Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding
Abstract
:1. Introduction
2. Results
2.1. sEVs from LDR Primed Cells Removed HRS in Reporter Cells
2.2. sEVs Contained TGF-β3 Regardless of LDR Priming
2.3. Inhibition of Metalloproteinases Retained HRS in Reporter Cells
2.4. TGF-β3 Binds to ALK1 to Remove HRS in Reporter Cells
2.5. Inhibition of ALK5 Leads to Removal of HRS without Addition of TGF-β3
3. Discussion
3.1. sEVs Transport the Radioprotective Factor(s)
3.2. Metalloproteinase Activation of TGF-β3
3.3. Identification of Receptor
3.4. Competition between Receptors and Possible Alternative to TGF-β3 Activation
3.5. Clinical Perspectives
4. Materials and Methods
4.1. Cell Culture
4.2. Irradiation
4.3. sEV Isolation
4.4. Clonogenic Assay Pretreatments
4.5. Cell Survival
4.6. Nano-LC LTQ Orbitrap Mass Spectrometry
4.7. Protein Identification and Quantification
4.8. mRNA Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joiner, M.C.; Marples, B.; Lambin, P.; Short, S.C.; Turesson, I. Low-Dose Hypersensitivity: Current Status and Possible Mechanisms. Int. J. Radiat. Oncol. 2001, 49, 379–389. [Google Scholar] [CrossRef]
- Krueger, S.A.; Collis, S.J.; Joiner, M.C.; Wilson, G.D.; Marples, B. Transition in Survival From Low-Dose Hyper-Radiosensitivity to Increased Radioresistance Is Independent of Activation of ATM SER1981 Activity. Int. J. Radiat. Oncol. 2007, 69, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Marples, B.; Lambin, P.; Skov, K.A.; Joiner, M.C. Low Dose Hyper-Radiosensitivity and Increased Radioresistance in Mammalian Cells. Int. J. Radiat. Biol. 1997, 71, 721–735. [Google Scholar] [CrossRef]
- Marples, B.; Adomat, H.; Koch, C.J.; Skov, K.A. Response of V79 Cells to Low Doses of X-Rays and Negative π-Mesons: Clonogenic Survival and DNA Strand Breaks. Int. J. Radiat. Biol. 1996, 70, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Marples, B.; Lam, G.K.; Zhou, H.; Skov, A. The Response of Chinese Hamster V79-379A Cells Exposed to Negative Pi-Mesons: Evidence That Increased Radioresistance Is Dependent on Linear Energy Transfer. Radiat. Res. 1994, 138, 81–84. [Google Scholar] [CrossRef]
- Xue, L.; Yu, D.; Furusawa, Y.; Cao, J.; Okayasu, R.; Fan, S. ATM-Dependent Hyper-Radiosensitivity in Mammalian Cells Irradiated by Heavy Ions. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 235–243. [Google Scholar] [CrossRef]
- Edin, N.J.; Olsen, D.R.; Stokke, T.; Pettersen, E.O. Recovery of Low-Dose Hyper-Radiosensitivity Following a Small Priming Dose Depends on Priming Dose-Rate. Int. J. Low Radiat. 2007, 4, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Short, S.C.; Kelly, J.; Mayes, C.R.; Woodcock, M.; Joiner, M.C. Low-Dose Hypersensitivity after Fractionated Low-Dose Irradiation in Vitro. Int. J. Radiat. Biol. 2001, 77, 655–664. [Google Scholar] [CrossRef]
- Wouters, B.G.; Skarsgard, L.D. Low-Dose Radiation Sensitivity and Induced Radioresistance to Cell Killing in HT-29 Cells Is Distinct from the “Adaptive Response” and Cannot Be Explained by a Subpopulation of Sensitive Cells. Radiat. Res. 1997, 148, 435–443. [Google Scholar] [CrossRef]
- Joiner, M.C.; Lambin, P.; Malaise, E.P.; Robson, T.; Arrand, J.E.; Skov, K.A.; Marples, B. Hypersensitivity to Very-Low Single Radiation Doses: Its Relationship to the Adaptive Response and Induced Radioresistance. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1996, 358, 171–183. [Google Scholar] [CrossRef]
- Marples, B.; Joiner, M.C. The Elimination of Low-Dose Hypersensitivity in Chinese Hamster V79-379A Cells by Pretreatment with x-Rays or Hydrogen Peroxide. Radiat. Res. 1995, 141, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G. The Role of Proteases in Transforming Growth Factor-β Activation. Int. J. Biochem. Cell Biol. 2008, 40, 1068–1078. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Massagué, J. Mechanisms of TGF-B Signaling from Cell Membrane to the Nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Leivonen, S.K.; Kähäri, V.M. Transforming Growth Factor-β Signaling in Cancer Invasion and Metastasis. Int. J. Cancer 2007, 121, 2119–2124. [Google Scholar] [CrossRef]
- Hinck, A.P.; Mueller, T.D.; Springer, T.A. Structural Biology and Evolution of the TGF-β Family. Cold Spring Harb. Perspect. Biol. 2016, 8, a022103. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhao, D.; Spinetti, G.; Zhang, J.; Jiang, L.Q.; Pintus, G.; Monticone, R.; Lakatta, E.G. Matrix Metalloproteinase 2 Activation of Transforming Growth Factor-Β1 (TGF-Β1) and TGF-Β1-Type II Receptor Signaling within the Aged Arterial Wall. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Stamenkovic, I. Cell Surface-Localized Matrix Metalloproteinase-9 Proteolytically Activates TGF-B and Promotes Tumor Invasion and Angiogenesis. Genes Dev. 2000, 14, 163–176. [Google Scholar] [CrossRef]
- D’Angelo, M.; Billings, P.C.; Pacifici, M.; Leboy, P.S.; Kirsch, T. Authentic Matrix Vesicles Contain Active Metalloproteases (MMP): A Role for Matrix Vesicle-Associated MMP-13 in Activation of Transforming Growth Factor-β. J. Biol. Chem. 2001, 276, 11347–11353. [Google Scholar] [CrossRef] [Green Version]
- Bourd-Boittin, K.; Bonnier, D.; Leyme, A.; Mari, B.; Tuffery, P.; Samson, M.; Ezan, F.; Baffet, G.; Theret, N. Protease Profiling of Liver Fibrosis Reveals the ADAM Metallopeptidase with Thrombospondin Type 1 Motif, 1 as a Central Activator of Transforming Growth Factor Beta. Hepatology 2011, 54, 2173–2184. [Google Scholar] [CrossRef]
- Jackson, H.W.; Defamie, V.; Waterhouse, P.; Khokha, R. TIMPs: Versatile Extracellular Regulators in Cancer. Nature 2016, 17, 38–53. [Google Scholar] [CrossRef]
- Edin, N.J.; Sandvik, J.A.; Olsen, D.R.; Pettersen, E.O. The Elimination of Low-Dose Hyper-Radiosensitivity by Transfer of Irradiated-Cell Conditioned Medium Depends on Dose Rate. Radiat. Res. 2009, 171, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, N.; Dag, E.; Olsen, R.; Stokke, T.; Sandvik, J.A.; Ebbesen, P.; Pettersen, E.O.; Jeppesen Edin, N.; Rune Olsen, D.; Olai Pettersen, E. Mechanisms of the Elimination of Low Dose Hyper-Radiosensitivity in T-47D Cells by Low Dose-Rate Priming. Int. J. Radiat. Biol. 2009, 85, 1157–1165. [Google Scholar] [CrossRef]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Comendium of Exosomal Cargo. J. Mol. Biol. 2017, 428, 688–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edin, N.J.; Sandvik, J.A.; Vollan, H.S.; Reger, K.; Görlach, A.; Pettersen, E.O. The Role of Nitric Oxide Radicals in Removal of Hyper-Radiosensitivity by Priming Irradiation. J. Radiat. Res. 2013, 54, 1015–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, S.J. The Linear Quadratic Model: Usage, Interpretation and Challenges. Phys. Med. Biol. 2019, 64, 01TR01. [Google Scholar] [CrossRef]
- Marples, B.; Joiner, M.C. The Response of Chinese Hamster V79 Cells to Low Radiation Doses: Evidence of Enhanced Sensitivity of the Whole Cell Population. Radiat. Res. 1993, 133, 41–51. [Google Scholar] [CrossRef]
- Smyth, G.K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 2004, 3, 3. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- De Kroon, L.M.G.; Narcisi, R.; Blaney Davidson, E.N.; Cleary, M.A.; Van Beuningen, H.M.; Koevoet, W.J.L.M.; Van Osch, G.J.V.M.; Van Der Kraan, P.M. Activin Receptor-like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLoS ONE 2015, 10, e0146124. [Google Scholar] [CrossRef] [Green Version]
- Lux, A.; Attisano, L.; Marchuk, D.A. Assignment of Transforming Growth Factor Β1 and Β3 and a Third New Ligand to the Type I Receptor ALK-1. J. Biol. Chem. 1999, 274, 9984–9992. [Google Scholar] [CrossRef] [Green Version]
- Peattie, D.A.; Harding, M.W.; Fleming, M.A.; DeCenzo, M.T.; Lippke, J.A.; Livingston, D.J.; Benasutti, M. Expression and Characterization of Human FKBP52, an Immunophilin That Associates with the 90-KDa Heat Shock Protein and Is a Component of Steroid Receptor Complexes. Proc. Natl. Acad. Sci. USA 1992, 89, 10974–10978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrighton, K.H.; Lin, X.; Feng, X.-H.; DeBakey, M.E. Critical Regulation of TGF Signaling by Hsp90. PNAS 2008, 105, 9244–9249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonov, A.S.; Antonova, G.N.; Fujii, M.; Ten Dijke, P.; Handa, V.; Catravas, J.D.; Verin, A.D. Regulation of Endothelial Barrier Function by TGF-β Type I Receptor ALK5: Potential Role of Contractile Mechanisms and Heat Shock Protein 90 NIH Public Access. J. Cell. Physiol. 2012, 227, 759–771. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Lu, Y.; Yang, P.; Li, C.; Sun, H.; Tao, D.; Liu, Y.; Zhang, S.; Ma, Y.; Jin, D.-Y. HILI Inhibits TGF-b Signaling by Interacting with Hsp90 and Promoting TbR Degradation. PLoS ONE 2012, 7, e41973. [Google Scholar] [CrossRef]
- Jeppesen Edin, N.; Alexander Sandvik, J.; Cheng, C.; Bergersen, L.; Olai Pettersen, E. The Roles of TGF-Β3 and Peroxynitrite in Removal of Hyper-Radiosensitivity by Priming Irradiation. Int. J. Radiat. Biol. 2014, 90, 527–537. [Google Scholar] [CrossRef]
- Jeppesen Edin, N.F. The Role of Interleukin-13 in the Removal of Hyper-Radiosensitivity by Priming Irradiation. J. Radiat. Res. 2014, 55, 1066–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szatmári, T.; Kis, D.; Bogdándi, E.N.; Benedek, A.; Bright, S.; Bowler, D.; Persa, E.; Kis, E.; Balogh, A.; Naszályi, L.N.; et al. Extracellular Vesicles Mediate Radiation-Induced Systemic Bystander Signals in the Bone Marrow and Spleen. Front. Immunol. 2017, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Wang, J.; Ding, N.; Hu, W.; Zhang, X.; Wang, B.; Hua, J.; Wei, W.; Zhu, Q. Exosome-Mediated MicroRNA Transfer Plays a Role in Radiation-Induced Bystander Effect. RNA Biol. 2015, 12, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Kumar Jella, K.; Rani, S.; O’Driscoll, L.; McClean, B.; Byrne, H.J.; Lyng, F.M. Exosomes Are Involved in Mediating Radiation Induced Bystander Signaling in Human Keratinocyte Cells. Radiat. Res. 2014, 181, 138–145. [Google Scholar] [CrossRef]
- Al-Mayah, A.; Bright, S.; Chapman, K.; Irons, S.; Luo, P.; Carter, D.; Goodwin, E.; Kadhim, M. The Non-Targeted Effects of Radiation Are Perpetuated by Exosomes. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2015, 772, 38–45. [Google Scholar] [CrossRef]
- Mu, D.; Cambier, S.; Fjellbirkeland, L.; Baron, J.L.; Munger, J.S.; Kawakatsu, H.; Sheppard, D.; Courtney Broaddus, V.; Nishimura, S.L. The Integrin v 8 Mediates Epithelial Homeostasis through MT1-MMP-Dependent Activation of TGF-1. J. Cell Biol. 2002, 157, 493–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Kinoshita, T.; Takino, T.; Nakayama, K.; Seiki, M. Activation of a Recombinant Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) by Furin and Its Interaction with Tissue Inhibitor of Metalloproteinases (TIMP)-2. FEBS Lett. 1996, 393, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Inman, G.J.; Nicol´as, F.J.; Nicol´as, N.; Callahan, J.F.; Harling, J.D.; Gaster, L.M.; Reith, A.D.; Laping, N.J.; Hill, C.S. SB-431542 Is a Potent and Specific Inhibitor of Transforming Growth Factor-Superfamily Type I Activin Receptor-Like Kinase (ALK) Receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 2002, 62, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.G.; Massagué, J. Smad1 Recognition and Activation by the ALK1 Group of Transforming Growth Factor-β Family Receptors. J. Biol. Chem. 1999, 274, 3672–3677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, A.; Imamura, T. TGF-β Receptor-Mediated Signalling through Smad2, Smad3 and Smad4 Includes Activins and Bone Morphogenetic Proteins. EMBO J. 1997, 16, 5353–5362. [Google Scholar] [CrossRef] [Green Version]
- Goumans, M.J.; Valdimarsdottir, G.; Itoh, S.; Rosendahl, A.; Sideras, P.; Ten Dijke, P. Balancing the Activation State of the Endothelium via Two Distinct TGF-β Type I Receptors. EMBO J. 2002, 21, 1743–1753. [Google Scholar] [CrossRef]
- David, L.; Mallet, C.; Vailhé, B.; Lamouille, S.; Feige, J.J.; Bailly, S. Activin Receptor-like Kinase 1 Inhibits Human Microvascular Endothelial Cell Migration: Potential Roles for JNK and ERK. J. Cell. Physiol. 2007, 213, 484–489. [Google Scholar] [CrossRef]
- Oh, C.K.; Geba, G.P.; Molfino, N. Investigational Therapeutics Targeting the IL-4/IL-13/STAT-6 Pathway for the Treatment of Asthma. Eur. Respir. Rev. 2010, 19, 46–54. [Google Scholar] [CrossRef]
- Park, S.O.; Jae Lee, Y.; Seki, T.; Hong, K.-H.; Fliess, N.; Jiang, Z.; Park, A.; Wu, X.; Kaartinen, V.; Roman, B.L.; et al. ALK5-and TGFBR2-Independent Role of ALK1 in the Pathogenesis of Hereditary Hemorrhagic Telangiectasia Type 2. Blood 2008, 111, 633–642. [Google Scholar] [CrossRef] [Green Version]
- Keydar, I.; Chen, L.; Karby, S.; Weiss, F.R.; Delarea, J.; Radu, M.; Chaitcik, S.; Brenner, H.J. Establishment and Characterization of a Cell Line of Human Breast Carcinoma Origin. Eur. J. Cancer 1979, 15, 659–670. [Google Scholar] [CrossRef]
- Åmellem, Ø.; Stokke, T.; Sandvik, J.A.; Pettersen, E.O. The Retinoblastoma Gene Product Is Reversibly Dephosphorylated and Bound in the Nucleus in S and G2 Phases during Hypoxic Stress. Exp. Cell Res. 1996, 227, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen Edin, N.; Rune Olsen, D.; Alexander Sandvik, J.; Malinen, E.; Olai Pettersen, E. Low Dose Hyper-Radiosensitivity Is Eliminated during Exposure to Cycling Hypoxia but Returns after Reoxygenation. Int. J. Radiat. Biol. 2012, 88, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen Edin, N.; Altaner, Č.; Altanerova, V.; Ebbesen, P. TGF-Β3 Dependent Modification of Radiosensitivity in Reporter Cells Exposed to Serum from Whole-Body Low Dose-Rate Irradiated Mice. Former. Nonlinearity Biol. 2015, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Frederike, N.; Edin, J.; Estmír Altaner, Č.; Altanerova, V.; Ebbesen, P.; Pettersen, E.O. Low-Dose-Rate Irradiation for 1 Hour Induces Protection Against Lethal Radiation Doses but Does Not Affect Life Span of DBA/2 Mice. Dose Response 2016, 14, 1559325816673901. [Google Scholar] [CrossRef] [Green Version]
- Gyland Mikalsen, S.; Jeppesen Edin, N.; Alexander Sandvik, J.; Olai Pettersen, E. Separation of Two Sub-Groups with Different DNA Content after Treatment of T-47D Breast Cancer Cells with Low Dose-Rate Irradiation and Intermittent Hypoxia. Acta Radiol. 2018, 59, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, C.J.; Chapman, J.D.; Reuvers, A.P.; Dugle, D.L. The Inactivation of Chinese Hamster Cells by X Rays: Synchronized and Exponential Cell Populations. Radiat. Res. 1975, 64, 353–364. [Google Scholar] [CrossRef]
- Koehler, C.J.; Strozynski, M.; Kozielski, F.; Treumann, A.; Thiede, B. Isobaric Peptide Termini Labeling for MS/MS-Based Quantitative Proteomics. J. Proteome Res. 2009, 8, 4333–4341. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful Software for Peptide de Novo Sequencing by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef]
- Smyth, G.K.; Speed, T. Normalization of CDNA Microarray Data. Methods 2003, 31, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanson, I.; Pitman, K.E.; Altanerova, U.; Altaner, Č.; Malinen, E.; Edin, N.F.J. Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding. Int. J. Mol. Sci. 2022, 23, 8147. https://doi.org/10.3390/ijms23158147
Hanson I, Pitman KE, Altanerova U, Altaner Č, Malinen E, Edin NFJ. Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding. International Journal of Molecular Sciences. 2022; 23(15):8147. https://doi.org/10.3390/ijms23158147
Chicago/Turabian StyleHanson, Ingunn, Kathinka E. Pitman, Ursula Altanerova, Čestmír Altaner, Eirik Malinen, and Nina F. J. Edin. 2022. "Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding" International Journal of Molecular Sciences 23, no. 15: 8147. https://doi.org/10.3390/ijms23158147
APA StyleHanson, I., Pitman, K. E., Altanerova, U., Altaner, Č., Malinen, E., & Edin, N. F. J. (2022). Low-Dose-Rate Radiation-Induced Secretion of TGF-β3 Together with an Activator in Small Extracellular Vesicles Modifies Low-Dose Hyper-Radiosensitivity through ALK1 Binding. International Journal of Molecular Sciences, 23(15), 8147. https://doi.org/10.3390/ijms23158147