Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Patients
2.2. Neutral Lipids: Free Cholesterol Was Reduced in Platelets from Obese Patients
2.3. Glycerophospholipids: Platelets from Obese Patients Have Reduced Levels of Phosphatidylcholine and Phosphatidylethanolamine
2.4. Platelets from Obese Patients Have No Differences in Sphingolipid Content Compared to Lean Controls
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Patients and Study Design
4.3. Blood Sampling and Platelet Preparation
4.4. Lipid Extraction
4.5. Neutral Lipid Analysis
4.6. Glycerophospholipid and Sphingolipid Profiling
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO Consultation on Obesity & World Health Organization. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- Henning, R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: A review of the pathophysiology and treatment of obesity. Am. J. Cardiovasc. Dis. 2021, 11, 504–529. [Google Scholar] [PubMed]
- Badimon, L.; Hernández Vera, R.; Padró, T.; Vilahur, G. Antithrombotic therapy in obesity. Thromb. Haemost. 2013, 110, 681–688. [Google Scholar] [PubMed]
- Noetzli, L.J.; French, S.L.; Machlus, K.R. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1288–1300. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Ben-Aicha, S.; Badimon, L. New insights into the role of adipose tissue in thrombosis. Cardiovasc. Res. 2017, 113, 1046–1054. [Google Scholar] [CrossRef]
- Elaïb, Z.; Lopez, J.J.; Coupaye, M.; Zuber, K.; Becker, Y.; Kondratieff, A.; Repérant, C.; Pépin, M.; Salomon, L.; Teillet, F.; et al. Platelet Functions are Decreased in Obesity and Restored after Weight Loss: Evidence for a Role of the SERCA3-Dependent ADP Secretion Pathway. Thromb. Haemost. 2019, 119, 384–396. [Google Scholar] [CrossRef]
- Heffron, S.P.; Marier, C.; Parikh, M.; Fisher, E.A.; Berger, J.S. Severe obesity and bariatric surgery alter the platelet mRNA profile. Platelets 2019, 30, 967–974. [Google Scholar] [CrossRef]
- Barrachina, M.N.; Hermida-Nogueira, L.; Moran, L.A.; Casas, V.; Hicks, S.M.; Sueiro, A.M.; Di, Y.; Andrews, R.K.; Watson, S.P.; Gardiner, E.E.; et al. Phosphoproteomic Analysis of Platelets in Severe Obesity Uncovers Platelet Reactivity and Signaling Pathways Alterations. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 478–490. [Google Scholar] [CrossRef]
- Barrachina, M.N.; Sueiro, A.M.; Izquierdo, I.; Hermida-Nogueira, L.; Guitián, E.; Casanueva, F.F.; Farndale, R.W.; Moroi, M.; Jung, S.M.; Pardo, M.; et al. GPVI surface expression and signalling pathway activation are increased in platelets from obese patients: Elucidating potential anti-atherothrombotic targets in obesity. Atherosclerosis 2019, 281, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Green, S.M.; Padula, M.P.; Marks, D.C.; Johnson, L. The Lipid Composition of Platelets and the Impact of Storage: An Overview. Transfus. Med. Rev. 2020, 34, 108–116. [Google Scholar] [CrossRef]
- Chatterjee, M. Platelet lipidome: Dismantling the “Trojan horse” in the bloodstream. J. Thromb. Haemost. 2020, 18, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, V.B.; Murphy, R.C.; Watson, S.P. Platelet lipidomics: Modern day perspective on lipid discovery and characterization in platelets. Circ. Res. 2014, 114, 1185–1203. [Google Scholar] [CrossRef] [PubMed]
- Marcus, A.J.; Ullman, H.L.; Safier, L.B. Lipid composition of subcellular particles of human blood platelets. J. Lipid Res. 1969, 10, 108–114. [Google Scholar] [CrossRef]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 175–191. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, M.; Cho, M.S.; Wang, C.; Nick, A.M.; Thiagarajan, P.; Aung, F.M.; Han, X.; Sood, A.K.; Afshar-Kharghan, V. Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clin. 2016, 6, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Barrachina, M.N.; Sueiro, A.M.; Casas, V.; Izquierdo, I.; Hermida-Nogueira, L.; Guitián, E.; Casanueva, F.F.; Abián, J.; Carrascal, M.; Pardo, M.; et al. A Combination of Proteomic Approaches Identifies A Panel of Circulating Extracellular Vesicle Proteins Related to the Risk of Suffering Cardiovascular Disease in Obese Patients. Proteomics 2019, 19, e1800248. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, D.J.; Hoeferlin, L.A.; Chalfant, C.E. Lipidomics in translational research and the clinical significance of lipid-based biomarkers. Transl. Res. 2017, 189, 13–29. [Google Scholar] [CrossRef]
- Ruebsaamen, K.; Liebisch, G.; Boettcher, A.; Schmitz, G. Lipidomic analysis of platelet senescence. Transfusion 2010, 50, 1665–1676. [Google Scholar] [CrossRef] [PubMed]
- Hla, T.; Galvani, S.; Rafii, S.; Nachman, R. S1P and the birth of platelets. J. Exp. Med. 2012, 209, 2137–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owen, J.S.; Hutton, R.A.; Day, R.C.; Bruckdorfer, K.R.; McIntyre, N. Platelet lipid composition and platelet aggregation in human liver disease. J. Lipid Res. 1981, 22, 423–430. [Google Scholar] [CrossRef]
- Prisco, D.; Rogasi, P.G.; Paniccia, R.; Coppo, M.; Abbate, R.; Gensini, G.F.; Neri Serneri, G.G. Altered lipid composition and thromboxane A2 formation in platelets from patients affected by IIa hyperlipoproteinemia. Thromb. Res. 1988, 50, 593–604. [Google Scholar] [CrossRef]
- Shastri, K.M.; Carvalho, A.C.; Lees, R.S. Platelet function and platelet lipid composition in the dyslipoproteinemias. J. Lipid Res. 1980, 21, 467–472. [Google Scholar] [CrossRef]
- Sanders, T.A.; Roshanai, F. Platelet phospholipid fatty acid composition and function in vegans compared with age- and sex-matched omnivore controls. Eur. J. Clin. Nutr. 1992, 46, 823–831. [Google Scholar]
- Gibney, M.J.; Bolton-Smith, C. The effect of a dietary supplement of n-3 polyunsaturated fat on platelet lipid composition, platelet function and platelet plasma membrane fluidity in healthy volunteers. Br. J. Nutr. 1988, 60, 5–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Pakkanen, K.I.; Duelund, L.; Qvortrup, K.; Pedersen, J.S.; Ipsen, J.H. Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function. Biochim. Biophys. Acta. 2011, 1808, 1947–1956. [Google Scholar] [CrossRef] [Green Version]
- Bodin, S.; Tronchère, H.; Payrastre, B. Lipid rafts are critical membrane domains in blood platelet activation processes. Biochim. Biophys. Acta. 2003, 1610, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Tall, A.R. Cholesterol in platelet biogenesis and activation. Blood 2016, 127, 1949–1953. [Google Scholar] [CrossRef] [Green Version]
- García-Rubio, D.; Rodríguez-Varela, M.; Martínez-Vieyra, I.; de la Mora, M.B.; Méndez-Méndez, J.V.; Durán-Álvarez, J.C.; Cerecedo, D. Alterations to the contents of plasma membrane structural lipids are associated with structural changes and compartmentalization in platelets in hypertension. Exp. Cell Res. 2019, 385, 111692. [Google Scholar] [CrossRef]
- Peng, B.; Geue, S.; Coman, C.; Münzer, P.; Kopczynski, D.; Has, C.; Hoffmann, N.; Manke, M.C.; Lang, F.; Sickmann, A.; et al. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood 2018, 132, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Zaldivia, M.T.K.; McFadyen, J.D.; Lim, B.; Wang, X.; Peter, K. Platelet-Derived Microvesicles in Cardiovascular Diseases. Front. Cardiovasc. Med. 2017, 4, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biró, E.; Akkerman, J.W.N.; Hoek, F.J.; Gorter, G.; Pronk, L.M.; Sturk, A.; Nieuwland, R. The phospholipid composition and cholesterol content of platelet-derived microparticles: A comparison with platelet membrane fractions. J. Thromb. Haemost. 2005, 3, 2754–2763. [Google Scholar] [CrossRef]
- García, A. Two-dimensional gel electrophoresis in platelet proteomics research. Methods Mol. Med. 2007, 139, 339–353. [Google Scholar] [PubMed]
- Barrans, A.; Collet, X.; Barbaras, R.; Jaspard, B.; Manent, J.; Vieu, C.; Chap, H.; Perret, B. Hepatic lipase induces the formation of pre-beta 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J. Biol. Chem. 1994, 269, 11572–11577. [Google Scholar] [CrossRef]
Control (n = 12) | Obese (n = 12) | ||||
---|---|---|---|---|---|
Value (Mean ± SD) | n | Value (Mean ± SD) | n | p-value | |
Females (%) | 75.00% | 12 | 75.00% | 12 | - |
Age (Years) | 41.75 ± 12.34 | 12 | 42.50 ± 11.47 | 12 | 0.8789 |
BMI (kg/m2) **** | 23.02 ± 1.91 | 12 | 45.89 ± 5.21 | 12 | <0.0001 |
Diabetics (%) | 0% | 12 | 0% | 12 | >0.9999 |
Laboratory measurements | |||||
Hemoglobin (g/dL) | 13.67 ± 1.28 | 10 | 14.09 ± 1.40 | 12 | 0.4730 |
Leukocytes ×103/µL ** | 5.51 ± 1.37 | 10 | 7.29 ± 1.54 | 12 | 0.0099 |
Platelets ×103/µL * | 222.56 ± 58.98 | 10 | 272.40 ± 44.01 | 12 | 0.0385 |
Mean Platelet Volume (fL) | 8.84 ± 1.11 | 10 | 9.07 ± 1.08 | 12 | 0.6347 |
Glucose (mg/dL) *** | 79.00 ± 4.37 | 10 | 90.08 ± 6.79 | 12 | 0.0002 |
Creatinin (mg/dL) | 0.72 ± 0.13 | 10 | 0.76 ± 0.18 | 12 | 0.5084 |
Cholesterol (mg/dL) | 188.90 ± 22.72 | 10 | 194.00 ± 32.71 | 12 | 0.6820 |
Triglycerides (mg/dL) ** | 64.88 ± 17.32 | 8 | 132.30 ± 58.39 | 12 | 0.0056 |
Drug treatment | |||||
Tyrode drugs | 0% | 12 | 8.33% | 12 | >0.9999 |
Anti-cholesterol drugs | 0% | 12 | 8.33% | 12 | >0.9999 |
ACE drugs | 0% | 12 | 16.67% | 12 | 0.4783 |
Ca2+ channel blockers | 0% | 12 | 8.33% | 12 | >0.9999 |
Skeletal muscle relaxants | 0% | 12 | 8.33% | 12 | >0.9999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chicanne, G.; Barrachina, M.N.; Durbec, A.; Bertrand-Michel, J.; Troitiño, S.; Hermida-Nogueira, L.; Sueiro, A.M.; Pardo, M.; Payrastre, B.; García, Á. Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity. Int. J. Mol. Sci. 2022, 23, 8326. https://doi.org/10.3390/ijms23158326
Chicanne G, Barrachina MN, Durbec A, Bertrand-Michel J, Troitiño S, Hermida-Nogueira L, Sueiro AM, Pardo M, Payrastre B, García Á. Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity. International Journal of Molecular Sciences. 2022; 23(15):8326. https://doi.org/10.3390/ijms23158326
Chicago/Turabian StyleChicanne, Gaëtan, Maria N. Barrachina, Anaelle Durbec, Justine Bertrand-Michel, Sara Troitiño, Lidia Hermida-Nogueira, Aurelio M. Sueiro, María Pardo, Bernard Payrastre, and Ángel García. 2022. "Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity" International Journal of Molecular Sciences 23, no. 15: 8326. https://doi.org/10.3390/ijms23158326
APA StyleChicanne, G., Barrachina, M. N., Durbec, A., Bertrand-Michel, J., Troitiño, S., Hermida-Nogueira, L., Sueiro, A. M., Pardo, M., Payrastre, B., & García, Á. (2022). Platelet Lipidome Fingerprint: New Assistance to Characterize Platelet Dysfunction in Obesity. International Journal of Molecular Sciences, 23(15), 8326. https://doi.org/10.3390/ijms23158326