In Vivo and In Vitro Comparison of the DPP-IV Inhibitory Potential of Food Proteins from Different Origins after Gastrointestinal Digestion
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Protein Content
2.2. Protein Ingestion Inhibits Plasma DPP-IV Activity in Rats
2.3. Digested Proteins Decrease DPP-IV Activity In Vitro at the Enterocyte Level and after IB Passage
2.4. Effect of Digested Proteins on Intestinal DPP-IV Gene Expression
2.5. Effect of Digested Proteins on IB Integrity and Permeability
2.6. Impact of Digested Proteins on Tight Junction (TJ) Protein Gene Expression
2.7. Peptide Identification after Simulated IB Passage and the In Silico Prediction of Their DPP-IV-Inhibitory Activity
3. Discussion
4. Materials and Methods
4.1. Protein Sample Substrates
4.2. Chemicals
4.3. One-Dimensional Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
4.4. In Vivo Experiment
4.4.1. Animal Conditions
4.4.2. Animal Experiment
4.5. In Vitro Protein SGID
4.6. Cell Lines and the Culture Routine
4.7. Intestinal Barrier (IB) Passage
4.7.1. IB Model
4.7.2. IB Permeation Experiment
4.7.3. IB Integrity Analysis
4.8. DPP-IV Activity Assay
4.8.1. Plasma DPP-IV Activity Assay
4.8.2. In Vitro Intestinal DPP-IV Activity Inhibition Assay
4.9. Tight Junction Proteins and DPP-IV Gene Expression
4.10. Proteomics and Peptidomics Analysis by RP-HPLC-MS/MS and Bioinformatics
4.10.1. Sample Preparations
4.10.2. RP-HPLC-MS/MS Analyses
4.10.3. Peptide Identification
4.10.4. QSAR of DPP-IV-Inhibitory Peptides
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- INSERM. Diabète de Type 2. Inserm, La science Pour la Santé; INSERM: Paris, France, 2019; Available online: https://www.inserm.fr/dossier/diabete-type-2/ (accessed on 9 December 2021).
- International Diabete Federation. Diabetes Atlas, 10th ed.; International Diabete Federation: Brussels, Belgium, 2021. [Google Scholar]
- Singh, A.-K.; Yadav, D.; Sharma, N.; Jin, J.-O. Dipeptidyl Peptidase (DPP)-IV Inhibitors with Antioxidant Potential Isolated from Natural Sources: A Novel Approach for the Management of Diabetes. Pharmaceuticals 2021, 14, 586. [Google Scholar] [CrossRef] [PubMed]
- Van Gaal, L.; Scheen, A. Weight Management in Type 2 Diabetes: Current and Emerging Approaches to Treatment. Diabetes Care 2015, 38, 1161–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, C.S.; Golden, S.H.; Anderson, C.; Bray, G.A.; Burke, L.E.; de Boer, I.H.; Deedwania, P.; Eckel, R.H.; Ershow, A.G.; Fradkin, J.; et al. Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association. Diabetes Care 2015, 38, 1777–1803. [Google Scholar] [CrossRef] [Green Version]
- Madhu, S.; Chawla, R.; Makkar, B.; Ghosh, S.; Saboo, B.; Kalra, S. RSSDI-ESI clinical practice recommendations for the management of type 2 diabetes mellitus 2020. Indian J. Endocrinol. Metab. 2020, 24, 1–122. [Google Scholar] [CrossRef]
- Paquot, N.; Scheen, A.J. Inhibiteur de la DPP-4 ou des SGLT2 après échec de la metformine seule dans le diabète de type 2. Revue Médicale Suisse 2017, 13, 1421–1426. [Google Scholar] [CrossRef]
- Müller, T.; Finan, B.; Bloom, S.; D’Alessio, D.; Drucker, D.; Flatt, P.; Fritsche, A.; Gribble, F.; Grill, H.; Habener, J.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Sabbagh, G.; Kurdi, B.; Khayata, W.; Lahdo, R. A Study on the Inhibitory Potential of Dpp-Iv Enzyme by Lobeline through In silico and In vivo Approaches. Int. Res. J. Pure Appl. Chem. 2021, 22, 79–91. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: A comparative review. Diabetes, Obes. Metab. 2010, 13, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; Burcelin, R.; Gourdy, P. Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell. Signal. 2012, 25, 570–579. [Google Scholar] [CrossRef]
- Scheen, A.J. Dipeptidylpeptitase-4 Inhibitors (Gliptins). Clin. Pharmacokinet. 2010, 49, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J. 2012, 22, 24–30. [Google Scholar] [CrossRef]
- Zhu, C.-F.; Li, G.-Z.; Peng, H.-B.; Zhang, F.; Chen, Y.; Li, Y. Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl. Physiol. Nutr. Metab. 2010, 35, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Comerford, K.B.; Pasin, G. Emerging Evidence for the Importance of Dietary Protein Source on Glucoregulatory Markers and Type 2 Diabetes: Different Effects of Dairy, Meat, Fish, Egg, and Plant Protein Foods. Nutrients 2016, 8, 446. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, D.; Da Silva, M.S.; Julien, P.; Rudkowska, I. Influence of Amino Acids in Dairy Products on Glucose Homeostasis: The Clinical Evidence. Can. J. Diabetes 2017, 41, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Promintzer, M.; Krebs, M. Effects of dietary protein on glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2006, 9, 463–468. [Google Scholar] [CrossRef]
- Ma, J.; Stevens, J.E.; Cukier, K.; Maddox, A.F.; Wishart, J.M.; Jones, K.L.; Clifton, P.M.; Horowitz, M.; Rayner, C.K. Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones After a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes. Diabetes Care 2009, 32, 1600–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlon, J.M.; Mechkarska, M.; Abdel-Wahab, Y.H.; Flatt, P.R. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018, 100, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Caron, J.; Cudennec, B.; Domenger, D.; Belguesmia, Y.; Flahaut, C.; Kouach, M.; Lesage, J.; Goossens, J.-F.; Dhulster, P.; Ravallec, R. Simulated GI digestion of dietary protein: Release of new bioactive peptides involved in gut hormone secretion. Food Res. Int. 2016, 89, 382–390. [Google Scholar] [CrossRef]
- Caron, J.; Domenger, D.; Dhulster, P.; Ravallec, R.; Cudennec, B. Protein Digestion-Derived Peptides and the Peripheral Regulation of Food Intake. Front. Endocrinol. 2017, 8, 85. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Tomé, D.; Gaudichon, C.; Recio, I. Stimulation of CCK and GLP-1 secretion and expression in STC-1 cells by human jejunal contents and in vitro gastrointestinal digests from casein and whey proteins. Food Funct. 2018, 9, 4702–4713. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Amigo, L.; Recio, I. Induction of CCK and GLP-1 release in enteroendocrine cells by egg white peptides generated during gastrointestinal digestion. Food Chem. 2020, 329, 127188. [Google Scholar] [CrossRef] [PubMed]
- Dugardin, C.; Fleury, L.; Touche, V.; Ahdach, F.; Lesage, J.; Tenenbaum, M.; Everaert, N.; Briand, O.; Lestavel, S.; Ravallec, R.; et al. An Exploratory Study of the Role of Dietary Proteins in the Regulation of Intestinal Glucose Absorption. Front. Nutr. 2022, 8, 769773. [Google Scholar] [CrossRef] [PubMed]
- Wongon, M.; Limpeanchob, N. Inhibitory effect of Artocarpus lakoocha Roxb and oxyresveratrol on α-glucosidase and sugar digestion in Caco-2 cells. Heliyon 2020, 6, e03458. [Google Scholar] [CrossRef] [PubMed]
- Dugardin, C.; Cudennec, B.; Tourret, M.; Caron, J.; Guérin-Deremaux, L.; Behra-Miellet, J.; Lefranc-Millot, C.; Ravallec, R. Explorative Screening of Bioactivities Generated by Plant-Based Proteins after In Vitro Static Gastrointestinal Digestion. Nutrients 2020, 12, 3746. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Pino, F.; Espejo-Carpio, F.J.; Guadix, E.M. Identification of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from vegetable protein sources. Food Chem. 2021, 354, 129473. [Google Scholar] [CrossRef]
- Sarteshnizi, R.A.; Sahari, M.A.; Gavlighi, H.A.; Regenstein, J.M.; Nikoo, M.; Udenigwe, C.C. Influence of fish protein hydrolysate-pistachio green hull extract interactions on antioxidant activity and inhibition of α-glucosidase, α-amylase, and DPP-IV enzymes. LWT 2021, 142, 111019. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. In vitro modulation of glucagon-like peptide release by DPP-IV inhibitory polyphenol-polysaccharide conjugates of sprouted quinoa yoghurt. Food Chem. 2020, 324, 126857. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Cheng, J.; Wu, H. Discovery of Food-Derived Dipeptidyl Peptidase IV Inhibitory Peptides: A Review. Int. J. Mol. Sci. 2019, 20, 463. [Google Scholar] [CrossRef] [Green Version]
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Identification of novel dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in camel milk protein hydrolysates. Food Chem. 2018, 244, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Nongonierma, A.B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R.J. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. J. Funct. Foods 2017, 34, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Theysgeur, S.; Cudennec, B.; Deracinois, B.; Perrin, C.; Guiller, I.; Lepoudère, A.; Flahaut, C.; Ravallec, R. New Bioactive Peptides Identified from a Tilapia Byproduct Hydrolysate Exerting Effects on DPP-IV Activity and Intestinal Hormones Regulation After Canine Gastrointestinal Simulated Digestion. Molecules 2020, 26, 136. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, S.J.; Harnedy-Rothwell, P.A.; Allsopp, P.J.; Hollywood, L.E.; Fitzgerald, R.J.; O’Harte, F.P.M. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol. Nutr. Food Res. 2020, 64, 2000403. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Atallah, N.; Deracinois, B.; Boulier, A.; Baniel, A.; Bouveresse, D.J.-R.; Ravallec, R.; Flahaut, C.; Cudennec, B. In Vitro Assessment of the Impact of Industrial Processes on the Gastrointestinal Digestion of Milk Protein Matrices Using the INFOGEST Protocol. Foods 2020, 9, 1580. [Google Scholar] [CrossRef] [PubMed]
- Tulipano, G. Role of Bioactive Peptide Sequences in the Potential Impact of Dairy Protein Intake on Metabolic Health. Int. J. Mol. Sci. 2020, 21, 8881. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yao, Y.; Xu, X.; Wang, M.; Pan, M.; Ji, S.; Wu, J.; Jiang, D.; Ju, X.; Wang, L. Identification and Quantification of DPP-IV-Inhibitory Peptides from Hydrolyzed-Rapeseed-Protein-Derived Napin with Analysis of the Interactions between Key Residues and Protein Domains. J. Agric. Food Chem. 2019, 67, 3679–3690. [Google Scholar] [CrossRef]
- Lammi, C.; Bollati, C.; Ferruzza, S.; Ranaldi, G.; Sambuy, Y.; Arnoldi, A. Soybean- and Lupin-Derived Peptides Inhibit DPP-IV Activity on In Situ Human Intestinal Caco-2 Cells and Ex Vivo Human Serum. Nutrients 2018, 10, 1082. [Google Scholar] [CrossRef] [Green Version]
- Bleakley, S.; Hayes, M.; Shea, N.O.; Gallagher, E.; Lafarga, T. Predicted Release and Analysis of Novel ACE-I, Renin, and DPP-IV Inhibitory Peptides from Common Oat (Avena sativa) Protein Hydrolysates Using in Silico Analysis. Foods 2017, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Teng, X.; Shang, J.; Wang, D.; Liu, N. Identification of novel DPP–IV inhibitory peptides from Atlantic salmon (Salmo salar) skin. Food Res. Int. 2020, 133, 109161. [Google Scholar] [CrossRef]
- Caron, J.; Domenger, D.; Dhulster, P.; Ravallec, R.; Cudennec, B. Using Caco-2 cells as novel identification tool for food-derived DPP-IV inhibitors. Food Res. Int. 2017, 92, 113–118. [Google Scholar] [CrossRef]
- Harnedy-Rothwell, P.A.; McLaughlin, C.M.; O’Keeffe, M.B.; Le Gouic, A.V.; Allsopp, P.J.; McSorley, E.M.; Sharkey, S.; Whooley, J.; McGovern, B.; O’Harte, F.P.; et al. Identification and characterisation of peptides from a boarfish (Capros aper) protein hydrolysate displaying in vitro dipeptidyl peptidase-IV (DPP-IV) inhibitory and insulinotropic activity. Food Res. Int. 2020, 131, 108989. [Google Scholar] [CrossRef]
- Xu, F.; de Mejia, E.G.; Chen, H.; Rebecca, K.; Pan, M.; He, R.; Yao, Y.; Wang, L.; Ju, X. Assessment of the DPP-IV inhibitory activity of a novel octapeptide derived from rapeseed using Caco-2 cell monolayers and molecular docking analysis. J. Food Biochem. 2020, 44, e13406. [Google Scholar] [CrossRef] [PubMed]
- Mochida, T.; Hira, T.; Hara, H. The Corn Protein, Zein Hydrolysate, Administered into the Ileum Attenuates Hyperglycemia via Its Dual Action on Glucagon-Like Peptide-1 Secretion and Dipeptidyl Peptidase-IV Activity in Rats. Endocrinology 2010, 151, 3095–3104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.-L.; Hung, C.-C.; Jao, C.-L.; Tung, Y.-S.; Hsu, K.-C. Porcine skin gelatin hydrolysate as a dipeptidyl peptidase IV inhibitor improves glycemic control in streptozotocin-induced diabetic rats. J. Funct. Foods 2014, 11, 235–242. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Hira, T.; Inoue, D.; Harada, Y.; Hashimoto, H.; Fujii, M.; Kadowaki, M.; Hara, H. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food Funct. 2015, 6, 2525–2534. [Google Scholar] [CrossRef]
- Zhang, J.; Qian, X.-K.; Song, P.-F.; Li, X.-D.; Wang, A.-Q.; Huo, H.; Yao, J.-C.; Zhang, G.-M.; Zou, L.-W. A high-throughput screening assay for dipeptidyl peptidase-IV inhibitors using human plasma. Anal. Methods 2021, 13, 2671–2678. [Google Scholar] [CrossRef]
- Clemente, A. Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 2000, 11, 254–262. [Google Scholar] [CrossRef]
- Santos-Hernandez, M.; Cermeno, M.; Recio, I.; FitzGerald, R.J. In vitro dipeptidyl peptidase IV inhibitory activity and in situ insulinotropic activity of milk and egg white protein digests. Food Funct. 2021, 12, 12372–12380. [Google Scholar] [CrossRef]
- Darling, N.J.; Mobbs, C.L.; González-Hau, A.L.; Freer, M.; Przyborski, S. Bioengineering Novel in vitro Co-culture Models That Represent the Human Intestinal Mucosa With Improved Caco-2 Structure and Barrier Function. Front. Bioeng. Biotechnol. 2020, 8, 992. [Google Scholar] [CrossRef]
- Domenger, D.; Caron, J.; Belguesmia, Y.; Lesage, J.; Dhulster, P.; Ravallec, R.; Cudennec, B. Bioactivities of hemorphins released from bovine haemoglobin gastrointestinal digestion: Dual effects on intestinal hormones and DPP-IV regulations. J. Funct. Foods 2017, 36, 9–17. [Google Scholar] [CrossRef]
- Lee, B.; Moon, K.M.; Kim, C.Y. Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. J. Immunol. Res. 2018, 2018, 2645465. [Google Scholar] [CrossRef] [Green Version]
- Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. (Eds.) The Impact of Food Bioactives on Health; Springer International Publishing: Cham, Swizterland, 2015. [Google Scholar] [CrossRef]
- Béduneau, A.; Tempesta, C.; Fimbel, S.; Pellequer, Y.; Jannin, V.; Demarne, F.; Lamprecht, A. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur. J. Pharm. Biopharm. 2014, 87, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Ozorio, L.; Mellinger-Silva, C.; Cabral, L.M.C.; Jardin, J.; Boudry, G.; Dupont, D. The Influence of Peptidases in Intestinal Brush Border Membranes on the Absorption of Oligopeptides from Whey Protein Hydrolysate: An Ex Vivo Study Using an Ussing Chamber. Foods 2020, 9, 1415. [Google Scholar] [CrossRef] [PubMed]
- Yasumatsu, H.; Tanabe, S. The casein peptide Asn-Pro-Trp-Asp-Gln enforces the intestinal tight junction partly by increasing occludin expression in Caco-2 cells. Br. J. Nutr. 2010, 104, 951–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.C.; Dalziel, J.E.; Haggarty, N.W.; Dunstan, K.E.; Gopal, P.K.; Roy, N.C. Short communication: Processed bovine colostrum milk protein concentrate increases epithelial barrier integrity of Caco-2 cell layers. J. Dairy Sci. 2019, 102, 10772–10778. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, S.L.; Mamone, G.; Picariello, G.; Callanan, M.J.; Chen, Y.; Brodkorb, A.; Giblin, L. Thermal or membrane processing for Infant Milk Formula: Effects on protein digestion and integrity of the intestinal barrier. Food Chem. 2021, 347, 129019. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Liu, S.; Xie, X.-N.; Tan, Z.-R. Regulation profile of the intestinal peptide transporter 1 (PepT1). Drug Des. Dev. Ther. 2017, 11, 3511–3517. [Google Scholar] [CrossRef] [Green Version]
- Huo, Y.; Xv, R.; Ma, H.; Zhou, J.; Xi, X.; Wu, Q.; Duan, J.; Zhou, M.; Chen, T. Identification of <10 KD peptides in the water extraction of Venenum Bufonis from Bufo gargarizans using Nano LC–MS/MS and De novo sequencing. J. Pharm. Biomed. Anal. 2018, 157, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Picariello, G.; Mamone, G.; Addeo, F.; Ferranti, P. The frontiers of mass spectrometry-based techniques in food allergenomics. J. Chromatogr. A 2011, 1218, 7386–7398. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.S. Protein Nitrogen Determination. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Food Science Text Series; Springer International Publishing: Cham, Swizterland, 2017; pp. 131–135. [Google Scholar] [CrossRef]
- Bradstreet. Kjeldahl Method for Organic Nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- He, F. Laemmli-SDS-PAGE. Bio-Protocol 2011, 1, e80. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 2016, 79, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.-H.; Long, H.-X.; Bo, Z.; Wang, Y.-Q.; Wu, Y.-Z. New descriptors of amino acids and their application to peptide QSAR study. Peptides 2008, 29, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
Protein Sources | Identified Proteins | Number of Identified Peptides by Protein | Average Protein Molecular Mass (kDa) | Identification Score (−10 lgP) |
---|---|---|---|---|
Hemoglobin | Hemoglobin sub unit apha | 47 | 15.2 | 412 |
Hemoglobin sub unit beta | 46 | 15.9 | 394 | |
Carbonic anydrase 2 | 3 | 29.1 | 123 | |
Peroxxiredoxin-2 | 3 | 21.9 | 112 | |
Serum albumin | 2 | 69.2 | 72 | |
Caseins | αS1-Casein | 64 | 24.5 | 425 |
β-Casein | 53 | 25.1 | 405 | |
αS2-Casein | 44 | 26 | 377 | |
κ-Casein | 41 | 21.3 | 361 | |
β-Lactoglobulin | 33 | 19.8 | 382 | |
Serum albumin | 32 | 69.2 | 310 | |
α-Lactalbumin | 10 | 16.2 | 247 | |
Lactadherin | 11 | 47.4 | 212 | |
Other proteins | 54 | 14.7 to 146.7 | 90 to 249 | |
Ovalbumin | Ovalbumin | 203 | 42.8 | 353 |
Whey proteins | β-Lactoglobulin | 106 | 19.9 | 517 |
α-Lactalbumin | 38 | 16.2 | 387 | |
Serum albumin | 50 | 69.2 | 366 | |
αS1-Casein | 24 | 24.5 | 313 | |
β-Casein | 19 | 25.1 | 279 | |
αS2-Casein | 17 | 26 | 225 | |
κ-Casein | 8 | 21.3 | 231 | |
Other proteins | 116 | 127 | 116 to 300 | |
Fish gelatin | Fibrillar collagen | 11 | 85.6 to 127 | 76 to 98 |
Collagenα | 5 | 135.6 | 85 | |
Other proteins | 6 | 125.9 | 79 | |
Pea proteins | Legumin | 184 | 7 to 64.8 | 185 to 447 |
Vicilin | 253 | 49.4 to 52.2 | 409 to 447 | |
Convicilin | 283 | 62.0 to 72.1 | 390 to 430 | |
Provicilin | 109 | 31.5 to 46.3 | 336 to 406 | |
Albumin-1/-2 | 33 | 13.9 to 26.2 | 105 to 347 | |
Lectin | 18 | 30.2 | 222 | |
Other proteins | 156 | 11.4 to 97.2 | 95 to 314 | |
Gluten proteins | Gliadin | 166 | 32.5 to 33.9 | 170 |
β-amylases | 120 | 58.9 to 62.6 | 238 to 272 | |
Glutenin | 103 | 69.5 to 84.0 | 179 to 222 | |
Triticin | 20 | 64.9 | 221 | |
Other proteins | 40 | 15.5 to 65 | 167 to 221 |
Intestinal Samples | Papp (cm·s−1) | ΔTEER (Ω) |
---|---|---|
(TEER Final-TEER Initial) | ||
Buffer control | 4.15 × 10−6 ± 7.88 × 10−7 | 14.27 ± 68.9 |
Blk SGID | 5.48 × 10−7 ± 1.48 × 10−7 **** | 10.63 ± 8.6 |
Hemoglobin | 2.27 × 10−6 ± 3.59 × 10−7 | −241.08 ± 18.5 ** |
Caseins | 1.75 × 10−6 ± 3.78 × 10−7 | −182.00 ± 80.9 ** |
Ovalbumin | 1.03 × 10−6 ± 2.77 × 10−7 ** | 83.69 ± 36.5 |
Whey proteins | 2.12 × 10−6 ± 5.05 × 10−7 | −318.31 ± 90.6 **** |
Fish gelatin | 8.70 × 10−7 ± 1,79 × 10−7 ** | −14.38 ± 5.3 |
Pea proteins | 1.75 × 10−6 ± 3.25 × 10−7 | −119.15 ± 61.1 |
Gluten proteins | 1.78 × 10−6 ± 3.89 × 10−7 | 23.15 ± 74.0 |
Genes | Forward Primer | Reverse Primers | |
---|---|---|---|
Homo sapiens origin | Hypoxanthine phosphoribosyltransferase 1 | GCCCTGGCGTCGTGATTAGT | GCAAGACGTTCAGTCCTGTCC |
Dipeptidyl peptidase 4 | ACAGAATCACATGGACGGGG | CGTTTGGAGACCACCACAGA | |
ZO-1 | CGGTCCTCTGAGCCTGTAAG | GGATCTACATGCGACGACAA | |
Occludin | CAGGGAATATCCACCTATCACTTCAG | ATCAGCAGCAGCCATGTACTCTTCAC | |
Claudin 1 | CCCTATGACCCCAGTCAATGC | GGATAGGGCCTTGGTGTTGG | |
Claudin 2 | TGGCCTCTCTTGGCCTCCAACTTGT | TTGACCAGGCCTTGGAGAGCTC | |
Claudin 4 | CCACTCGGACAACTTCCCAA | ACTTCCGTCCCTCCCCAATA | |
Claudin 12 | CTGAGAGGGAGACGCTCCAA | GTACCTGACAGTTCCAAAACAGC | |
Claudin 15 | GTACCCCGGAACCAAGTACG | CGTTTCTGCCGTATTTGCCA |
Hemoglobin | Caseins | Ovalbumin | Whey Proteins | Fish Gelatin | Pea Proteins | Gluten Proteins | SGID blk | |
---|---|---|---|---|---|---|---|---|
In vivo DPP-IV inhibition | 1 | 0 | 3 | 3 | 4 | 0 | ||
In vitro IB Apical DPP-IV inhibition | 4 | 4 | 0 | 4 | 0 | 4 | 4 | - |
In vitro IB basal DPP-IV inhibition | 4 | 3 | 2 | 1 | 1 | 0 | 0 | 0 |
In vitro DPP4 gene expression inhibition | 2 | 0 | 0 | 0 | 2 | 2 | 4 | 2 |
SCORE | 11 | 7 | 5 | 5 * | 6 | 10 | 8 * | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleury, L.; Deracinois, B.; Dugardin, C.; Nongonierma, A.B.; FitzGerald, R.J.; Flahaut, C.; Cudennec, B.; Ravallec, R. In Vivo and In Vitro Comparison of the DPP-IV Inhibitory Potential of Food Proteins from Different Origins after Gastrointestinal Digestion. Int. J. Mol. Sci. 2022, 23, 8365. https://doi.org/10.3390/ijms23158365
Fleury L, Deracinois B, Dugardin C, Nongonierma AB, FitzGerald RJ, Flahaut C, Cudennec B, Ravallec R. In Vivo and In Vitro Comparison of the DPP-IV Inhibitory Potential of Food Proteins from Different Origins after Gastrointestinal Digestion. International Journal of Molecular Sciences. 2022; 23(15):8365. https://doi.org/10.3390/ijms23158365
Chicago/Turabian StyleFleury, Léa, Barbara Deracinois, Camille Dugardin, Alice B. Nongonierma, Richard J. FitzGerald, Christophe Flahaut, Benoit Cudennec, and Rozenn Ravallec. 2022. "In Vivo and In Vitro Comparison of the DPP-IV Inhibitory Potential of Food Proteins from Different Origins after Gastrointestinal Digestion" International Journal of Molecular Sciences 23, no. 15: 8365. https://doi.org/10.3390/ijms23158365
APA StyleFleury, L., Deracinois, B., Dugardin, C., Nongonierma, A. B., FitzGerald, R. J., Flahaut, C., Cudennec, B., & Ravallec, R. (2022). In Vivo and In Vitro Comparison of the DPP-IV Inhibitory Potential of Food Proteins from Different Origins after Gastrointestinal Digestion. International Journal of Molecular Sciences, 23(15), 8365. https://doi.org/10.3390/ijms23158365