saidha, S.; Frederiksen, J.; et al. Leveraging Visual Outcome Measures to Advance Therapy Development in Neuroimmunologic Disorders. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1126. [Google Scholar] [CrossRef]
- Schneider, E.; Zimmermann, H.; Oberwahrenbrock, T.; Kaufhold, F.; Kadas, E.M.; Petzold, A.; Bilger, F.; Borisow, N.; Jarius, S.; Wildemann, B.; et al. Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis. PLoS ONE 2013, 8, e66151. [Google Scholar] [CrossRef] [PubMed]
- Wingerchuk, D.M.; Pittock, S.J.; Lucchinetti, C.F.; Lennon, V.A.; Weinshenker, B.G. A Secondary Progressive Clinical Course Is Uncommon in Neuromyelitis Optica. Neurology 2007, 68, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Sotirchos, E.S.; Saidha, S.; Byraiah, G.; Mealy, M.A.; Ibrahim, M.A.; Sepah, Y.J.; Newsome, S.D.; Ratchford, J.N.; Frohman, E.M.; Balcer, L.J.; et al. In Vivo Identification of Morphologic Retinal Abnormalities in Neuromyelitis Optica. Neurology 2013, 80, 1406–1414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oertel, F.C.; Kuchling, J.; Zimmermann, H.; Chien, C.; Schmidt, F.; Knier, B.; Bellmann-Strobl, J.; Korn, T.; Scheel, M.; Klistorner, A.; et al. Microstructural Visual System Changes in Aqp4-Antibody–Seropositive Nmosd. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Horssen, J.; Witte, M.E.; Ciccarelli, O. The Role of Mitochondria in Axonal Degeneration and Tissue Repair in Ms. Mult. Scler. 2012, 18, 1058–1067. [Google Scholar] [CrossRef] [Green Version]
- Evangelou, N.; Konz, D.; Esiri, M.M.; Smith, S.; Palace, J.; Matthews, P.M. Size-Selective Neuronal Changes in the Anterior Optic Pathways Suggest a Differential Susceptibility to Injury in Multiple Sclerosis. Brain 2001, 124, 1813–1820. [Google Scholar] [CrossRef]
- Al-Nosairy, K.O.; Horbrügger, M.; Schippling, S.; Wagner, M.; Haghikia, A.; Pawlitzki, M.; Hoffmann, M.B. Structure–Function Relationship of Retinal Ganglion Cells in Multiple Sclerosis. Int. J. Mol. Sci. 2021, 22, 3419. [Google Scholar] [CrossRef]
- La Morgia, C.; Di Vito, L.; Carelli, V.; Carbonelli, M. Patterns of Retinal Ganglion Cell Damage in Neurodegenerative Disorders: Parvocellular vs Magnocellular Degeneration in Optical Coherence Tomography Studies. Front. Neurol. 2017, 8, 710. [Google Scholar] [CrossRef]
- Zeng, P.; Du, C.; Zhang, R.; Jia, D.; Jiang, F.; Fan, M.; Zhang, C. Optical Coherence Tomography Reveals Longitudinal Changes in Retinal Damage under Different Treatments for Neuromyelitis Optica Spectrum Disorder. Front. Neurol. 2021, 12, 669567. [Google Scholar] [CrossRef]
- Jeong, I.H.; Kim, H.J.; Kim, N.H.; Jeong, K.S.; Park, C.Y. Subclinical Primary Retinal Pathology in Neuromyelitis Optica Spectrum Disorder. J. Neurol. 2016, 263, 1343–1348. [Google Scholar] [CrossRef]
- Roca-Fernandez, A.; Oertel, F.C.; Yeo, T.; Motamedi, S.; Probert, F.; Craner, M.J.; Sastre-Garriga, J.; Zimmermann, H.G.; Asseyer, S.; Kuchling, J.; et al. Foveal Changes in Aquaporin-4 Antibody Seropositive Neuromyelitis Optica Spectrum Disorder Are Independent of Optic Neuritis and Not Overtly Progressive. Eur. J. Neurol. 2021, 28, 2280–2293. [Google Scholar] [CrossRef]
- Felix, C.M.; Levin, M.H.; Verkman, A.S. Complement-Independent Retinal Pathology Produced by Intravitreal Injection of Neuromyelitis Optica Immunoglobulin G. J. Neuroinflamm. 2016, 13, 275. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kuehlewein, L.; Pineles, S.L.; Tandon, A.K.; Bose, S.X.; Klufas, M.A.; Sadda, S.R.; Sarraf, D. En Face Optical Coherence Tomography of Macular Microcysts Due to Optic Neuropathy from Neuromyelitis Optica. Retin Cases Brief Rep. 2015, 9, 302–306. [Google Scholar] [CrossRef]
- Wolff, B.; Basdekidou, C.; Vasseur, V.; Mauget-Faysse, M.; Sahel, J.A.; Vignal, C. Retinal Inner Nuclear Layer Microcystic Changes in Optic Nerve Atrophy: A Novel Spectral-Domain Oct Finding. Retina 2013, 33, 2133–2138. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H.; Lu, Q.; Qing, G.; Wang, N.; Wang, Y.; Li, S.; Yang, D.; Yan, F. Detection of Early Neuron Degeneration and Accompanying Glial Responses in the Visual Pathway in a Rat Model of Acute Intraocular Hypertension. Brain Res. 2009, 1303, 131–143. [Google Scholar] [CrossRef]
- Mirza, R.G.; Johnson, M.W.; Jampol, L.M. Optical Coherence Tomography Use in Evaluation of the Vitreoretinal Interface: A Review. Surv. Ophthalmol. 2007, 52, 397–421. [Google Scholar] [CrossRef]
- Gelfand, J.M.; Nolan, R.; Schwartz, D.M.; Graves, J.; Green, A.J. Microcystic Macular Oedema in Multiple Sclerosis Is Associated with Disease Severity. Brain 2012, 135, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Kappos, L.; Radue, E.W.; O’connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A Placebo-Controlled Trial of Oral Fingolimod in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef] [Green Version]
- Barboni, P.; Carelli, V.; Savini, G.; Carbonelli, M.; La Morgia, C.; Sadun, A.A. Microcystic Macular Degeneration from Optic Neuropathy: Not Inflammatory, Not Trans-Synaptic Degeneration. Brain 2013, 136, e239. [Google Scholar] [CrossRef]
- Strong, S.A.; Hirji, N.; Quartilho, A.; Kalitzeos, A.; Michaelides, M. Retrospective Cohort Study Exploring Whether an Association Exists between Spatial Distribution of Cystoid Spaces in Cystoid Macular Oedema Secondary to Retinitis Pigmentosa and Response to Treatment with Carbonic Anhydrase Inhibitors. Br. J. Ophthalmol. 2019, 103, 233–237. [Google Scholar] [CrossRef]
- Hajali, M.; Fishman, G.A.; Anderson, R.J. The Prevalence of Cystoid Macular Oedema in Retinitis Pigmentosa Patients Determined by Optical Coherence Tomography. Br. J. Ophthalmol. 2008, 92, 1065. [Google Scholar] [CrossRef]
- Abegg, M.; Zinkernagel, M.; Wolf, S. Microcystic Macular Degeneration from Optic Neuropathy. Brain 2012, 135, e225. [Google Scholar] [CrossRef] [Green Version]
- Balk, L.J.; Killestein, J.; Polman, C.H.; Uitdehaag, B.M.; Petzold, A. Microcystic Macular Oedema Confirmed, but Not Specific for Multiple Sclerosis. Brain 2012, 135, e226. [Google Scholar] [CrossRef] [Green Version]
- Agte, S.; Junek, S.; Matthias, S.; Ulbricht, E.; Erdmann, I.; Wurm, A.; Schild, D.; Käs, J.A.; Reichenbach, A. Müller Glial Cell-Provided Cellular Light Guidance through the Vital Guinea-Pig Retina. Biophys. J. 2011, 101, 2611–2619. [Google Scholar] [CrossRef] [Green Version]
- Aly, L.; Strauß, E.M.; Feucht, N.; Weiß, I.; Berthele, A.; Mitsdoerffer, M.; Haass, C.; Hemmer, B.; Maier, M.; Korn, T.; et al. Optical Coherence Tomography Angiography Indicates Subclinical Retinal Disease in Neuromyelitis Optica Spectrum Disorders. Mult. Scler. 2021, 28, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Chien, C.; Lu, A.; Paul, F.; Zimmermann, H.G. Retinal Optical Coherence Tomography and Magnetic Resonance Imaging in Neuromyelitis Optica Spectrum Disorders and Mog-Antibody Associated Disorders: An Updated Review. Expert Rev. Neurother. 2021, 21, 1101–1123. [Google Scholar] [CrossRef] [PubMed]
- Kwapong, W.R.; Peng, C.; He, Z.; Zhuang, X.; Shen, M.; Lu, F. Altered Macular Microvasculature in Neuromyelitis Optica Spectrum Disorders. Am. J. Ophthalmol. 2018, 192, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Asavapanumas, N.; Verkman, A.S. Neuromyelitis Optica Pathology in Rats following Intraperitoneal Injection of Nmo-Igg and Intracerebral Needle Injury. Acta Neuropathol. Commun. 2014, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, M.; Nakatsuji, Y.; Kimura, T.; Moriya, M.; Takata, K.; Okuno, T.; Kumanogoh, A.; Kajiyama, K.; Yoshikawa, H.; Sakoda, S. Neuromyelitis Optica: Passive Transfer to Rats by Human Immunoglobulin. Biochem. Biophys. Res. Commun. 2009, 386, 623–627. [Google Scholar] [CrossRef]
- Kurosawa, K.; Misu, T.; Takai, Y.; Sato, D.K.; Takahashi, T.; Abe, Y.; Iwanari, H.; Ogawa, R.; Nakashima, I.; Fujihara, K.; et al. Severely Exacerbated Neuromyelitis Optica Rat Model with Extensive Astrocytopathy by High Affinity Anti-Aquaporin-4 Monoclonal Antibody. Acta Neuropathol. Commun. 2015, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Bennett, J.L.; Lam, C.; Kalluri, S.R.; Saikali, P.; Bautista, K.; Dupree, C.; Glogowska, M.; Case, D.; Antel, J.P.; Owens, G.P.; et al. Intrathecal Pathogenic Anti-Aquaporin-4 Antibodies in Early Neuromyelitis Optica. Ann. Neurol. 2009, 66, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Bradl, M.; Lassmann, H. Experimental Models of Neuromyelitis Optica. Brain Pathol. 2014, 24, 74–82. [Google Scholar] [CrossRef]
- Bradl, M.; Misu, T.; Takahashi, T.; Watanabe, M.; Mader, S.; Reindl, M.; Adzemovic, M.; Bauer, J.; Berger, T.; Fujihara, K.; et al. Neuromyelitis Optica: Pathogenicity of Patient Immunoglobulin in Vivo. Ann. Neurol. 2009, 66, 630–643. [Google Scholar] [CrossRef]
- Geis, C.; Ritter, C.; Ruschil, C.; Weishaupt, A.; Grunewald, B.; Stoll, G.; Holmoy, T.; Misu, T.; Fujihara, K.; Hemmer, B.; et al. The Intrinsic Pathogenic Role of Autoantibodies to Aquaporin 4 Mediating Spinal Cord Disease in a Rat Passive-Transfer Model. Exp. Neurol. 2015, 265, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Verkman, A.S. Longitudinally Extensive Nmo Spinal Cord Pathology Produced by Passive Transfer of Nmo-Igg in Mice Lacking Complement Inhibitor Cd59. J. Autoimmun. 2014, 53, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, Y.; Kanamori, A.; Nakamura, M.; Takahashi, T.; Nakashima, I.; Negi, A. Sera from Patients with Seropositive Neuromyelitis Optica Spectral Disorders Caused the Degeneration of Rodent Optic Nerve. Exp. Eye Res. 2014, 119, 61–69. [Google Scholar] [CrossRef]
- Redler, Y.; Levy, M. Rodent Models of Optic Neuritis. Front. Neurol. 2020, 11, 580951. [Google Scholar] [CrossRef]
- Pohl, M.; Fischer, M.-T.; Mader, S.; Schanda, K.; Kitic, M.; Sharma, R.; Wimmer, I.; Misu, T.; Fujihara, K.; Reindl, M.; et al. Pathogenic T Cell Responses against Aquaporin 4. Acta Neuropathol. 2011, 122, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.V.; Collongues, N.; De Seze, J.; Kinoshita, M.; Nakatsuji, Y.; Levy, M. Review of Animal Models of Neuromyelitis Optica. Mult. Scler. Relat. Disord. 2012, 1, 174–179. [Google Scholar] [CrossRef] [Green Version]
- Ratelade, J.; Bennett, J.L.; Verkman, A.S. Intravenous Neuromyelitis Optica Autoantibody in Mice Targets Aquaporin-4 in Peripheral Organs and Area Postrema. PLoS ONE 2011, 6, e27412. [Google Scholar] [CrossRef] [Green Version]
- Hinson, S.R.; Roemer, S.F.; Lucchinetti, C.F.; Fryer, J.P.; Kryzer, T.J.; Chamberlain, J.L.; Howe, C.L.; Pittock, S.J.; Lennon, V.A. Aquaporin-4-Binding Autoantibodies in Patients with Neuromyelitis Optica Impair Glutamate Transport by Down-Regulating Eaat2. J. Exp. Med. 2008, 205, 2473–2481. [Google Scholar] [CrossRef] [PubMed]
- Waters, P.; Jarius, S.; Littleton, E.; Leite, M.I.; Jacob, S.; Gray, B.; Geraldes, R.; Vale, T.; Jacob, A.; Palace, J.; et al. Aquaporin-4 Antibodies in Neuromyelitis Optica and Longitudinally Extensive Transverse Myelitis. Arch Neurol. 2008, 65, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Oberheim, N.A.; Wang, X.; Goldman, S.; Nedergaard, M. Astrocytic Complexity Distinguishes the Human Brain. Trends Neurosci. 2006, 29, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Sanes, J.R.; Masland, R.H. The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification. Annu. Rev. Neurosci. 2015, 38, 221–246. [Google Scholar] [CrossRef] [PubMed]
- Traub, J.; Hausser-Kinzel, S.; Weber, M.S. Differential Effects of Ms Therapeutics on B Cells-Implications for Their Use and Failure in Aqp4-Positive Nmosd Patients. Int. J. Mol. Sci. 2020, 21, 5021. [Google Scholar] [CrossRef]
- Bergman, I.; Basse, P.H.; Barmada, M.A.; Griffin, J.A.; Cheung, N.K. Comparison of in Vitro Antibody-Targeted Cytotoxicity Using Mouse, Rat and Human Effectors. Cancer Immunol. Immunother. 2000, 49, 259–266. [Google Scholar] [CrossRef]
Diagnostic criteria for NMOSD with AQP4 IgG
|
Diagnostic criteria for NMOSD without AQP4-IgG or NMOSD with unknown AQP4-IgG status
|
Core clinical characteristics
|
Modified IPND 2015 NMOSD Criteria [13]. * Additional MRI criteria
|
Reference | Animal | Model System | Significance |
---|---|---|---|
Matsumoto et al., 2014 [169] | Adult Lewis rats | NMO patients’ sera were applied on the optic nerve after desheathing | 7 days after treatment: lost expression of both AQP4 and GFAP on IHC, leading to regional astrocytic degeneration and inflammatory cell invasion, which resulted in secondary loss of RGCs and their axons |
Asavapanumas et al., 2014 [42] | 8- to 10-week-old, weight-matched AQP4+/+ and AQP4−/− mice in CD1 genetic background | Passive transfer of NMO-IgG and complement by continuous 3-day intracranial infusion near the optic chiasm | Loss of AQP4 and GFAP immunoreactivity, granulocyte and macrophage infiltration, deposition of activated complement, and demyelination and axonal loss |
Asavapanumas et al., 2014 [161] | Adult Lewis rats | A single intracerebral needle insertion, without pre-existing inflammation or infusion of proinflammatory factors | At 5 days, there was marked loss of AQP4, GFAP, and myelin. Granulocyte and macrophage infiltration, complement deposition, BBB disruption, microglial activation, and neuron death. The penumbra was associated with a complement-independent mechanism (antibody-dependent cellular cytotoxicity). |
Saadoun et al., 2010 [92] | 8- to 10-week-old, wild-type and AQP4-null mice on a CD1 genetic background | Intracerebral coinjection of Ig G from NMO patients with human complement | Within 12 h of injection, striking loss of AQP4, glial cell edema, demyelination, and axonal loss, but little intraparenchymal inflammation. At 7 days, there was extensive inflammatory cell infiltration, perivascular deposition of activated complement, extensive demyelination and loss of astrocytes, and neuronal cell death. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, T.-L.; Wang, J.-K.; Chang, P.-Y.; Hsu, Y.-R.; Lin, C.-H.; Lin, K.-H.; Tsai, R.-K. Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives. Int. J. Mol. Sci. 2022, 23, 7908. https://doi.org/10.3390/ijms23147908
Huang T-L, Wang J-K, Chang P-Y, Hsu Y-R, Lin C-H, Lin K-H, Tsai R-K. Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives. International Journal of Molecular Sciences. 2022; 23(14):7908. https://doi.org/10.3390/ijms23147908
Chicago/Turabian StyleHuang, Tzu-Lun, Jia-Kang Wang, Pei-Yao Chang, Yung-Ray Hsu, Cheng-Hung Lin, Kung-Hung Lin, and Rong-Kung Tsai. 2022. "Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives" International Journal of Molecular Sciences 23, no. 14: 7908. https://doi.org/10.3390/ijms23147908
APA StyleHuang, T. -L., Wang, J. -K., Chang, P. -Y., Hsu, Y. -R., Lin, C. -H., Lin, K. -H., & Tsai, R. -K. (2022). Neuromyelitis Optica Spectrum Disorder: From Basic Research to Clinical Perspectives. International Journal of Molecular Sciences, 23(14), 7908. https://doi.org/10.3390/ijms23147908