Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments
Abstract
:1. Introduction
2. Low-Dose Radiation Effects on Luminous Marine Bacteria
3. Mechanisms of Low-Dose Effects on Bacterial Cells
3.1. Changes in the Rates of Intracellular Enzymatic Processes under Exposure to Radionuclides
3.2. Consumption of An Intracecllular Reducer, NADH
3.3. Active Role of Reactive Oxygen Species
3.4. Repair of DNA Damage
4. Role of Humic Substances as Radioprotective Agents in Water Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FMN | flavin mononucleotide |
HS | humic substances |
HTO | tritiated water |
NADH | nicotinamide adenine dinucleotide |
ROS | reactive oxygen species |
References
- The International Commission on Radiological Protection. ICRP Publication 99. Low-Dose Extrapolation of Radiation-Related Cancer Risk. Annals of the ICPR; Valentin, J., Ed.; Elsevier: New York, NY, USA, 2005. [Google Scholar]
- Kudryashov, Y.B. Radiation Biophysics (Ionizing Radiation); Fizmatlit: Moscow, Russia, 2004; ISBN 5-9221-0388-1. (In Russian) [Google Scholar]
- Reisz, J.A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C.M. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection. Antioxid. Redox Signal. 2014, 21, 260–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, A.N.; Yadav, N.; Kour, D.; Kumar, A.; Yadav, K.; Kumar, A.; Rastegari, A.A.; Sachan, S.G.; Singh, B.; Chauhan, V.S.; et al. Bacterial Community Composition in Lakes. In Freshwater Microbiology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–71. ISBN 9780128174951. [Google Scholar]
- Nevejan, N.; De Schryver, P.; Wille, M.; Dierckens, K.; Baruah, K.; Van Stappen, G. Bacteria as Food in Aquaculture: Do They Make a Difference? Rev. Aquac. 2018, 10, 180–212. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Rozhko, T.V. Effect of Low-Dose Ionizing Radiation on Luminous Marine Bacteria: Radiation Hormesis and Toxicity. J. Environ. Radioact. 2015, 142, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Belli, M.; Indovina, L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front. Public Health 2020, 8, 601711. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Sun, X.; Zhang, Z.D.; Tang, Q.Y.; Gu, M.Y.; Zhang, L.J.; Hou, M.; Sharon, A.; Yuan, H.L. Effect of Ionizing Radiation on the Bacterial and Fungal Endophytes of the Halophytic Plant Kalidium Schrenkianum. Microorganisms 2021, 9, 1050. [Google Scholar] [CrossRef] [PubMed]
- Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of Environmental Pollutants by Bioluminescent Bacteria. Anal. Chim. Acta 2008, 608, 2–29. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Guardigli, M.; Michelini, E.; Mirasoli, M. Bioluminescence in Analytical Chemistry and in Vivo Imaging. Trends Anal. Chem. 2009, 28, 307–322. [Google Scholar] [CrossRef]
- Syed, A.J.; Anderson, J.C. Applications of Bioluminescence in Biotechnology and Beyond. Chem. Soc. Rev. 2021, 50, 5668–5705. [Google Scholar] [CrossRef]
- Hassan, H.; Eltarahony, M.; Abu-Elreesh, G.; Abd-Elnaby, H.M.; Sabry, S.; Ghozlan, H. Toxicity Monitoring of Solvents, Hydrocarbons, and Heavy Metals Using Statistically Optimized Model of Luminous Vibrio sp. 6HFE. J. Genet. Eng. Biotechnol. 2022, 20, 1–17. [Google Scholar] [CrossRef]
- Kratasyuk, V.A. Principle of Luciferase Biotesting. In Biological Luminescence; Jeżowska-Trzebiatowska, B., Kochel, B., Sławiński, J., Stręk, W., Eds.; WSPC: Singapore, 1990; p. 550. ISBN 978-9810204051. [Google Scholar]
- Leippe, D.M.; Nguyen, D.; Zhou, M.; Good, T.; Kirkland, T.A.; Scurria, M.; Bernad, L.; Ugo, T.; Vidugiriene, J.; Cali, J.J.; et al. A Bioluminescent Assay for the Sensitive Detection of Proteases. Biotechniques 2011, 51, 105–110. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Esimbekova, E.N.; Remmel, N.N.; Kratasyuk, V.A.; Visser, A.J.W.G.; van Hoek, A. Effect of Quinones and Phenols on the Triple-Enzyme Bioluminescent System with Protease. Luminescence 2003, 18, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Kudryasheva, N.S.; Kudinova, I.Y.; Esimbekova, E.N.; Kratasyuk, V.A.; Stom, D.I. The Influence of Quinones and Phenols on the Triple NAD(H)-Dependent Enzyme Systems. Chemosphere 1999, 38, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Kudryasheva, N.S. Mechanisms of the Effect of Xenobiotics on Bacterial Bioluminescence. Luminescence 1999, 14, 199–200. [Google Scholar] [CrossRef]
- Esimbekova, E.; Kratasyuk, V.; Shimomura, O. Application of Enzyme Bioluminescence in Ecology. In Advances in Biochemical Engineering/Biotechnology; Thouand, G., Marks, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 144, pp. 67–109. ISBN 9783662433850. [Google Scholar]
- Esimbekova, E.N.; Torgashina, I.G.; Kalyabina, V.P.; Kratasyuk, V.A. Enzymatic Biotesting: Scientific Basis and Application. Contemp. Probl. Ecol. 2021, 14, 290–304. [Google Scholar] [CrossRef]
- Kudryasheva, N.S. Bioluminescence and Exogenous Compounds: Physico-Chemical Basis for Bioluminescent Assay. J. Photochem. Photobiol. B Biol. 2006, 83, 77–86. [Google Scholar] [CrossRef]
- Nemtseva, E.V.; Kudryasheva, N.S. The Mechanism of Electronic Excitation in the Bacterial Bioluminescent Reaction. Russ. Chem. Rev. 2007, 76, 91–100. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Nemtseva, E.V.; Kirillova, T.N. Exogenous Compounds in Studying the Mechanism of Electron-Excited State Formation in Bioluminescence. Biopolymers 2004, 74, 100–104. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Nemtseva, E.V.; Visser, A.J.W.G.; van Hoek, A. Interaction of Aromatic Compounds With Photobacterium Leiognathi Luciferase: Fluorescence Anisotropy Study. Luminescence 2003, 18, 156–161. [Google Scholar] [CrossRef]
- Vetrova, E.V.; Kudryasheva, N.S.; Visser, A.J.W.G.; van Hoek, A. Characteristics of Endogenous Flavin Fluorescence Of Photobacterium Leiognathi Luciferase And Vibrio Fischeri NAD(P)H:FMN-Oxidoreductase. Luminescence 2005, 20, 205–209. [Google Scholar] [CrossRef]
- Vetrova, E.V.; Kudryasheva, N.S.; Kratasyuk, V.A. Redox Compounds Influence on the NAD(P)H:FMN–Oxidoreductase–Luciferase Bioluminescent System. Photochem. Photobiol. Sci. 2007, 6, 35–40. [Google Scholar] [CrossRef]
- Vetrova, E.V.; Kudryasheva, N.S.; Cheng, K.H. Effect of Quinone on the Fluorescence Decay Dynamics of Endogenous Flavin Bound to Bacterial Luciferase. Biophys. Chem. 2009, 141, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, T.N.; Gerasimova, M.A.; Nemtseva, E.V.; Kudryasheva, N.S. Effect of Halogenated Fluorescent Compounds on Bioluminescent Reactions. Anal. Bioanal. Chem. 2011, 400, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, T.N.; Kudryasheva, N.S. Effect of Heavy Atoms in Bioluminescent Reactions. Anal. Bioanal. Chem. 2007, 387, 2009–2016. [Google Scholar] [CrossRef] [PubMed]
- Gerasimova, M.A.; Kudryasheva, N.S. Effects of Potassium Halides on Bacterial Bioluminescence. J. Photochem. Photobiol. B Biol. 2002, 66, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Tarasova, A.S.; Stom, D.I.; Kudryasheva, N.S. Effect of Humic Substances on Toxicity of Inorganic Oxidizer Bioluminescent Monitoring. Environ. Toxicol. Chem. 2011, 30, 1013–1017. [Google Scholar] [CrossRef]
- Selivanova, M.A.; Mogilnaya, O.A.; Badun, G.A.; Vydryakova, G.A.; Kuznetsov, A.M.; Kudryasheva, N.S. Effect of Tritium on Luminous Marine Bacteria and Enzyme Reactions. J. Environ. Radioact. 2013, 120, 19–25. [Google Scholar] [CrossRef]
- Tarasova, A.S.; Kislan, S.L.; Fedorova, E.S.; Kuznetsov, A.M.; Mogilnaya, O.A.; Stom, D.I.; Kudryasheva, N.S. Bioluminescence as a Tool for Studying Detoxification Processes in Metal Salt Solutions Involving Humic Substances. J. Photochem. Photobiol. B Biol. 2012, 117, 164–170. [Google Scholar] [CrossRef]
- Alexandrova, M.; Rozhko, T.; Vydryakova, G.; Kudryasheva, N. Effect of Americium-241 on Luminous Bacteria. Role of Peroxides. J. Environ. Radioact. 2011, 102, 407–411. [Google Scholar] [CrossRef]
- Rozhko, T.V.; Kudryasheva, N.S.; Kuznetsov, A.M.; Vydryakova, G.A.; Bondareva, L.G.; Bolsunovsky, A.Y. Effect of Low-Level α-Radiation on Bioluminescent Assay Systems of Various Complexity. Photochem. Photobiol. Sci. 2007, 6, 67–70. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Zuzikova, E.V.; Gutnyk, T.V.; Kuznetsov, A.M. Metallic Salts Action on Bacterial Bioluminescent Systems of Different Complexity. Biofizika 1996, 41, 1264–1269. (In Russian) [Google Scholar]
- Artifon, V.; Zanardi-Lamardo, E.; Fillmann, G. Aquatic Organic Matter: Classification and Interaction with Organic Microcontaminants. Sci. Total Environ. 2019, 649, 1620–1635. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, A.; Kolb, B. Low Dose Radiation Effects on the Brain—From Mechanisms and Behavioral Outcomes to Mitigation Strategies. Cell Cycle 2017, 16, 1266–1270. [Google Scholar] [CrossRef] [Green Version]
- Lipczynska-Kochany, E. Humic Substances, Their Microbial Interactions and Effects on Biological Transformations of Organic Pollutants in Water and Soil: A Review. Chemosphere 2018, 202, 420–437. [Google Scholar] [CrossRef] [PubMed]
- Nehete, S.V.; Christensen, T.; Salbu, B.; Teien, H.-C. Ultraviolet-B Radiation Mobilizes Uranium from Uranium-Dissolved Organic Carbon Complexes in Aquatic Systems, Demonstrated by Asymmetrical Flow Field-Flow Fractionation. J. Chromatogr. A 2017, 1496, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Perminova, I.V.; García-Mina, J.-M.; Knicker, H.; Miano, T. Humic Substances and Nature-like Technologies. J. Soils Sediments 2019, 19, 2663–2664. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, E.; Kudryasheva, N.; Kuznetsov, A.; Mogil’naya, O.; Stom, D. Bioluminescent Monitoring of Detoxification Processes: Activity of Humic Substances in Quinone Solutions. J. Photochem. Photobiol. B Biol. 2007, 88, 131–136. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Tarasova, A.S. Pollutant Toxicity and Detoxification by Humic Substances: Mechanisms and Quantitative Assessment via Luminescent Biomonitoring. Environ. Sci. Pollut. Res. 2015, 22, 155–167. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Dykman, R.L.; Kovács, K.; Pankratov, A.N.; Tugarova, A.V.; Homonnay, Z.; Kuzmann, E. Redox Interactions between Structurally Different Alkylresorcinols and Iron(III) in Aqueous Media: Frozen-Solution 57Fe Mössbauer Spectroscopic Studies, Redox Kinetics and Quantum Chemical Evaluation of the Alkylresorcinol Reactivities. Struct. Chem. 2014, 25, 649–657. [Google Scholar] [CrossRef]
- Stasiuk, M.; Kozubek, A. Biological Activity of Phenolic Lipids. Cell. Mol. Life Sci. 2010, 67, 841–860. [Google Scholar] [CrossRef]
- Jacob, K.K.; Prashob, P.K.; Chandramohanakumar, N. Humic Substances as a Potent Biomaterials for Therapeutic and Drug Delivery System—A Review. Int. J. Appl. Pharm. 2019, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Morozesk, M.; Bonomo, M.M.; Souza, I.d.C.; Rocha, L.D.; Duarte, I.D.; Martins, I.O.; Dobbss, L.B.; Carneiro, M.T.W.D.; Fernandes, M.N.; Matsumoto, S.T. Effects of Humic Acids from Landfill Leachate on Plants: An Integrated Approach Using Chemical, Biochemical and Cytogenetic Analysis. Chemosphere 2017, 184, 309–317. [Google Scholar] [CrossRef]
- Sachkova, A.S.; Kovel, E.S.; Churilov, G.N.; Stom, D.I.; Kudryasheva, N.S. Biological Activity of Carbonic Nano-Structures—Comparison via Enzymatic Bioassay. J. Soils Sediments 2019, 19, 2689–2696. [Google Scholar] [CrossRef] [Green Version]
- Shah, Z.H.; Rehman, H.M.; Akhtar, T.; Alsamadany, H.; Hamooh, B.T.; Mujtaba, T.; Daur, I.; Al Zahrani, Y.; Alzahrani, H.A.S.; Ali, S.; et al. Humic Substances: Determining Potential Molecular Regulatory Processes in Plants. Front. Plant Sci. 2018, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Tarasova, A.S.; Stom, D.I.; Kudryasheva, N.S. Antioxidant Activity of Humic Substances via Bioluminescent Monitoring in Vitro. Environ. Monit. Assess. 2015, 187, 89. [Google Scholar] [CrossRef]
- Bondareva, L.; Kudryasheva, N. Direct and Indirect Detoxification Effects of Humic Substances. Agronomy 2021, 11, 198. [Google Scholar] [CrossRef]
- Selye, H. Changing Distress into Eustress-Selye, Hans Voices Theories on Stress. Tex. Med. 1980, 76, 78–80. [Google Scholar]
- Calabrese, E.J. Hormetic Mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [Google Scholar] [CrossRef]
- Calabrese, E. Hormesis: Path and Progression to Significance. Int. J. Mol. Sci. 2018, 19, 2871. [Google Scholar] [CrossRef] [Green Version]
- Burlakova, E.B.; Kondradov, A.A.; Mal’tseva, E.L. Superweak Effects of Chemical Compounds and Physical Factors on Biological Systems. Biofizika 2004, 49, 551–564. [Google Scholar]
- Southam, C.M. Effects of Extract of Western Red-Cedar Heartwood on Certain Wood-Decaying Fungi in Culture. Phytopathology 1943, 33, 517–524. [Google Scholar]
- Luckey, T.D. Hormesis with Ionizing Radiation; CRC Press: New York, NY, USA, 1980; Volume 60, ISBN 9780367227166. [Google Scholar]
- Feinendegen, L.E.; Pollycove, M.; Neumann, R.D. Low-Dose Cancer Risk Modeling Must Recognize up-Regulation of Protection. Dose-Response 2010, 8, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Azzam, E.I. What Does Radiation Biology Tell Us about Potential Health Effects at Low Dose and Low Dose Rates? J. Radiol. Prot. 2019, 39, S28–S39. [Google Scholar] [CrossRef] [PubMed]
- Mothersill, C.; Seymour, C. Implications for Human and Environmental Health of Low Doses of Ionising Radiation. J. Environ. Radioact. 2014, 133, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.D.; Farris, F.F.; Hartmann, A.C. Hormesis. In Encyclopedia of Toxicology; Wexler, P., Anderson, B.D., Gad, S.C., Hakkinen, P.B., Kamrin, M., De Peyster, A., Locey, B., Pope, C., Mehendale, H.M., Shugart, L.R., Eds.; Academic Press: Oxford, UK, 2014; pp. 944–948. ISBN 978-0-12-386455-0. [Google Scholar]
- Huang, Y.; Qin, M.; Lai, J.; Liang, J.; Luo, X.; Li, C. Assessing OBT Formation and Enrichment: ROS Signaling Is Involved in the Radiation Hormesis Induced by Tritium Exposure in Algae. J. Hazard. Mater. 2023, 443, 130159. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, N.; Portugal, A.; Piñar, G.; Loureiro, J.; Coutinho, A.P.; Trovão, J.; Nunes, I.; Botelho, M.L.; Freitas, H. Flow Cytometry as a Tool to Assess the Effects of Gamma Radiation on the Viability, Growth and Metabolic Activity of Fungal Spores. Int. Biodeterior. Biodegrad. 2013, 84, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.; Kadam, A.A.; Govindwar, S.P.; Kumar, P.; Varshney, L. An Insight into the Influence of Low Dose Irradiation Pretreatment on the Microbial Decolouration and Degradation of Reactive Red-120 Dye. Chemosphere 2013, 90, 1348–1358. [Google Scholar] [CrossRef]
- Xavier, M.d.l.P.; Dauber, C.; Mussio, P.; Delgado, E.; Maquieira, A.; Soria, A.; Curuchet, A.; Márquez, R.; Méndez, C.; López, T. Use of Mild Irradiation Doses to Control Pathogenic Bacteria on Meat Trimmings for Production of Patties Aiming at Provoking Minimal Changes in Quality Attributes. Meat Sci. 2014, 98, 383–391. [Google Scholar] [CrossRef]
- Calabrese, E.J. The Dose–Response Revolution: How Hormesis Became Significant. In The Science of Hormesis in Health and Longevity; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–24. ISBN 9780128142547. [Google Scholar]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: Highly Generalizable and Beyond Laboratory. Trends Plant Sci. 2020, 25, 1076–1086. [Google Scholar] [CrossRef]
- Lloyd, D.C.; Edwards, A.A.; Leonard, A.; Deknudt, G.L.; Verschaeve, L.; Natarajan, A.T.; Darroudi, F.; Obe, G.; Palitti, F.; Tanzarella, C.; et al. Chromosomal Aberrations in Human Lymphocytes Induced in Vitro by Very Low Doses of X-Rays. Int. J. Radiat. Biol. 1992, 61, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Zaka, R.; Chenal, C.; Misset, M.T. Study of External Low Irradiation Dose Effects on Induction of Chromosome Aberrations in Pisum Sativum Root Tip Meristem. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2002, 517, 87–99. [Google Scholar] [CrossRef]
- Mossman, K.L. Deconstructing Radiation Hormesis. Health Phys. 2001, 80, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.S.; Chew, M.T.; Alqahtani, A.; Jones, B.; Hill, M.A.; Nisbet, A.; Bradley, D.A. Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health. Appl. Sci. 2021, 11, 8909. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Stanek, E.J.; Nascarella, M.A.; Hoffmann, G.R. Hormesis Predicts Low-Dose Responses Better than Threshold Models. Int. J. Toxicol. 2008, 27, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Kudryasheva, N.S.; Kovel, E.S. Monitoring of Low-Intensity Exposures via Luminescent Bioassays of Different Complexity: Cells, Enzyme Reactions, and Fluorescent Proteins. Int. J. Mol. Sci. 2019, 20, 4451. [Google Scholar] [CrossRef] [PubMed]
- Roda, A.; Pasini, P.; Mirasoli, M.; Michelini, E.; Guardigli, M. Biotechnological Applications of Bioluminescence and Chemiluminescence. Trends Biotechnol. 2004, 22, 295–303. [Google Scholar] [CrossRef]
- Ismailov, A.D.; Aleskerova, L.E. Photobiosensors Containing Luminescent Bacteria. Biochemistry 2015, 80, 733–744. [Google Scholar] [CrossRef]
- Min, J.; Lee, C.W.; Gu, M.B. Gamma-Radiation Dose-Rate Effects on DNA Damage and Toxicity in Bacterial Cells. Radiat. Environ. Biophys. 2003, 42, 189–192. [Google Scholar] [CrossRef]
- Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G.A.; Asif Tahir, M.; Iqbal, M. Vibrio Fischeri Bioluminescence Inhibition Assay for Ecotoxicity Assessment: A Review. Sci. Total Environ. 2018, 626, 1295–1309. [Google Scholar] [CrossRef]
- Wanjari, R.A.; Shanware, A.S.; Dhoble, S.J. Influence of Ultraviolet and Gamma Ray Irradiation on Luminescent Bacteria and Exploring Their Efficacy as Biosensors. Luminescence 2021, 36, 525–530. [Google Scholar] [CrossRef]
- Rozhko, T.V.; Nemtseva, E.V.; Gardt, M.V.; Raikov, A.V.; Lisitsa, A.E.; Badun, G.A.; Kudryasheva, N.S. Enzymatic Responses to Low-Intensity Radiation of Tritium. Int. J. Mol. Sci. 2020, 21, 8464. [Google Scholar] [CrossRef]
- Rozhko, T.V.; Nogovitsyna, E.I.; Badun, G.A.; Lukyanchuk, A.N.; Kudryasheva, N.S. Reactive Oxygen Species and Low-Dose Effects of Tritium on Bacterial Cells. J. Environ. Radioact. 2019, 208–209, 106035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selivanova, M.A.; Rozhko, T.V.; Devyatlovskaya, A.N.; Kudryasheva, N.S. Comparison of Chronic Low-Dose Effects of Alpha- and Beta-Emitting Radionuclides on Marine Bacteria. Cent. Eur. J. Biol. 2014, 9, 951–959. [Google Scholar] [CrossRef]
- Kudryasheva, N.S.; Petrova, A.S.; Dementyev, D.V.; Bondar, A.A. Exposure of Luminous Marine Bacteria to Low-Dose Gamma-Radiation. J. Environ. Radioact. 2017, 169–170, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamato, A. An Anion Exchange Method for the Determination Of 241Am and Plutonium in Environmental and Biological Samples. J. Radioanal. Chem. 1982, 75, 265–273. [Google Scholar] [CrossRef]
- Choppin, G.R. Structure and Thermodynamics of Lanthanide and Actinide Complexes in Solution. Pure Appl. Chem. 1971, 27, 23–42. [Google Scholar] [CrossRef] [Green Version]
- Gudkov, D.I.; Zub, L.N.; Derevets, V.V.; Kuz’menko, M.I.; Nazarov, A.B.; Kaglian, A.E.; Savitskiĭ, A.L. 90Sr, 137Cs, 238Pu, 239+240Pu, and 241Am radionuclides in macrophytes within the Krasnensky flood plain: Species specificity of concentration and distribution in phytocenosis components. Radiatsionnaia Biol. Radioecol. 2002, 42, 419–428. [Google Scholar]
- Bolsunovsky, A. Artificial Radionuclides in Sediment of the Yenisei River. Chem. Ecol. 2010, 26, 401–409. [Google Scholar] [CrossRef]
- Zotina, T.A.; Kalacheva, G.S.; Bolsunovsky, A.Y. Biochemical Fractionation and Cellular Distribution of Americium and Plutonium in the Biomass of Freshwater Macrophytes. J. Radioanal. Nucl. Chem. 2011, 290, 447–451. [Google Scholar] [CrossRef]
- Zotina, T.A.; Trofimova, E.A.; Dementyev, D.V.; Bolsunovsky, A.Y. Bioaccumulation, Inter-Organ Distribution, and Retention of Waterborne and Dietary 241Am in Silver Crucian Carp. Toxicol. Environ. Chem. 2014, 96, 243–254. [Google Scholar] [CrossRef]
- Smith, R.W.; Wang, J.; Schültke, E.; Seymour, C.B.; Bräuer-Krisch, E.; Laissue, J.A.; Blattmann, H.; Mothersill, C.E. Proteomic Changes in the Rat Brain Induced by Homogenous Irradiation and by the Bystander Effect Resulting from High Energy Synchrotron X-Ray Microbeams. Int. J. Radiat. Biol. 2013, 89, 118–127. [Google Scholar] [CrossRef]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Paiva, C.N.; Bozza, M.T. Are Reactive Oxygen Species Always Detrimental to Pathogens? Antioxid. Redox Signal. 2014, 20, 1000–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.; Chen, L.; Guo, K.; Xie, J.; Shu, Y.; He, S.; Xiao, F. Progress of Uranium-Contaminated Soil Bioremediation Technology. J. Environ. Radioact. 2022, 241, 106773. [Google Scholar] [CrossRef] [PubMed]
- Merkel, B.J.; Hoyer, M. Remediation of Sites Contaminated by Radionuclides. In Radionuclide Behaviour in the Natural Environment: Science, Implications and Lessons for the Nuclear Industry; Woodhead Publishing: Sawston, UK, 2012; pp. 601–645. [Google Scholar] [CrossRef]
- Szufa, K.M.; Mietelski, J.W.; Olech, M.A. Assessment of Internal Radiation Exposure to Antarctic Biota Due to Selected Natural Radionuclides in Terrestrial and Marine Environment. J. Environ. Radioact. 2021, 237, 106713. [Google Scholar] [CrossRef]
- Strumińska-Parulska, D.; Falandysz, J. A Review of the Occurrence of Alpha-Emitting Radionuclides in Wild Mushrooms. Int. J. Environ. Res. Public Health 2020, 17, 8220. [Google Scholar] [CrossRef]
- Rozhko, T.V.; Kudryasheva, N.S.; Alexandrova, M.A.; Bondareva, L.G.; Bolsunovsky, A.Y.; Vydryakova, G.V. Comparison of Effects of Uranium and Americium on Bioluminescent Bacteria. J. Sib. Fed. Univ. Biol. 2008, 1, 60–65. [Google Scholar] [CrossRef]
- Kolesnik, O.V.; Rozhko, T.V.; Lapina, M.A.; Solovyev, V.S.; Sachkova, A.S.; Kudryasheva, N.S. Development of Cellular and Enzymatic Bioluminescent Assay Systems to Study Low-Dose Effects of Thorium. Bioengineering 2021, 8, 194. [Google Scholar] [CrossRef]
- Rozhko, T.V.; Kolesnik, O.V.; Badun, G.A.; Stom, D.I.; Kudryasheva, N.S. Humic Substances Mitigate the Impact of Tritium on Luminous Marine Bacteria. Involvement of Reactive Oxygen Species. Int. J. Mol. Sci. 2020, 21, 6783. [Google Scholar] [CrossRef]
- Bondareva, L.; Kudryasheva, N.; Tananaev, I. Tritium: Doses and Responses of Aquatic Living Organisms (Model Experiments). Environments 2022, 9, 51. [Google Scholar] [CrossRef]
- Rozhko, T.V.; Badun, G.A.; Razzhivina, I.A.; Guseynov, O.A.; Guseynova, V.E.; Kudryasheva, N.S. On the Mechanism of Biological Activation by Tritium. J. Environ. Radioact. 2016, 157, 131–135. [Google Scholar] [CrossRef] [Green Version]
- Rozhko, T.V.; Guseynov, O.A.; Guseynova, V.E.; Bondar, A.A.; Devyatlovskaya, A.N.; Kudryasheva, N.S. Is Bacterial Luminescence Response to Low-Dose Radiation Associated with Mutagenicity? J. Environ. Radioact. 2017, 177, 261–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jameel, Q.Y.; Mohammed, N.K. Protective Rules of Natural Antioxidants against Gamma-induced Damage—A Review. Food Sci. Nutr. 2021, 9, 5263–5278. [Google Scholar] [CrossRef] [PubMed]
- Ernawati; Suryadi, H.; Mun’im, A. Effect of Gamma Irradiation on the Caffeoylquinic Acid Derivatives Content, Antioxidant Activity, and Microbial Contamination of Pluchea Indica Leaves. Heliyon 2021, 7, e07825. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; HamadaA, N.; Takahashi, A.; Kobayashi, Y.; Ohinishi, T. Vanguards of Paradigm Shift in Radiation Biology: Radiation-Induced Adaptive and Bystander Responses. J. Radiat. Res. 2007, 48, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Azzam, E.I.; Jay-Gerin, J.-P.; Pain, D. Ionizing Radiation-Induced Metabolic Oxidative Stress and Prolonged Cell Injury. Cancer Lett. 2012, 327, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brynildsen, M.P.; Winkler, J.A.; Spina, C.S.; MacDonald, I.C.; Collins, J.J. Potentiating Antibacterial Activity by Predictably Enhancing Endogenous Microbial ROS Production. Nat. Biotechnol. 2013, 31, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.-F. Oxidative Stress, Protein Damage and Repair in Bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Hossain, M.; Lee, S.; Kim, K.; Saha, S.; Yang, G.-M.; Choi, H.; Cho, S.-G. The Role of Reactive Oxygen Species (ROS) in the Biological Activities of Metallic Nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, B.C.; Chang, C.J. Chemistry and Biology of Reactive Oxygen Species in Signaling or Stress Responses. Nat. Chem. Biol. 2011, 7, 504–511. [Google Scholar] [CrossRef] [Green Version]
- Zakhvataev, V.E. Stress-Induced Bystander Signaling as a Possible Factor Contributing to Neuronal Excitability and Seizure Generation/Epileptogenesis. Med. Hypotheses 2016, 90, 57–62. [Google Scholar] [CrossRef]
- Griendling, K.K.; Touyz, R.M.; Zweier, J.L.; Dikalov, S.; Chilian, W.; Chen, Y.-R.; Harrison, D.G.; Bhatnagar, A. Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System. Circ. Res. 2016, 119, 39–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzen, S.; Gurer-Orhan, H.; Saso, L. Detection of Reactive Oxygen and Nitrogen Species by Electron Paramagnetic Resonance (EPR) Technique. Molecules 2017, 22, 181. [Google Scholar] [CrossRef]
- Proctor, P. Electron-Transfer Factors in Psychosis and Dyskinesia. Physiol. Chem. Phys. 1972, 4, 349–360. [Google Scholar] [PubMed]
- Nadeev, A.D.; Goncharov, N.V. Reactive Oxygen Species in the Cells of Cardiovascular System. Complex Issues Cardiovasc. Dis. 2015, 4, 80–94. [Google Scholar] [CrossRef]
- Aprioku, J.S. Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis. J. Reprod. Infertil. 2013, 14, 158–172. [Google Scholar] [PubMed]
- Imlay, J.A. The Molecular Mechanisms and Physiological Consequences of Oxidative Stress: Lessons from a Model Bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does It Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Moloney, J.N.; Cotter, T.G. ROS Signalling in the Biology of Cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- Fetoni, A.R.; Paciello, F.; Rolesi, R.; Paludetti, G.; Troiani, D. Targeting Dysregulation of Redox Homeostasis in Noise-Induced Hearing Loss: Oxidative Stress and ROS Signaling. Free Radic. Biol. Med. 2019, 135, 46–59. [Google Scholar] [CrossRef]
- Hancock, J.T.; Desikan, R.; Neill, S.J. Role of Reactive Oxygen Species in Cell Signalling Pathways. Biochem. Soc. Trans. 2001, 29, 345. [Google Scholar] [CrossRef]
- Kashmiri, Z.N.; Mankar, S.A. Free Radicals and Oxidative Stress in Bacteria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 34–40. [Google Scholar]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA Damage Response in Cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef] [PubMed]
- Luzina, E.L.; Popov, A. V Synthesis and Anticancer Activity of N-Bis(Trifluoromethyl)Alkyl-N′-Thiazolyl and N-Bis(Trifluoromethyl)Alkyl-N′-Benzothiazolyl Ureas. Eur. J. Med. Chem. 2009, 44, 4944–4953. [Google Scholar] [CrossRef] [PubMed]
- Jella, K.K.; Moriarty, R.; McClean, B.; Byrne, H.J.; Lyng, F.M. Reactive Oxygen Species and Nitric Oxide Signaling in Bystander Cells. PLoS ONE 2018, 13, 17. [Google Scholar] [CrossRef]
- Sokolov, M.; Neumann, R. Changes in Gene Expression as One of the Key Mechanisms Involved in Radiation-induced Bystander Effect (Review). Biomed. Rep. 2018, 9, 99–111. [Google Scholar] [CrossRef]
- Sushko, E.S.; Vnukova, N.G.; Churilov, G.N.; Kudryasheva, N.S. Endohedral Gd-Containing Fullerenol: Toxicity, Antioxidant Activity, and Regulation of Reactive Oxygen Species in Cellular and Enzymatic Systems. Int. J. Mol. Sci. 2022, 23, 5152. [Google Scholar] [CrossRef]
- Kovel, E.S.; Kicheeva, A.G.; Vnukova, N.G.; Churilov, G.N.; Stepin, E.A.; Kudryasheva, N.S. Toxicity and Antioxidant Activity of Fullerenol C60,70 with Low Number of Oxygen Substituents. Int. J. Mol. Sci. 2021, 22, 6382. [Google Scholar] [CrossRef]
- Kovel, E.; Sachkova, A.; Vnukova, N.; Churilov, G.; Knyazeva, E.; Kudryasheva, N. Antioxidant Activity and Toxicity of Fullerenols via Bioluminescence Signaling: Role of Oxygen Substituents. Int. J. Mol. Sci. 2019, 20, 2324. [Google Scholar] [CrossRef] [Green Version]
- Wilson, T.; Hastings, J.W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998, 14, 197–230. [Google Scholar] [CrossRef]
- Hašler, P.; Ondřej, V.; Švécarová, M.; Sedlářová, M.; Vaidová, B.; Poulíčková, A. Tritium Influence on Morphology, Reactive Oxygen Species Production and Catalase Gene Expression in Pseudendoclonium basilense and Stigeoclonium nanum (Chlorophyta). Fottea 2017, 17, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Zhou, M.; Lv, D.; Wang, M.; Xie, D.; Yang, X.; Dong, C.; Li, S.; Lin, P. Novel Segmented Concentration Addition Method to Predict Mixture Hormesis of Chlortetracycline Hydrochloride and Oxytetracycline Hydrochloride to Aliivibrio fischeri. Int. J. Mol. Sci. 2020, 21, 481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jargin, S. Hormesis and Radiation Safety Norms: Comments for an Update. Hum. Exp. Toxicol. 2018, 37, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Shibamoto, Y.; Nakamura, H. Overview of Biological, Epidemiological, and Clinical Evidence of Radiation Hormesis. Int. J. Mol. Sci. 2018, 19, 2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burlakova, E.B.; Konradov, A.A.; Maltseva, E.L. Effects of Extremely Weak Chemical and Physical Stimuli on Biological Systems. Biophysics 2004, 49, 522–534. [Google Scholar]
- Kurvet, I.; Ivask, A.; Bondarenko, O.; Sihtmäe, M.; Kahru, A. LuxCDABE-Transformed Constitutively Bioluminescent Escherichia Coli for Toxicity Screening: Comparison with Naturally Luminous Vibrio Fischeri. Sensors 2011, 11, 7865–7878. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.U.H.; Blimkie, M.; Yang, D.S.; Serran, M.; Pack, T.; Wu, J.; Kang, J.Y.; Laakso, H.; Lee, S.H.; Le, Y. Effects of Chronic Low-Dose Internal Radiation on Immune-Stimulatory Responses in Mice. Int. J. Mol. Sci. 2021, 22, 7303. [Google Scholar] [CrossRef]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification; Moscow State University: Moscow, Russia, 1990; ISBN 5-211-00934-7. [Google Scholar]
- Weber, J.H. Binding and Transport of Metals by Humic Materials. In Humic Substances and Their Role in the Environment; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1988; pp. 165–178. [Google Scholar]
- Perminova, I.V.; Hatfield, K. Remediation Chemistry of Humic Substances: Theory and Implications for Technology. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 3–36. ISBN 140203251X. [Google Scholar]
- Terekhova, V.A.; Fedoseeva, E.V.; Panova, M.I.; Chukov, S.N. Bioassay of Humic Products as Potential Remedies: A Review. Eurasian Soil Sci. 2022, 55, 868–878. [Google Scholar] [CrossRef]
- Rozhko, T.; Bondareva, L.; Mogilnaya, O.; Vydryakova, G.; Bolsunovsky, A.; Stom, D.; Kudryasheva, N. Detoxification of AM-241 Solutions by Humic Substances: Bioluminescent Monitoring. Anal. Bioanal. Chem. 2011, 400, 329–334. [Google Scholar] [CrossRef]
- Kamnev, A.A.; Tugarova, A.V.; Selivanova, M.A.; Tarantilis, P.A.; Polissiou, M.G.; Kudryasheva, N.S. Effects of Americium-241 and Humic Substances on Photobacterium Phosphoreum: Bioluminescence and Diffuse Reflectance FTIR Spectroscopic Studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 100, 171–175. [Google Scholar] [CrossRef]
- Kudryasheva, N.; Fedorova, E.; Rozhko, T.; Alexandrova, M.; Mogil’naya, O.; Vydryakova, G.; Bondareva, L.; Bolsunovsky, A.; Stom, D. Bioluminescent Monitoring of Detoxification Processes. In Proceedings of the 14th International Meeting of the International Humic Substances Society, Moscow, Russia, 14–19 September 2008; pp. 261–264. [Google Scholar]
- Solovyev, V.S.; Kolesnik, O.V. Humic substances as radioprotectors. Bioluminescent monitoring. In Proceedings of the A Step into the Future: Results of Scientific Research: All-Russian Competition of Research Projects for Students, Postgraduates and Young Scientists, Yelets, Russia, 15 May 2021; pp. 146–155. (In Russian). [Google Scholar]
- Chawla, P.; Chawla, V.; Maheshwari, R.; Saraf, S.A.; Saraf, S.K. Fullerenes: From Carbon to Nanomedicine. Mini-Rev. Med. Chem. 2010, 10, 662–677. [Google Scholar] [CrossRef]
- Vávrová, J.; Řezácová, M.; Pejchal, J. Fullerene Nano Particles and Their Anti-Oxidative Effects: A Comparison to Other Radio Protective Agents. J. Appl. Biomed. 2012, 10, 1–8. [Google Scholar] [CrossRef]
Number of Solutions | Components of Solutions | V∙108, M | |
---|---|---|---|
without Th | with Th | ||
1 | NADH | 2.43 | 4.05 |
2 | NADH + enzyme preparation | 4.05 | 6.07 |
3 | NADH + FMN | 14.20 | 20.60 |
4 | NADH + FMN + enzyme preparation | 16.20 | 26.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolesnik, O.V.; Rozhko, T.V.; Kudryasheva, N.S. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments. Int. J. Mol. Sci. 2023, 24, 410. https://doi.org/10.3390/ijms24010410
Kolesnik OV, Rozhko TV, Kudryasheva NS. Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments. International Journal of Molecular Sciences. 2023; 24(1):410. https://doi.org/10.3390/ijms24010410
Chicago/Turabian StyleKolesnik, Olga V., Tatiana V. Rozhko, and Nadezhda S. Kudryasheva. 2023. "Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments" International Journal of Molecular Sciences 24, no. 1: 410. https://doi.org/10.3390/ijms24010410
APA StyleKolesnik, O. V., Rozhko, T. V., & Kudryasheva, N. S. (2023). Marine Bacteria under Low-Intensity Radioactive Exposure: Model Experiments. International Journal of Molecular Sciences, 24(1), 410. https://doi.org/10.3390/ijms24010410