Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pharmacophore Model Generation and Evaluation
2.2. Pharmacophore-Based Virtual Screening
2.3. Construction of the Bombyx-Aedes 3D Model and Molecular Docking
2.3.1. Selection, Validation, and Virtual Screening for Potential Dual Inhibitors
2.3.2. Interaction Analysis of Inhibitors and Juvenile Hormone (PDB 5V13)
2.3.3. Interaction Analysis of Inhibitors and Enzyme Model Insect Chitin Deacetylase from Aedes aegypti
2.4. In Silico Pharmacokinetic and Toxicological Properties
2.5. Structure–Activity Relationship of the Promising Molecule
2.6. Prediction of Synthetic Accessibility (SA) and Theoretical Synthetic Routes
2.6.1. Theoretical Synthetic Route (Compound M01)
2.6.2. Theoretical Synthetic Route (Compound M02)
2.6.3. Theoretical Synthetic Route (Compound M03)
2.6.4. Theoretical Synthetic Route (Compound M04)
2.6.5. Theoretical Synthetic Route (Compound M05)
3. Materials and Methods
3.1. Dataset
3.2. Pharmacophore Model Generation
3.3. Pharmacophore Model Evaluation
3.4. Pharmacophore-Based Virtual Screening
- X = QFIT value
- x = Average
- σ = Standard deviation
3.5. Homology Modeling, Molecular Docking, and Virtual Screening for Potential Dual Modulators
- LE = Ligand efficiency
- ΔG = Binding affinity
- N = Number of heavy atoms
3.6. In Silico Pharmacokinetic and Toxicological Properties
3.7. Synthetic Accessibility (SA) Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Georghiou, G.P.; Saito, T. Pest Resistance to Pesticides; Springer Science & Business Media: Boston, MA, USA, 1983; ISBN 9788578110796. [Google Scholar]
- Monath, T.P. Yellow Fever Vaccine. Expert Rev. Vaccines 2005, 4, 553–574. [Google Scholar] [CrossRef] [PubMed]
- Mondal, K.A.M.S.H.; Parween, S. Insect Growth Regulators and Their Potential in the Management of Stored-Product Insect Pests. Integr. Pest Manag. Rev. 2000, 5, 255–295. [Google Scholar] [CrossRef]
- Gilbert, L.I. (Ed.) The Juvenile Hormones; PLENUM PRE.; Springer US: Boston, MA, USA, 1976; ISBN 978-1-4684-7949-2. [Google Scholar]
- Wing, K.D.; Sparks, T.C.; Lovell, V.M.; Levinson, S.O.; Hammock, B.D. The Distribution of Juvenile Hormone Esterase and Its Interrelationship with Other Proteins Influencing Juvenile Hormone Metabolism in the Cabbage Looper, Trichoplusia Ni. Insect Biochem. 1981, 11, 473–485. [Google Scholar] [CrossRef]
- Hoffmann, K.H.; Lorenz, M.W. Recent Advances in Hormones in Insect Pest Control. Phytoparasitica 1998, 26, 323–330. [Google Scholar] [CrossRef]
- Noriega, F.G. Nutritional Regulation of JH Synthesis: A Mechanism to Control Reproductive Maturation in Mosquitoes? Insect Biochem. Mol. Biol. 2004, 34, 687–693. [Google Scholar] [CrossRef]
- Hepburn, H.R.; Roberts, D.C. Stiffness and Tanning of Sclerites. J. Insect Physiol. 1975, 21, 1741–1746. [Google Scholar] [CrossRef]
- Londershausen, M.; Kammann, V.; Spindler-Barth, M.; Spindler, K.D.; Thomas, H. Chitin Synthesis in Insect Cell Lines. Insect Biochem. 1988, 18, 631–636. [Google Scholar] [CrossRef]
- Kramer, K.J.; Koga, D. Insect Chitin. Physical State, Synthesis, Degradation and Metabolic Regulation. Insect Biochem. 1986, 16, 851–877. [Google Scholar] [CrossRef]
- Andersen, S.O. Insect Cuticular Sclerotization: A Review. Insect Biochem. Mol. Biol. 2010, 40, 166–178. [Google Scholar] [CrossRef]
- Merzendorfer, H. Insect Chitin Synthases: A Review. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2006, 176, 1–15. [Google Scholar] [CrossRef]
- Doucet, D.; Retnakaran, A. Insect Chitin. Metabolism, Genomics and Pest Management, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2012; Volume 43, ISBN 9780123915009. [Google Scholar]
- Neto, M.F.d.A.; dos Santos, C.B.R.; Magalhães-Junior, J.T.; Leite, F.H.A. Identification of Novel Aedes Aegypti Odorant-Binding Protein 1 Modulators by Ligand and Structure-Based Approaches and Bioassays. J. Biomol. Struct. Dyn. 2020, 40, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Shepphird, J.K.; Clark, R.D. A Marriage Made in Torsional Space: Using GALAHAD Models to Drive Pharmacophore Multiplet Searches. J. Comput.-Aided Mol. Des. 2006, 20, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Long, W.; Liu, P.; Li, Q.; Xu, Y.; Gao, J. 3D-QSAR Studies on a Class of IKK-2 Inhibitors with GALAHAD Used to Develop Molecular Alignment Models. QSAR Comb. Sci. 2008, 27, 1113–1119. [Google Scholar] [CrossRef]
- Leite, F.H.A.; Froes, T.Q.; da Silva, S.G.; de Souza, E.I.M.; Vital-Fujii, D.G.; Trossini, G.H.G.; Pita, S.S.d.R.; Castilho, M.S. An Integrated Approach towards the Discovery of Novel Non-Nucleoside Leishmania Major Pteridine Reductase 1 Inhibitors. Eur. J. Med. Chem. 2017, 132, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, C.A.; Brown, N. Multi-Objective Optimization Methods in Drug Design. Drug Discov. Today Technol. 2013, 10, e427–e435. [Google Scholar] [CrossRef]
- Bittencourt, J.A.H.M.; Neto, M.F.A.; Lacerda, P.S.; Bittencourt, R.C.V.S.; Silva, R.C.; Lobato, C.C.; Silva, L.B.; Leite, F.H.A.; Zuliani, J.P.; Rosa, J.M.C.; et al. In Silico Evaluation of Ibuprofen and Two Benzoylpropionic Acid Derivatives with Potential Anti-Inflammatory Activity. Molecules 2019, 24, 1476. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Hevener, K.E.; White, S.W.; Lee, R.E.; Boyett, J.M. A Statistical Framework to Evaluate Virtual Screening. BMC Bioinform. 2009, 13, 225. [Google Scholar] [CrossRef] [Green Version]
- Truchon, J.F.; Bayly, C.I. Evaluating Virtual Screening Methods: Good and Bad Metrics for the “Early Recognition” Problem. J. Chem. Inf. Model. 2007, 47, 488–508. [Google Scholar] [CrossRef]
- Chaput, L.; Martinez-Sanz, J.; Saettel, N.; Mouawad, L. Benchmark of Four Popular Virtual Screening Programs: Construction of the Active/Decoy Dataset Remains a Major Determinant of Measured Performance. J. Cheminform. 2016, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, A.M.S.; de Almeida, R.B.M.; de Araujo Neto, M.F.; Mendes, G.O.; da Cruz, J.N.; dos Santos, C.B.R.; Botura, M.B.; Leite, F.H.A. Pharmacophore-Based Virtual Screening and Molecular Docking to Identify Promising Dual Inhibitors of Human Acetylcholinesterase and Butyrylcholinesterase. J. Biomol. Struct. Dyn. 2021, 39, 6021–6030. [Google Scholar] [CrossRef]
- Brooijmans, N.; Kuntz, I.D. Molecular Recognition and Docking Algorithms. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 335–373. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Andrews, C.W.; Capelli, A.M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; et al. A Critical Assessment of Docking Programs and Scoring Functions. J. Med. Chem. 2006, 49, 5912–5931. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y. Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Huang, S.Y.; Grinter, S.Z.; Zou, X. Scoring Functions and Their Evaluation Methods for Protein-Ligand Docking: Recent Advances and Future Directions. Phys. Chem. Chem. Phys. 2010, 12, 12899–12908. [Google Scholar] [CrossRef]
- Kamst, E.; Zegelaar-jaarsveld, K.; Marel, G.A. Van Der Chemical Synthesis of N-Acetylglucosamine Derivatives and Their Use as Glycosyl Acceptors by the Mesorhizobium Loti Chitin Oligosaccharide Synthase NodC. Carbohydr. Res. 1999, 321, 176–189. [Google Scholar] [CrossRef]
- Rohidas, R.; Sanjaykumar, P. CHEMISTRY Pharmacophore-Based 3D-QSAR Study of Fungal Chitin Synthase Inhibitors. Med. Chem. Res. 2013, 22, 1762–1772. [Google Scholar] [CrossRef]
- Liszekova, D.; Polakovic, M.; Ben, M.; Farkas, R. Molecular Determinants of Juvenile Hormone Action as Revealed by 3D QSAR Analysis in Drosophila. PLoS ONE 2009, 4, e6001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latha, R.S.; Padmanabhan, R.V.J.; Comsia, Á.C.Á. CHEMISTRY 3D-QSAR Studies on the Biological Activity of Juvenile Hormone Mimetic Compounds for Culex Pipiens Larvae. Med. Chem. Res. 2013, 22, 5948–5960. [Google Scholar] [CrossRef]
- Sun, R.; Li, Y.; Lü, M.; Xiong, L.; Wang, Q. Synthesis, Larvicidal Activity, and SAR Studies of New Benzoylphenylureas Containing Oxime Ether and Oxime Ester Group. Bioorg. Med. Chem. Lett. 2010, 20, 4693–4699. [Google Scholar] [CrossRef]
- Irwin, J.J.; Shoichet, B.K. ZINC—A Free Database of Commercially Available Compounds for Virtual Screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Kralj, S.; Jukič, M.; Bren, U. Commercial SARS-CoV-2 Targeted, Protease Inhibitor Focused and Protein–Protein Interaction Inhibitor Focused Molecular Libraries for Virtual Screening and Drug Design. Int. J. Mol. Sci. 2022, 23, 393. [Google Scholar] [CrossRef] [PubMed]
- Kolarič, A.; Jukič, M.; Bren, U. Novel Small-Molecule Inhibitors of the SARS-CoV-2 Spike Protein Binding to Neuropilin 1. Pharmaceuticals 2022, 15, 165. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, G.V.; Ferreira, E.F.B.; de Ramos, R.S.; Da Silva, L.B.; De Sá, E.M.F.; Da Silva, A.K.P.; Lobato, C.M.; Souto, R.N.P.; da Silva de P, C.H.T.; Federico, L.B.; et al. Hierarchical Virtual Screening of Potential Insectides Inhibitors of Acetylcholinesterase and Juvenile Hormone from Temephos. Pharmaceuticals 2019, 12, 61. [Google Scholar] [CrossRef] [Green Version]
- Jukič, M.; Janežič, D.; Bren, U. Ensemble Docking Coupled to Linear Interaction Energy Calculations for Identification of Coronavirus Main Protease (3CLpro) Non-Covalent Small-Molecule Inhibitors. Molecules 2020, 25, 5808. [Google Scholar] [CrossRef]
- Pinto, V.d.S.; Araújo, J.S.C.; Silva, R.C.; da Costa, G.V.; Cruz, J.N.; Neto, M.F.D.A.; Campos, J.M.; Santos, C.B.R.; Leite, F.H.A.; Junior, M.C.S. In Silico Study to Identify New Antituberculosis Molecules from Natural Sources by Hierarchical Virtual Screening and Molecular Dynamics Simulations. Pharmaceuticals 2019, 12, 36. [Google Scholar] [CrossRef] [Green Version]
- Vyas, V.K.; Ghate, M.; Goel, A. Pharmacophore Modeling, Virtual Screening, Docking and in Silico ADMET Analysis of Protein Kinase B (PKB β) Inhibitors. J. Mol. Graph. Model. 2013, 42, 17–25. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Y.; Qu, M.; Qiu, Y.; Guo, X.; Zhang, Y.; Liu, T.; Yang, J.; Yang, Q. Structural and Biochemical Insights into the Catalytic Mechanisms of Two Insect Chitin Deacetylases of the Carbohydrate Esterase 4 Family. J. Biol. Chem. 2019, 294, 5774–5783. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.E.; Hekmat, O.; Schüttelkopf, A.W.; Shrestha, B.; Tokuyasu, K.; Withers, S.G.; Van Aalten, D.M.F. Structure and Mechanism of Chitin Deacetylase from the Fungal Pathogen Colletotrichum Lindemuthianum. Biochemistry 2006, 45, 9416–9426. [Google Scholar] [CrossRef] [Green Version]
- Nene, V.; Wortman, J.R.; Lawson, D.; Haas, B.; Kodira, C.; Tu, Z.; Loftus, B.; Xi, Z.; Megy, K.; Grabherr, M.; et al. Genome Sequence of Aedes Aegypti, a Major Arbovirus Vector. Science 2007, 316, 1718–1723. [Google Scholar] [CrossRef] [Green Version]
- Rahman, T.; Nagar, A.; Duffy, E.B.; Okuda, K.; Silverman, N.; Harton, J.A. NLRP3 Sensing of Diverse Inflammatory Stimuli Requires Distinct Structural Features. Front. Immunol. 2020, 11, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Oany, A.R.; Hirashima, A. Comparative Structure Analysis of Tyramine- β -Hydroxylase from Fruit Fly and ADME/T-Based Profiling of 1-Arylimidazole-2 (3 H) -Thiones as Potential Inhibitors. Int. J. Anal. Bio-Sci. 2016, 4, 10. [Google Scholar]
- Carugo, O.; Djinovic Carugo, K. Half a Century of Ramachandran Plots. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urch, J.E.; Hurtado-Guerrero, R.; Brosson, D.; Liu, Z.; Eijsink, V.G.H.; Texier, C.; Van Aalten, D.M.F. Structural and Functional Characterization of a Putative Polysaccharide Deacetylase of the Human Parasite Encephalitozoon Cuniculi. Protein Sci. 2009, 18, 1197–1209. [Google Scholar] [CrossRef] [Green Version]
- Little, D.J.; Poloczek, J.; Whitney, J.C.; Robinson, H.; Nitz, M.; Howell, P.L. The Structure- and Metal-Dependent Activity of Escherichia Coli PgaB Provides Insight into the Partial De-N-Acetylation of Poly-β-1,6-N-Acetyl-d-Glucosamine. J. Biol. Chem. 2012, 287, 31126–31137. [Google Scholar] [CrossRef] [Green Version]
- Andrés, E.; Albesa-Jové, D.; Biarnés, X.; Moerschbacher, B.M.; Guerin, M.E.; Planas, A. Structural Basis of Chitin Oligosaccharide Deacetylation. Angew. Chem.-Int. Ed. 2014, 53, 6882–6887. [Google Scholar] [CrossRef]
- Dong, M.D.; Urch, J.E.; Ten Cate, J.M.; Rao, V.A.; Van Aalten, D.M.F.; Crielaard, W. Streptococcus Mutans SMU.623c Codes for a Functional, Metal-Dependent Polysaccharide Deacetylase That Modulates Interactions with Salivary Agglutinin. J. Bacteriol. 2009, 91, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Taylor, E.J.; Gloster, T.M.; Turkenburg, J.P.; Vincent, F.; Brzozowski, A.M.; Dupont, C.; Shareck, F.; Centeno, M.S.J.; Prates, J.A.M.; Puchart, V.; et al. Structure and Activity of Two Metal Ion-Dependent Acetylxylan Esterases Involved in Plant Cell Wall Degradation Reveals a Close Similarity to Peptidoglycan Deacetylases. J. Biol. Chem. 2006, 281, 10968–10975. [Google Scholar] [CrossRef] [Green Version]
- Westhead, D.R.; Clark, D.E.; Murray, C.W. A Comparison of Heuristic Search Algorithms for Molecular Docking. J. Comput.-Aided Mol. Des. 1997, 11, 209–228. [Google Scholar] [CrossRef]
- Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes. J. Comput.-Aided Mol. Des. 1997, 11, 425–445. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Nguyen, T.H.; Pham, T.N.H.; Huy, N.T.; Bay, M.V.; Pham, M.Q.; Nam, P.C.; Vu, V.V.; Ngo, S.T. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. J. Chem. Inf. Model. 2020, 60, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. AMDock: A Versatile Graphical Tool for Assisting Molecular Docking with Autodock Vina and Autodock4. Biol. Direct 2020, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Costa Júnior, D.B.; Araújo, J.S.C.; de Mattos Oliveira, L.; Neri, F.S.M.; Moreira, P.O.L.; Taranto, A.G.; Fonseca, A.L.; de Pilla Varotti, F.; Leite, F.H.A. Identification of Novel Antiplasmodial Compound by Hierarquical Virtual Screening and in Vitro Assays. J. Biomol. Struct. Dyn. 2020, 39, 3378–3386. [Google Scholar] [CrossRef]
- Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The Role of Ligand Efficiency Metrics in Drug Discovery. Nat. Rev. Drug Discov. 2014, 13, 105–121. [Google Scholar] [CrossRef]
- Ul-Haq, Z.; Wadood, A.; Uddin, R. CoMFA and CoMSIA 3D-QSAR Analysis on Hydroxamic Acid Derivatives as Urease Inhibitors. J. Enzym. Inhib. Med. Chem. 2009, 24, 272–278. [Google Scholar] [CrossRef]
- Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An Alternative Method for the Evaluation of Docking Performance: RSR vs RMSD. J. Chem. Inf. Model. 2008, 48, 1411–1422. [Google Scholar] [CrossRef]
- Kores, K.; Lešnik, S.; Bren, U.; Janežič, D.; Konc, J. Discovery of Novel Potential Human Targets of Resveratrol by Inverse Molecular Docking. J. Chem. Inf. Model. 2019, 59, 2467–2478. [Google Scholar] [CrossRef]
- Furlan, V.; Bren, U. Insight into Inhibitory Mechanism of Pde4d by Dietary Polyphenols Using Molecular Dynamics Simulations and Free Energy Calculations. Biomolecules 2021, 11, 479. [Google Scholar] [CrossRef]
- Lešnik, S.; Bren, U. Mechanistic Insights into Biological Activities of Polyphenolic Compounds from Rosemary Obtained by Inverse Molecular Docking. Foods 2022, 11, 67. [Google Scholar] [CrossRef]
- Kenny, P.W. The Nature of Ligand Efficiency. J. Cheminform. 2019, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Pham, V.; Jablonka, W.; Goodman, W.G.; Ribeiro, J.M.C.; Andersen, J.F. A Mosquito Hemolymph Odorant-Binding Protein Family Member Specifically Binds Juvenile Hormone. J. Biol. Chem. 2017, 292, 15329–15339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Aster, J.C.; Blacklow, S.C.; Lake, R.; Artavanis-Tsakonas, S.; Griffin, J.D. MAML1, a Human Homologue of Drosophila Mastermind, Is a Transcriptional Co-Activator for NOTCH Receptors. Nat. Genet. 2000, 26, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Borges, N.M.; Sartori, G.R.; Ribeiro, J.F.R.; Rocha, J.R.; Martins, J.B.L.; Montanari, C.A.; Gargano, R. Similarity Search Combined with Docking and Molecular Dynamics for Novel HAChE Inhibitor Scaffolds. J. Mol. Model. 2018, 24, 41. [Google Scholar] [CrossRef]
- Lobato Rodrigues, A.B.; Martins, R.L.; Rabelo, É.D.M.; Tomazi, R.; Santos, L.L.; Brandão, L.B.; Faustino, C.G.; Ferreira Farias, A.L.; Dos Santos, C.B.R.; de Castro Cantuária, P.; et al. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS ONE 2021, 16, e0254225. [Google Scholar] [CrossRef]
- Sinha, S.; Pant, K.; Pal, M.; Sharma, P.; Anand, J.; Pant, B.; Verma, D.; Kumar, R.; Tripathi, Y.; Birla, K.; et al. Molecular Docking Studies of Phytocompounds in Common Weeds with AChE Proteins of Aphids and Beetles. J. Biol. Act. Prod. Nat. 2020, 10, 18–33. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- Denecke, S.; Swevers, L.; Douris, V.; Vontas, J. How Do Oral Insecticidal Compounds Cross the Insect Midgut Epithelium? Insect Biochem. Mol. Biol. 2018, 103, 22–35. [Google Scholar] [CrossRef]
- Bennet-clark, H.C. Active Control of the Mechancal Ixsect Endocuticle Properties. Ins. Physiol. 1967, 8, 627–633. [Google Scholar] [CrossRef]
- Sowa, B.A. An in vitro system for the quantitative measurement of CHITIN synthesis in the cockroach: Inhibition by TH 6040 and polyoxin D. Insect Biochem. 1975, 5, 855–859. [Google Scholar] [CrossRef]
- Verloop, A.; Ferrell, C.D. Benzoylphenyl Ureas—A New Group of Larvicides Interfering with Chitin Deposition. Am. Chem. Soc. 1977, 19111, 237–270. [Google Scholar] [CrossRef]
- Tecle, B.; Ruzo, L.O.; Casida, J.E. Radiosynthesis of [Benzoyl-3,4,5-3H] diflubenzuron by a Route Applicable to Other High-Potency Insect Growth Regulators. J. Agric. Food Chem. 1988, 36, 178–180. [Google Scholar] [CrossRef]
- Panini, M.; Manicardi, G.C.; Moores, G.D.; Mazzoni, E. An Overview of the Main Pathways of Metabolic Resistance in Insects. Invertebr. Surviv. J. 2016, 13, 326–335. [Google Scholar]
- Sparks, T.C.; Nauen, R. IRAC: Mode of Action Classification and Insecticide Resistance Management. Pestic. Biochem. Physiol. 2015, 121, 122–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752–6756. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area. J. Chem. Inf. Model. 2012, 52, 420–428. [Google Scholar] [CrossRef]
- Irvine, J.D.; Takahashi, L.; Lockhart, K.; Cheong, J.; Tolan, J.W.; Selick, H.E.; Grove, J.R. MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening. J. Pharm. Sci. 1999, 88, 28–33. [Google Scholar] [CrossRef]
- Yamashita, F.; Hashida, M. In Silico Approaches for Predicting ADME Properties of Drugs. Drug Metab Pharm. 2004, 19, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.L.; Chen, C.; Yang, J. Predictive Model of Blood-Brain Barrier Penetration of Organic Compounds. Acta Pharmacol. Sin. 2005, 26, 500–512. [Google Scholar] [CrossRef] [Green Version]
- Voutchkova, A.M.; Ferris, L.A.; Zimmerman, J.B.; Anastas, P.T. Toward Molecular Design for Hazard Reduction-Fundamental Relationships between Chemical Properties and Toxicity. Tetrahedron 2010, 66, 1031–1039. [Google Scholar] [CrossRef]
- Regina, K.J.; Brown, S.M.; Kharasch, E.D.; Crafford, A.; Holtzman, M.J.; Campbell, S.D. P-Glycoprotein Is a Major Determinant of Norbuprenorphine Brain Exposure and Antinociception. J. Pharmacol. Exp. Ther. 2012, 343, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Hansch, C.; Silipo, C. Quantitative Structure-Activity Relation of Reversible Dihydrofolate Reductase Inhibitors. Diaminotriazines. J. Med. Chem. 1974, 17, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Babatunde, S.; Adamu, O.; Gideon, U.; Sani, S. QSAR Modeling, Molecular Docking and ADMET/Pharmacokinetic Studies: A Chemometrics Approach to Search for Novel Inhibitors of Norepinephrine Transporter as Potent Antipsychotic Drugs. J. Iran. Chem. Soc. 2020, 17, 1953–1966. [Google Scholar] [CrossRef] [Green Version]
- Geldenhuys, W.J.; Bloomquist, J.R. Development of an a Priori Computational Approach for Brain Uptake of Compounds in an Insect Model System. Bioorg. Med. Chem. Lett. 2021, 40, 127930. [Google Scholar] [CrossRef]
- Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B. The Role of ABC Transporters in Drug Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox). Drug Discov. Today 2008, 13, 379–393. [Google Scholar] [CrossRef]
- Poongavanam, V.; Haider, N.; Ecker, G.F. Fingerprint-Based in Silico Models for the Prediction of P-Glycoprotein Substrates and Inhibitors. Bioorg. Med. Chem. 2012, 20, 5388–5395. [Google Scholar] [CrossRef] [Green Version]
- Montanari, F.; Ecker, G.F. Prediction of Drug-ABC-Transporter Interaction-Recent Advances and Future Challenges. Adv. Drug Deliv. Rev. 2015, 86, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Figueira-Mansur, J.; Ferreira-Pereira, A.; Mansur, J.F.; Franco, T.A.; Alvarenga, E.S.L.; Sorgine, M.H.F.; Neves, B.C.; Melo, A.C.A.; Leal, W.S.; Masuda, H.; et al. Silencing of P-Glycoprotein Increases Mortality in Temephos-Treated Aedes Aegypti Larvae. Insect Mol. Biol. 2013, 22, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Yavaşoglu, S.İ.; Alkhaibari, A.M.; Şimşek, F.M. Investigation of the insecticide resistance levels and mechanisms of the Mediterranean and Aegean Aedes caspius populations of Turkey. Int. J. Pest Manag. 2022. [Google Scholar] [CrossRef]
- Porretta, D.; Gargani, M.; Bellini, R.; Medici, A.; Punelli, F.; Urbanelli, S. Defence Mechanisms against Insecticides Temephos and Diflubenzuron in the Mosquito Aedes Caspius: The P-Glycoprotein Efflux Pumps. Med. Vet. Entomol. 2008, 22, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.P.; Goulart, M.O.F.; Neto, M.L.R. Evaluation of the Role of ATP-Binding Cassette Transporters as a Defense Mechanism against Temephos in Populations of Aedes Aegypti. Mem. Do Inst. Oswaldo Cruz 2014, 109, 964–966. [Google Scholar] [CrossRef] [Green Version]
- Merzendorfer, H. ABC Transporters and Their Role in Protecting Insects from Pesticides and Their Metabolites, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 46, ISBN 9780124170100. [Google Scholar]
- Clark, R.D. Predicting Mammalian Metabolism and Toxicity of Pesticides in Silico. Pest Manag. Sci. 2018, 74, 1992–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, C.; Svensson, F.; Zoufir, A.; Bender, A. EMolTox: Prediction of Molecular Toxicity with Confidence. Bioinformatics 2018, 34, 2508–2509. [Google Scholar] [CrossRef] [Green Version]
- Mokhnache, K.; Soltani, E.-K.; Madoui, S.; Khither, H.; Karbab, A.; Charef, N.; Arrar, L. In Silico Toxicological, Anti-Tubercular Effect Evaluation And In Vitro Marine Pathogenic Bacteria Inhibition of N-[(3-Chloro-4-Nitro-Phenyl)Methyleneamino]Pyridine-4-Carboxamidine. J. Drug Deliv. Ther. 2019, 9, 23–27. [Google Scholar] [CrossRef]
- Morger, A.; Mathea, M.; Achenbach, J.H.; Wolf, A.; Buesen, R.; Schleifer, K.J.; Landsiedel, R.; Volkamer, A. KnowTox: Pipeline and Case Study for Confident Prediction of Potential Toxic Effects of Compounds in Early Phases of Development. J. Cheminform. 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Mokhnache, K.; Karbab, A.; Soltani, E.K.; Bououden, W.; Ouhida, S.; Arrar, L.; Esteban, M.A.; Charef, N.; Mubarak, M.S. Synthesis, Characterization, Toxic Substructure Prediction, Hepatotoxicity Evaluation, Marine Pathogenic Bacteria Inhibition, and DFT Calculations of a New Hydrazone Derived from Isoniazid. J. Mol. Struct. 2020, 1221. [Google Scholar] [CrossRef]
- Abaukaka, Y.A.; Sanusi, S.; Ozigi, K.A.; Malo, F.U. Assessment of the Cytotoxic and Mutagenic Potential of Dichlorvos (DDVP) Using in Silico Classification Model; a Health Hazard Awareness in Nigeria. Environ. Health Toxicol. 2020, 35, e2020016. [Google Scholar] [CrossRef]
- Sosnin, S.; Karlov, D.; Tetko, I.V.; Fedorov, M.V. Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space. J. Chem. Inf. Model. 2019, 59, 1062–1072. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, H.; Shivraj, L. In Silico Toxicity Prediction Using an Integrative Multimodel Approach. Res. Rep. 2020, 5, 2020–2022. [Google Scholar] [CrossRef]
- Tugcu, G.; Kırmızıbekmez, H.; Aydın, A. The Integrated Use of in Silico Methods for the Hepatotoxicity Potential of Piper Methysticum. Food Chem. Toxicol. 2020, 145, 111663. [Google Scholar] [CrossRef] [PubMed]
- Bhamare, P.; Umadoss, P.; Upmanyu, N.; Dubey, R. Identification, Isolation, Structural Characterisation, Synthesis and: In Silico Toxicity Prediction of the Alkaline Hydrolytic Degradation Product of Brivaracetam by Using LC-PDA, Preparative HPLC, LC/HESI/LTQ, FTIR, and 1H NMR. Anal. Methods 2020, 12, 1868–1881. [Google Scholar] [CrossRef]
- Rashid, M.I.; Andleeb, S.; Ali, A. Evaluation of Pyocyanin Induced Systemic Pathogenicity of Pseudomonas Aeruginosa. Pak. J. Pharm. Sci. 2020, 33, 915–922. [Google Scholar] [CrossRef]
- Webel, H.E.; Kimber, T.B.; Radetzki, S.; Neuenschwander, M.; Nazaré, M.; Volkamer, A. Revealing Cytotoxic Substructures in Molecules Using Deep Learning. J. Comput.-Aided Mol. Des. 2020, 34, 731–746. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.B. Organic Anion-Transporting Polypeptide (OATP) Transporter Family and Drug Disposition. Eur. J. Clin. Investig. Suppl. 2003, 33, 1–5. [Google Scholar] [CrossRef]
- Marzolini, C.; Tirona, R.G.; Kim, R.B. Pharmacogenomics of the OATP and OAT Families. Pharmacogenomics 2004, 5, 273–282. [Google Scholar] [CrossRef]
- Smith, N.F.; Figg, W.D.; Sparreboom, A. Role of the Liver-Specific Transporters OATP1B1 and OATP1B3 in Governing Drug Elimination. Expert Opin. Drug Metab. Toxicol. 2005, 1, 429–445. [Google Scholar] [CrossRef]
- Alam, K.; Pahwa, S.; Wang, X.; Zhang, P.; Ding, K.; Alaa, H.; Li, L.; Yue, W.; City, O.; States, U.; et al. Downregulation of Organic Anion Transporting Polypeptide (OATP) 1B1 Transport Function by Lysosomotropic Drug Chloroquine: Implication in OATP-Mediated Drug-Drug Interactions. Mol. Pharmaceut. 2016, 13, 839–851. [Google Scholar] [CrossRef] [Green Version]
- Van De Steeg, E.; Stránecký, V.; Hartmannová, H.; Nosková, L.; Hřebíček, M.; Wagenaar, E.; Van Esch, A.; De Waart, D.R.; Oude Elferink, R.P.J.; Kenworthy, K.E.; et al. Complete OATP1B1 and OATP1B3 Deficiency Causes Human Rotor Syndrome by Interrupting Conjugated Bilirubin Reuptake into the Liver. J. Clin. Investig. 2012, 122, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Vankayala, S.L.; Hargis, J.C.; Woodcock, H.L. How Does Catalase Release Nitric Oxide? A Computational Structure-Activity Relationship Study. J. Chem. Inf. Model. 2013, 53, 2951–2961. [Google Scholar] [CrossRef] [Green Version]
- Berrino, E.; Bozdag, M.; Del Prete, S.; Alasmary, F.A.S.; Alqahtani, L.S.; AlOthman, Z.; Capasso, C.; Supuran, C.T. Inhibition of α-, β-, γ-, and δ-Carbonic Anhydrases from Bacteria and Diatoms with N′-Aryl-N-Hydroxy-Ureas. J. Enzym. Inhib. Med. Chem. 2018, 33, 1194–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmy, M.A.; Abdalla, E.F. Genotoxicity Evaluation of Buprofezin, Petroleum Oil and Profenofos in Somatic and Germ Cells of Male Mice. J. Appl. Toxicol. 1998, 18, 301–305. [Google Scholar] [CrossRef]
- Booth, D.F.M. Pesticides in Aquatic Environments. In Environmental Science Research; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1977; p. 263. ISBN 978-1-4684-2870-4. [Google Scholar]
- Sun, R.; Liu, C.; Zhang, H.; Wang, Q. Benzoylurea Chitin Synthesis Inhibitors. J. Agric. Food Chem. 2015, 63, 6847–6865. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, W.; Xu, P.; Guo, B.; Wang, Y.; Li, J.; Wang, H. The Tissue Distribution, Metabolism and Hepatotoxicity of Benzoylurea Pesticides in Male Eremias Argus after a Single Oral Administration. Chemosphere 2017, 183, 1–8. [Google Scholar] [CrossRef]
- Greene, N.; Fisk, L.; Naven, R.T.; Note, R.R.; Patel, M.L.; Pelletier, D.J. Developing Structure-Activity Relationships for the Prediction of Hepatotoxicity. Chem. Res. Toxicol. 2010, 23, 1215–1222. [Google Scholar] [CrossRef]
- Banerjee, P.; Dehnbostel, F.O.; Preissner, R. Prediction Is a Balancing Act: Importance of Sampling Methods to Balance Sensitivity and Specificity of Predictive Models Based on Imbalanced Chemical Data Sets. Front. Chem. 2018, 6, 362. [Google Scholar] [CrossRef]
- de Knecht, J.A.; van Herwijnen, R. Environmental Risk Limits for Deltamethrin; RIVM Letter report 601716015/2008; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2008; pp. 1–58. [Google Scholar]
- Olsvik, P.A.; Samuelsen, O.B.; Agnalt, A.L.; Lunestad, B.T. Transcriptional Responses to Teflubenzuron Exposure in European Lobster (Homarus Gammarus). Aquat. Toxicol. 2015, 167, 143–156. [Google Scholar] [CrossRef]
- Samuelsen, O.B.; Lunestad, B.T.; Farestveit, E.; Grefsrud, E.S.; Hannisdal, R.; Holmelid, B.; Tjensvoll, T.; Agnalt, A.L. Mortality and Deformities in European Lobster (Homarus Gammarus) Juveniles Exposed to the Anti-Parasitic Drug Teflubenzuron. Aquat. Toxicol. 2014, 149, 8–15. [Google Scholar] [CrossRef]
- Vila-Carriles, W.H.; Zhao, G.; Bryan, J. Defining a Binding Pocket for Sulfonylureas in ATP-sensitive Potassium Channels. FASEB J. 2007, 21, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Retnakaran, A. Effect of 3 New Moult-Inhibiting Insect Growth Regulators on the Spruce Budworm1. J. Econ. Entomol. 1980, 73, 520–524. [Google Scholar] [CrossRef]
- Mandloi, M.; Karmarkar, S.; Joshi, S.; Khadikar, P. V Inhibition of DNA Synthesis by Hydroxyureas and Related Compounds: Structure-Activity Relationships. Oxid. Commun. 2001, 24, 291–301. [Google Scholar]
- Das, P.K.; Caaveiro, J.M.M.; Luque, S.; Klibanov, A.M. Binding of Hydrophobic Hydroxamic Acids Enhances Peroxidase’s Stereoselectivity in Nonaqueous Sulfoxidations. J. Am. Chem. Soc. 2002, 124, 782–787. [Google Scholar] [CrossRef]
- Uesato, S.; Hashimoto, Y.; Nishino, M.; Nagaoka, Y.; Kuwajima, H. N-Substituted Hydroxyureas as Urease Inhibitors. Chem. Pharm. Bull. 2002, 50, 1280–1282. [Google Scholar] [CrossRef] [Green Version]
- Rohrman, B.A.; Mazziotti, D.A. Quantum Chemical Design of Hydroxyurea Derivatives for the Treatment of Sickle-Cell Anemia. J. Phys. Chem. B 2005, 109, 13392–13396. [Google Scholar] [CrossRef]
- Ryan, S.W. (12) United States Patent Date of Patent. Syst. Method Program. A Weigh. Scale Usinga Key Signal Enter A Program. Mode 2009, 1, 14. [Google Scholar]
- McCourt, M.P.; Greene, R.S.; Smith, C.; McClory, H.; Wirth, C.; Sumbler, B.; Emery, M.L.; Leskiw, B.D.; Krause, J.G.; McGahan, M.E.; et al. Computational Analysis of the Apoptotic Activity of a Small Library of Novel Substituted Hydroxy Ureas Designed as Potential Inhibitors of Ribonucleotide Reductase. Lett. Drug Des. Discov. 2011, 8, 580–584. [Google Scholar] [CrossRef]
- Elford, H.L.; Van’t Riet, B.; Wampler, G.L.; Lin, A.L.; Elford, R.M. Regulation of Ribonucleotide Reductase in Mammalian Cells by Chemotherapeutic Agents. Adv. Enzym. Regul. 1981, 19, 151–168. [Google Scholar] [CrossRef]
- Grady, R.W.; Bienen, E.J.; Clarkson, A.B. P-Alkyloxybenz Hydroxamic Acids, Effective Inhibitors of the trypanosome Glycerol-3-Phosphate Oxidase. Mol. Biochem. Parasitol. 1986, 19, 231–240. [Google Scholar] [CrossRef]
- Gupta, S.P.; Gupta, J.K. Quantitative Structure-Activity Relationship Study on Some 5-Lipoxygenase Inhibitors. J. Enzym. Inhib. Med. Chem. 1990, 3, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Summers, J.B.; Mazdiyasni, H.; Holms, J.H.; Ratajczyk, J.D.; Stewart, A.O.; Dyer, R.D.; Carter, G.W.; Kim, K.H. Hydroxamic Acid Inhibitors of 5-Lipoxygenase: Quantitative Structure–Activity Relationships. J. Med. Chem. 1990, 33, 992–998. [Google Scholar] [CrossRef]
- Khadika, P.V.; Sharma, S.; Sharma, V.; Joshi, S.; Lukovits, I.; Kaveeshwar, M. A QSAR Study of the Effect of Benzohydroxamic Acids on DNA Synthesis. Bull. Des Sociétés Chim. Belg. 1997, 106, 767–772. [Google Scholar]
- Xuan, X.; Yifan, L. The Pattern Recognition Study on the Antitumor Activity of Aroyl Compounds. Chin. J. Med. Chem. 2001, 11, 17–20. [Google Scholar]
- Liénard, B.M.R.; Horsfall, L.E.; Galleni, M.; Frère, J.M.; Schofield, C.J. Inhibitors of the FEZ-1 Metallo-β-Lactamase. Bioorg. Med. Chem. Lett. 2007, 17, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Bayat, A.; Fattahi, A. Investigation of the Scavenging Mechanism of Tyrosyl Radical by Hydroxybenzohydroxamic Acid Derivatives: A DFT Study. Comput. Theor. Chem. 2013, 1018, 35–44. [Google Scholar] [CrossRef]
- Lim, J.; Song, Y.; Jang, J.H.; Jeong, C.H.; Lee, S.; Park, B.; Seo, Y.H. Aspirin-Inspired Acetyl-Donating HDACs Inhibitors. Arch. Pharmacal Res. 2018, 41, 967–976. [Google Scholar] [CrossRef]
- Hania, M. Synthesis and antibacterial activity of 2-acetyl and 2-formylpyrrole oximes, semicarbazones and phenylhydrazones. Asian J. Chem. 2002, 14, 2. [Google Scholar]
- Ramos, R.S.; Borges, R.S.; de Souza, J.S.N.; Araujo, I.F.; Chaves, M.H.; Santos, C.B.R. Identification of Potential Antiviral Inhibitors from Hydroxychloroquine and 1,2,4,5-Tetraoxanes Analogues and Investigation of the Mechanism of Action in SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 1781. [Google Scholar] [CrossRef]
- Fukunishi, Y.; Kurosawa, T.; Mikami, Y.; Nakamura, H. Prediction of Synthetic Accessibility Based on Commercially Available Compound Databases. J. Chem. Inf. Model. 2014, 54, 3259–3267. [Google Scholar] [CrossRef]
- Gentile, F.; Yaacoub, J.C.; Gleave, J.; Fernandez, M.; Ton, A.-T.; Ban, F.; Stern, A.; Cherkasov, A. Artificial Intelligence–Enabled Virtual Screening of Ultra-Large Chemical Libraries with Deep Docking. Nat. Protoc. 2022, 17, 672–697. [Google Scholar] [CrossRef] [PubMed]
- Buettelmann, B.; Jakob-Roetne, R.; Knust, H.; Lucas, M.C.; Thomas, A. Preparation of Isoxazole-Pyridine Derivatives as GABA Modulators. PCT Int. Appl. WO 2010, 4, 65. [Google Scholar]
- Mo, X.; Morgan, T.D.R.; Ang, H.T.; Hall, D.G. Scope and Mechanism of a True Organocatalytic Beckmann Rearrangement with a Boronic Acid/Perfluoropinacol System under Ambient Conditions. J. Am. Chem. Soc. 2018, 140, 5264–5271. [Google Scholar] [CrossRef]
- Zeng, G.; Li, H.; Wei, Y.; Xuan, W.; Zhang, R.; Breden, L.E.; Wang, W.; Liang, F. Sen Engineering Iron Responses in Mammalian Cells by Signal-Induced Protein Proximity. ACS Synth. Biol. 2017, 6, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Berini, C.; Minassian, F.; Pelloux-Léon, N.; Denis, J.N.; Vallée, Y.; Philouze, C. Efficient Stereoselective Nucleophilic Addition of Pyrroles to Chiral Nitrones. Org. Biomol. Chem. 2008, 6, 2574–2586. [Google Scholar] [CrossRef]
- Niu, C.; Yin, L.; Nie, L.F.; Dou, J.; Zhao, J.Y.; Li, G.; Aisa, H.A. Synthesis and Bioactivity of Novel Isoxazole Chalcone Derivatives on Tyrosinase and Melanin Synthesis in Murine B16 Cells for the Treatment of Vitiligo. Bioorg. Med. Chem. 2016, 24, 5440–5448. [Google Scholar] [CrossRef]
- Yu, J.; Cao, X.; Lu, M. A Novel and Efficient Catalytic System Including TEMPO/Acetaldoxime/InCl3 for Aerobic Oxidation of Primary Amines to Oximes. Tetrahedron Lett. 2014, 55, 5751–5755. [Google Scholar] [CrossRef]
- Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017, 547, 453–457. [Google Scholar] [CrossRef]
- Kim, J.H.; Ali, K.H.; Oh, Y.J.; Seo, Y.H. Design, synthesis, and biological evaluation of histone deacetylase inhibitor with novel salicylamide zinc binding group. Medicine 2022, 101, e29049. [Google Scholar] [CrossRef]
- Orlowska, E.; Roller, A.; Wiesinger, H.; Pignitter, M.; Jirsa, F.; Krachler, R.; Kandioller, W.; Keppler, B.K. Benzoic Hydroxamate-Based Iron Complexes as Model Compounds for Humic Substances: Synthesis, Characterization and Algal Growth Experiments. RSC Adv. 2016, 6, 40238–40249. [Google Scholar] [CrossRef] [Green Version]
- Redina, E.A.; Vikanova, K.V.; Kapustin, G.I.; Mishin, I.V.; Tkachenko, O.P.; Kustov, L.M. Selective Room-Temperature Hydrogenation of Carbonyl Compounds under Atmospheric Pressure over Platinum Nanoparticles Supported on Ceria-Zirconia Mixed Oxide. Eur. J. Org. Chem. 2019, 2019, 4159–4170. [Google Scholar] [CrossRef]
- Mayer, R.T.; Chen, A.C.; Deloach, J.R.; Mayer, R.T.; Chen, A.C.; Deloach, J.R. Characterization of A Chitin Synthase from the Stable Fly, Stomoxys Calcitrans (L.). Insect Biochem. 1980, 10, 549–556. [Google Scholar] [CrossRef]
- Clark, M.; Cramer, R.D.; Van Opdenbosch, N. Validation of the General Purpose Tripos 5.2 Force Field. J. Comput. Chem. 1989, 10, 982–1012. [Google Scholar] [CrossRef]
- Gasteiger, J.; Marsili, M. Iterative Partial Equalization of Orbital Electronegativity-a Rapid Access to Atomic Charges. Tetrahedron 1980, 36, 3219–3228. [Google Scholar] [CrossRef]
- Richmond, N.J.; Abrams, C.A.; Wolohan, P.R.N.; Abrahamian, E.; Willett, P.; Clark, R.D. GALAHAD: 1. Pharmacophore Identification by Hypermolecular Alignment of Ligands in 3D. J. Comput.-Aided Mol. Des. 2006, 20, 567–587. [Google Scholar] [CrossRef]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef] [PubMed]
- Lätti, S.; Niinivehmas, S.; Pentikäinen, O.T. Rocker: Open Source, Easy-to-Use Tool for AUC and Enrichment Calculations and ROC Visualization. J. Cheminform. 2016, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 9, 421. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C.; Schwede, T. Celebrating 30 Years Automated Comparative Protein Structure Modeling with SWISS-MODEL and Swiss-PdbViewer: A Historical Perspective. Electrophoresis 2009, 30, 162–173. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018, 46, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Bienert, S.; Waterhouse, A.; De Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository—New Features and Functionality. Nucleic Acids Res. 2017, 45, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Haas, J.; Schwede, T. QMEANDisCo–Distance Constraints Applied on Model Quality Estimation. Struct. Bioinform. 2019, 36, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Benkert, P.; Biasini, M.; Schwede, T. Toward the Estimation of the Absolute Quality of Individual Protein Structure Models. Struct. Bioinform. 2011, 27, 343–350. [Google Scholar] [CrossRef]
- Wang, G.; Dunbrack, R.L., Jr. Bioinformatics Applications note pisces: A Protein Sequence Culling Server. Bioinformatics 2003, 19, 1589–1591. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.C.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Comparing Protein-Ligand Docking Programs Is Difficult. Proteins: Struct. Funct. Genet. 2005, 60, 325–332. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.d.S.; Costa, J.d.S.; Macêdo, W.J.d.C.; Rodrigues, A.B.L.; Silva, C.; Santos, C.; da Costa, G.V.; Taft, C.A.; Silva, R.C.; Souto, R.N.P.; et al. Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening. Pharmaceuticals 2019, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Leão, R.P.; Cruz, J.V.; da Costa, G.V.; Cruz, J.N.; Ferreira, E.F.B.; Silva, R.C.; de Lima, L.R.; Borges, R.S.; Dos Santos, G.B.; Santos, C.B.R. Identification of New Rofecoxib-Based Cyclooxygenase-2 Inhibitors: A Bioinformatics Approach. Pharmaceuticals 2020, 13, 209. [Google Scholar] [CrossRef]
- Costa, R.A.; Rocha, E.C.M.; Silva, R.C.; Gonçalves, A.S.; Santos, C.B.R.; Brasil, D.S.B. A Computational Approach Applied to the Study of Potential Allosteric Inhibitors Protease NS2B/NS3 from Dengue Virus. Molecules 2022, 27, 20. [Google Scholar] [CrossRef]
- Boda, K.; Seidel, T.; Gasteiger, J. Structure and Reaction Based Evaluation of Synthetic Accessibility. J. Comput.-Aided Mol. Des. 2007, 21, 311–325. [Google Scholar] [CrossRef]
- Kochev, N.T.; Paskaleva, V.H.; Jeliazkova, N. Ambit-Tautomer: An Open Source Tool for Tautomer Generation. Mol. Inform. 2013, 32, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Ertl, P.; Schuffenhauer, A. Estimation of Synthetic Accessibility Score of Drug-like Molecules Based on Molecular Complexity and Fragment Contributions. J. Cheminform. 2009, 1, 8–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Jeliazkova, N.; Chupakin, V.; Golib-Dzib, J.F.; Engkvist, O.; Carlsson, L.; Wegner, J.; Ceulemans, H.; Georgiev, I.; Jeliazkov, V.; et al. ExCAPE-DB: An Integrated Large Scale Dataset Facilitating Big Data Analysis in Chemogenomics. J. Cheminform. 2017, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Model | ENERGY (kcal/mol) | STERICS | H-BOND | MOL_QRY |
---|---|---|---|---|
01 | 5.55 | 2662.60 | 627.30 | 365.56 |
02 | 6.83 | 2502.50 | 669.00 | 378.08 |
03 | 6.62 | 2724.20 | 646.60 | 358.13 |
04 | 6.88 | 2888.40 | 619.20 | 356.44 |
05 | 6.35 | 2496.40 | 650.00 | 362.48 |
06 | 6.73 | 2876.90 | 610.40 | 350.63 |
07 | 7.87 | 2936.50 | 641.60 | 357.15 |
08 | 6.31 | 2604.20 | 647.90 | 343.24 |
09 | 7.03 | 2638.60 | 674.00 | 335.78 |
10 | 6.82 | 2802.00 | 611.70 | 346.41 |
Models | BEDROC |
---|---|
01 | 0.36 |
02 | 0.30 |
04 | 0.41 |
05 | 0.23 |
06 | 0.60 |
07 | 0.49 |
09 | 0.52 |
10 | 0.44 |
In Silico Pharmacokinetic Properties | |||||
---|---|---|---|---|---|
COD | SwissADME | PREADMET | |||
Lipophilicity | Water Solubility | ||||
Consensus log Po/w 1 | Log S | BBB 2 | Caco-2 3 | MDCK 4 | |
DFB | 3.32 | −5.06 | 2.25 | 20.47 | 0.53 |
TEF | 4.43 | −5.94 | 4.66 | 23.09 | 0.07 |
FCX | 5.37 | −8.23 | 2.29 | 25.12 | 0.05 |
BPU | 3.35 | −4.57 | 0.13 | 56.97 | 2.61 |
M01 | 0.55 | −1.46 | 0.53 | 20.77 | 247.45 |
M02 | 0.90 | −1.55 | 1.70 | 13.70 | 31.05 |
M03 | 1.46 | −2.13 | 0.61 | 3.20 | 395.90 |
M04 | 2.42 | −3.43 | 1.61 | 19.29 | 0.46 |
M05 | 0.28 | −1.04 | 0.35 | 19.06 | 3.21 |
COD | Action | Injury | Confidence |
---|---|---|---|
FCX | Agonist of liver X receptor beta | Liver | 0.993 |
Antagonist of the farnesoid-X receptor (FXR) signaling pathway | 0.995 | ||
Disruptors of the mitochondrial membrane potential | 0.981 | ||
Block Bile Salt Export Pump | 0.991 | ||
Differential cytotoxicity against isogenic chicken DT40 cell lines with known DNA damage response pathways—Rad54/Ku70 mutant cell line | Genotoxicity | 0.992 | |
Differential cytotoxicity (isogenic chicken DT40 cell lines) | Genotoxicity | 0.986 | |
DFB | Activator of the aryl hydrocarbon receptor (AhR) signaling pathway | Liver | 0.997 |
Modulator of P2X purinoceptor 7 | Nervous system, immune, kidney | 0.985 | |
TEF | Modulator of P2X purinoceptor 7 | Nervous system, immune, kidney | 0.993 |
BUP | Differential cytotoxicity against isogenic chicken DT40 cell lines with known DNA damage response pathways—Rad54/Ku70 mutant cell line | Genotoxicity | 0.992 |
Antagonist of the estrogen receptor alpha (ER-alpha) signaling pathway | Endocrine | 0.996 | |
Activators of the human pregnane X receptor (PXR) signaling pathway | Liver | 0.996 | |
Agonist of the constitutive androstane receptor (CAR) signaling pathway | 0.992 | ||
M01 | We do not find any toxic action from data-driven models. | ||
M02 | Block OATP1B1 Transporter | Liver | 0.993 |
M03 | Block OATP1B1 Transporter | Liver | 0.982 |
M04 | Skin Sensitization | Skin | 0.999 |
Block OATP1B1 Transporter | Liver | 0.999 | |
M05 | We do not find any toxic action from data-driven models. |
COD | COMPOUNDS | SA |
---|---|---|
M01 | ZINC13514543 | 96.096 |
M02 | ZINC14413017 | 92.731 |
M03 | ZINC05680928 | 89.776 |
M04 | ZINC04691148 | 92.951 |
M05 | ZINC95851150 | 91.439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Costa, G.V.; Neto, M.F.A.; Da Silva, A.K.P.; De Sá, E.M.F.; Cancela, L.C.F.; Vega, J.S.; Lobato, C.M.; Zuliani, J.P.; Espejo-Román, J.M.; Campos, J.M.; et al. Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. Int. J. Mol. Sci. 2022, 23, 8218. https://doi.org/10.3390/ijms23158218
Da Costa GV, Neto MFA, Da Silva AKP, De Sá EMF, Cancela LCF, Vega JS, Lobato CM, Zuliani JP, Espejo-Román JM, Campos JM, et al. Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. International Journal of Molecular Sciences. 2022; 23(15):8218. https://doi.org/10.3390/ijms23158218
Chicago/Turabian StyleDa Costa, Glauber V., Moysés F. A. Neto, Alicia K. P. Da Silva, Ester M. F. De Sá, Luanne C. F. Cancela, Jeanina S. Vega, Cássio M. Lobato, Juliana P. Zuliani, José M. Espejo-Román, Joaquín M. Campos, and et al. 2022. "Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach" International Journal of Molecular Sciences 23, no. 15: 8218. https://doi.org/10.3390/ijms23158218
APA StyleDa Costa, G. V., Neto, M. F. A., Da Silva, A. K. P., De Sá, E. M. F., Cancela, L. C. F., Vega, J. S., Lobato, C. M., Zuliani, J. P., Espejo-Román, J. M., Campos, J. M., Leite, F. H. A., & Santos, C. B. R. (2022). Identification of Potential Insect Growth Inhibitor against Aedes aegypti: A Bioinformatics Approach. International Journal of Molecular Sciences, 23(15), 8218. https://doi.org/10.3390/ijms23158218