The Kv10.1 Channel: A Promising Target in Cancer
Abstract
:1. Introduction
2. The Voltage-Gated Potassium Channel Kv10.1
2.1. The KCHN1 Gene
2.2. Kv10.1 Structure
2.3. General Biophysical and Pharmacological Properties
2.4. Tissue Expression
Cancer Type/Sample | Technique | Number of Samples | Kv10.1 Level Expression in Tumor Tissue | Kv10.1 Level Expression in Normal Tissue | Ref. |
---|---|---|---|---|---|
Liver carcinoma (hepatocellular carcinoma PTB) | IHC/RT-PCR | 10 | 100% strongly positive | Completely negative | [41] |
Colon cancer (colonic crypt cells) | Reverse transcription-PCR/FISH | 2 | 100% detected | No transcripts were detected | [57] |
Cervical cancer (primary culture biopsies) | Reverse transcription-PCR/SB | 6 | 100% detected | 33% detected in normal biopsies (n = 12) | [58] |
Lung cancer (bronchus carcinoma PTB) | IHC/RT-PCR | 10 | 90% highly positive | Bronchial epithelium was negative; some Kv10.1 expression in the sub mucous glands | [41] |
Prostate cancer (Prostate Carcinoma) | IHC/RT-PCR | 56 | 98% strongly positive | Faintly detectable in normal prostate epithelium | [41] |
Cervical cancer (DCC) | ICC | 13 HG; 36 LG | 92% in HG-DCC; 67% in LG-DCC | 27% of the normal samples(n = 184) | [59] |
Prostate cancer(tumor tissue) | RT-PCR/IHC | - | 89% of ADPCa 87% of AIPCa | 7% in normal peritumoral tissue of ADPCa and AIPCa | [60] |
Breast cancer (breast carcinoma PTB) | IHC/RT-PCR | 230 | Detected in 85% | The mammary epithelium was negative | [41] |
Cerebral cancer (brain metastases, GBM) | IHC | 75 BM; 71 GBM | 85% of brain metastases. 78% of GBM | Under physiological conditions, Kv10.1 expression is restricted to the CNS | [61] |
Head and neck cancer (HNSCC biopsies) | Reverse transcription-RT-PCR | 54 | 83% of HNSCC. 39% in normal adjacent epithelium of HNSCC | No expression was detected in normal epithelia from non-oncologic patient (n = 44) | [47] |
Colon cancer (colon carcinoma) PTB | IHC/RT-PCR | 8 | 75% strongly positive | Colon epithelium was negative or slightly positive | [41] |
Sarcoma (soft tissue biopsies) | IHC | 210 | 71% of soft tissue sarcoma(82% rhabdomyosarcoma; 75% synovial sarcoma) | Negative in surrounding normal tissue | [42] |
Acute myeloid leukemia (blood or bone marrow) | RT-PCR | 118 | 40% of AML samples (56% and 60% in M2 and M6 subtypes, respectively) | Not detectable in healthy peripheral blood cells (n = 10) | [44] |
Ovarian cancer (biopsies) | TMA | 336 | 16% high expression. 58% low/intermediate expression | Low level expression in normal ovary (n = 6) | [43] |
Cancer Type (Cell Line) | Cell Process | Technique | Kv10.1 Participation in Cell Process | Kv10.1 Inhibition | Ref. |
---|---|---|---|---|---|
Breast cancer (MCF7) | Cell Proliferation | Pharmacological inhibition/MTS/flow cytometry | IGF-1 increased mRNA expression of Kv10.1 in a time-dependent manner with an enhancement of cell proliferation | Astemizole (10 µM) and Quinidine (20 µM) inhibited cell proliferation induced by IGF-1 | [62] |
Breast cancer (MCF7) | Cell Proliferation/Cell cycle | Electrophysiology/RT-PCR/Pharmacological inhibition/3H-Thymidine | Kv10.1 channel activity varied in a cell cycle-dependent manner | TEA (2, 6, and 10 mM) and Astemizole (2, 5, and 10 µM) decrease proliferation and accumulate cells in G1 phase of the cell cycle | [63] |
Breast cancer (MDA-MB-231) | Cell Migration | Pharmacological inhibition/siRNA/wound healing assay | Kv10.1 is required for cell migration by regulating Ca2+ entry through Orai1 channels | Astemizole (5 µM) reduces cell migration (45%) | [64] |
Breast cancer (MDA-MB-231) | Cell Migration | Patch-clam/Pharmacological inhibition/siRNA/wound healing assay. | --- | Chloroquine (30 μM) inhibited 34% of potassium currents, and 100 μM decreased cell migration (38%) | [65] |
Leukemia cell lines (PLB-985, UT-7, K562, HEL) | Cell proliferation | Pharmacological inhibition/siRNA | --- | Astemizole (4 μM) and imipramine (20 μM) inhibited PLB-985, UT-7, and K562 cell proliferation (up tp 77%); Knockdown of Kv10.1 expression by siRNA in PLB-985 and K562 cells diminished up to 80% cell proliferation | [44] |
HNSCC-derived cell line (SCC42B, SCC40) | Cell proliferation/Cell invasion | siRNA/MTS/Matrigel invasion assays | Involvement of histone acetylation (i.e., H3Ac and H4K16Ac activating marks) in the regulation of Kv10.1 expression in HNSCC | Kv10.1 inhibition by siRNA reduced cell proliferation as well as invasive cell capacity | [47] |
Prostate cancer (RWPE-1, WPE1-NB26) | Cell proliferation | RT-PCR/Fluorescence | WPE1-NB26 cells express high Kv10.1 protein in contrast to RWPE-1 cells expression. | Astemizole (2 µM) decreased RWPE-1 cell proliferation; Astemizole (2 μM) induced apoptosis in the WPE1-NB26 cells | [49] |
Soft tissue sarcoma cell lines (RMS: TE-671, A-204; FS: HT-1080, Hs633t) | Cell proliferation | Pharmacological inhibition/siRNA | Kv10.1 participates in the proliferation of soft tissue sarcoma cell lines | Imipramine (10 μM) and hEag1 inhibition by siRNA reduced cell proliferation (82%) | [42] |
Malignant melanoma cells (IGR1) | Cell proliferation | Pharmacological inhibition/BrdU incorporation/MTT assay | Kv10.1 expression may be of importance for the proliferation of melanoma cells | Imipramine (10 μM) reduces IGR1 cells proliferation; 30 μM imipramine induces IGR1 cells apoptosis | [66] |
Ovarian cancer (KKOV3 and TYK) | Cell apoptosis | Inhibition by siRNA/apoptosis assay/RT-PCR | Kv10.1 regulates cell apoptosis via NF-kB pathway. Kv10.1 regulates P-glycoprotein expression | Knockdown of Eag1 by siRNA facilitated the sensitivity of ovarian cancer cells to cisplatin-induced apoptosis | [53] |
Human glioblastoma cells (U251 and U251AR) | Cell growth and multi-drug resistance | Inhibition by miRNA/RT-PCR/drug sensitivity assay | Kv10.1 is involved in multi-drug resistance in glioblastoma cells | miR-296-3p regulates negatively Kv10.1 and suppresses cell proliferation drug resistance | [54] |
2.4.1. Regulatory Mechanisms of Kv10.1 in Cancer
2.4.2. Epigenetic Regulation
2.5. Kv10.1 Protein Degradation
3. Genetic Profile of KCNH1 Gene Using cBioPortal
4. Hallmarks of Cancer and Kv10.1 Expression
4.1. Proliferation and Cell Cycle
4.2. Primary Cilium: Proliferation and Migration through Microtubule Dynamics Modulation
4.3. Non-Canonical Role of Kv10.1 as Ion Channel and Angiogenesis
4.4. Cell Survival
4.5. Cell Metabolism Remodeling
5. Tumor Microenvironment and Kv10.1
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purves, D.; Augustine, G.J.; Fitzpatrick, D.; Hall, W.C.; LaMantia, A.-S.; McNamara, J.O.; White, L.E. Chapter 4 Ion Channels and Transportes. In Neuroscience, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 65–85. ISBN 9781605353807. [Google Scholar]
- Hille, B. Chapter 1 Introduction. In Ion Channels of Excitable Membranes; Sinauer Associates, Inc.: Sunderland, MA, USA, 2001; pp. 1–22. ISBN 0878933212. [Google Scholar]
- Alexander, S.P.H.; Striessnig, J.; Kelly, E.; Marrion, N.V.; Peters, J.A.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Sharman, J.L.; Southan, C.; et al. THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Voltage-Gated Ion Channels. Br. J. Pharmacol. 2017, 174, S160–S194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taura, J.; Kircher, D.M.; Gameiro-Ros, I.; Slesinger, P.A. Comparison of K+ Channel Families. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2021; Volume 267. [Google Scholar]
- González, C.; Baez-Nieto, D.; Valencia, I.; Oyarzún, I.; Rojas, P.; Naranjo, D.; Latorre, R. K+ Channels: Function-Structural Overview. Compr. Physiol. 2012, 2, 2087–2149. [Google Scholar] [CrossRef]
- Ranjan, R.; Logette, E.; Marani, M.; Herzog, M.; Tâche, V.; Scantamburlo, E.; Buchillier, V.; Markram, H. A Kinetic Map of the Homomeric Voltage-Gated Potassium Channel (Kv) Family. Front. Cell. Neurosci. 2019, 13, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathie, A.; Veale, E.L.; Golluscio, A.; Holden, R.G.; Walsh, Y. Pharmacological Approaches to Studying Potassium Channels. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2021; Volume 267. [Google Scholar]
- Prevarskaya, N.; Skryma, R.; Shuba, Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol. Rev. 2018, 98, 559–621. [Google Scholar] [CrossRef] [Green Version]
- Bauer, C.K.; Schwarz, J.R. Ether-à-Go-Go K+ Channels: Effective Modulators of Neuronal Excitability. J. Physiol. 2018, 596, 769–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.; Lino de Oliveira, C.; Mello de Queiroz, F.; Pardo, L.A.; Stühmer, W.; Del Bel, E. Eag1 Potassium Channel Immunohistochemistry in the CNS of Adult Rat and Selected Regions of Human Brain. Neuroscience 2008, 155, 833–844. [Google Scholar] [CrossRef]
- Kaplan, W.D.; Trout, W.E. The Behavior of Four Neurological Mutants of Drosophila. Genetics 1969, 61, 399–409. [Google Scholar] [CrossRef]
- Brüggemann, A.; Pardo, L.A.; Stühmer, W.; Pongs, O. Ether-à-Go-Go Encodes a Voltage-Gated Channel Permeable to K+ and Ca2+ and Modulated by CAMP. Nature 1993, 365, 445–448. [Google Scholar] [CrossRef]
- Occhiodoro, T.; Bernheim, L.; Liu, J.H.; Bijlenga, P.; Sinnreich, M.; Bader, C.R.; Fischer-Lougheed, J. Cloning of a Human Ether-a-Go-Go Potassium Channel Expressed in Myoblasts at the Onset of Fusion. FEBS Lett. 1998, 434, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, J.; Terlau, H.; Wunder, F.; Bruggemann, A.; Pardo, L.A.; Marquardt, A.; Stuhmer, W.; Pongs, O. Functional Expression of a Rat Homologue of the Voltage Gated Ether a Go-Go Potassium Channel Reveals Differences in Selectivity and Activation Kinetics between the Drosophila Channel and Its Mammalian Counterpart. EMBO J. 1994, 13, 4451–4458. [Google Scholar] [CrossRef]
- Warmke, J.W.; Ganetzky, B. A Family of Potassium Channel Genes Related to Eag in Drosophila and Mammals. Proc. Natl. Acad. Sci. USA 1994, 91, 3438–3442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stengel, R.; Rivera-Milla, E.; Sahoo, N.; Ebert, C.; Bollig, F.; Heinemann, S.H.; Schönherr, R.; Englert, C. Kcnh1 Voltage-Gated Potassium Channels Are Essential for Early Zebrafish Development. J. Biol. Chem. 2012, 287, 35565–35575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frings, S.; Brüll, N.; Dzeja, C.; Angele, A.; Hagen, V.; Kaupp, U.B.; Baumann, A. Characterization of Ether-a-Go-Go Channels Present in Photoreceptors Reveals Similarity to I(Kx), a K+ Current in Rod Inner Segments. J. Gen. Physiol. 1998, 111, 583–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, G.A.; Warmke, J.W.; Ganetzky, B. Potassium Currents Expressed from Drosophila and Mouse Eag CDNAs in Xenopus Oocytes. Neuropharmacology 1996, 35, 841–850. [Google Scholar] [CrossRef]
- Simons, C.; Rash, L.D.; Crawford, J.; Ma, L.; Cristofori-Armstrong, B.; Miller, D.; Ru, K.; Baillie, G.J.; Alanay, Y.; Jacquinet, A.; et al. Mutations in the Voltage-Gated Potassium Channel Gene KCNH1 Cause Temple-Baraitser Syndrome and Epilepsy. Nat. Genet. 2015, 47, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Kortüm, F.; Caputo, V.; Bauer, C.K.; Stella, L.; Ciolfi, A.; Alawi, M.; Bocchinfuso, G.; Flex, E.; Paolacci, S.; Dentici, M.L.; et al. Mutations in KCNH1 and ATP6V1B2 Cause Zimmermann-Laband Syndrome. Nat. Genet. 2015, 47, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Whicher, J.R.; MacKinnon, R. Structure of the Voltage-Gated K+ Channel Eag1 Reveals an Alternative Voltage Sensing Mechanism. Science 2016, 353, 664–669. [Google Scholar] [CrossRef] [Green Version]
- Barros, F.; de la Peña, P.; Domínguez, P.; Sierra, L.M.; Pardo, L.A. The EAG Voltage-Dependent K+ Channel Subfamily: Similarities and Differences in Structural Organization and Gating. Front. Pharmacol. 2020, 11, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napp, J.; Monje, F.; Stühmer, W.; Pardo, L.A. Glycosylation of Eag1 (Kv10.1) Potassium Channels: Intracellular Trafficking and Functional Consequences. J. Biol. Chem. 2005, 280, 29506–29512. [Google Scholar] [CrossRef] [Green Version]
- Pardo, L.A.; Del Camino, D.; Sánchez, A.; Alves, F.; Brüggemann, A.; Beckh, S.; Stühmer, W. Oncogenic Potential of EAG K+ Channels. EMBO J. 1999, 18, 5540–5547. [Google Scholar] [CrossRef]
- Gomes, F.R.; Romaniello, V.; Sánchez, A.; Weber, C.; Narayanan, P.; Psol, M.; Pardo, L.A. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-Dependent Kinase in Xenopus Oocytes. J. Biol. Chem. 2015, 290, 30351–30365. [Google Scholar] [CrossRef] [Green Version]
- Loza-Huerta, A.; Milo, E.; Picones, A.; Hernández-Cruz, A.; Luis, E. Thallium-Sensitive Fluorescent Assay Reveals Loperamide as a New Inhibitor of the Potassium Channel Kv10.1. Pharmacol. Reports 2021, 73, 1744–1753. [Google Scholar] [CrossRef] [PubMed]
- Toplak, Ž.; Hendrickx, L.A.; Abdelaziz, R.; Shi, X.; Peigneur, S.; Tomašič, T.; Tytgat, J.; Peterlin-Mašič, L.; Pardo, L.A. Overcoming Challenges of HERG Potassium Channel Liability through Rational Design: Eag1 Inhibitors for Cancer Treatment. Med. Res. Rev. 2022, 42, 183–226. [Google Scholar] [CrossRef] [PubMed]
- García-Ferreiro, R.E.; Kerschensteiner, D.; Major, F.; Monje, F.; Stühmer, W.; Pardo, L.A. Mechanism of Block of HEag1 K+ Channels by Imipramine and Astemizole. J. Gen. Physiol. 2004, 124, 301–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Resendiz, I.; Hartung, F.; Pardo, L.A. Antibodies Targeting KVPotassium Channels: A Promising Treatment for Cancer. Bioelectricity 2019, 1, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Varela, D.; Zwick-Wallasch, E.; Knötgen, H.; Sánchez, A.; Hettmann, T.; Ossipov, D.; Weseloh, R.; Contreras-Jurado, C.; Rothe, M.; Stühmer, W.; et al. Monoclonal Antibody Blockade of the Human Eag1 Potassium Channel Function Exerts Antitumor Activity. Cancer Res. 2007, 67, 7343–7349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartung, F.; Krüwel, T.; Shi, X.; Pfizenmaier, K.; Kontermann, R.; Chames, P.; Alves, F.; Pardo, L.A. A Novel Anti-Kv10.1 Nanobody Fused to Single-Chain TRAIL Enhances Apoptosis Induction in Cancer Cells. Front. Pharmacol. 2020, 11, 686. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sánchez, A.; Rubio, M.E.; Kohl, T.; Pardo, L.A.; Stühmer, W. Functional KV10.1 Channels Localize to the Inner Nuclear Membrane. PLoS ONE 2011, 6, e19257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninkovic, M.; Mitkovski, M.; Kohl, T.; Stühmer, W.; Pardo, L.A. Physical and Functional Interaction of KV10.1 with Rabaptin-5 Impacts Ion Channel Trafficking. FEBS Lett. 2012, 586, 3077–3084. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, A.; Urrego, D.; Pardo, L.A. Cyclic Expression of the Voltage-gated Potassium Channel Kv10.1 Promotes Disassembly of the Primary Cilium. EMBO Rep. 2016, 17, 708–723. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, L.S.; Schmidt, H.; Farsi, Z.; Barrantes-Freer, A.; Rubio, M.E.; Ufartes, R.; Eilers, J.; Sakaba, T.; Stühmer, W.; Pardo, L.A. KV10.1 Opposes Activity-Dependent Increase in Ca2+ Influx into the Presynaptic Terminal of the Parallel Fibre-Purkinje Cell Synapse. J. Physiol. 2015, 593, 181–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, J.; Weseloh, R.; Karschin, C.; Liu, Q.; Netzer, R.; Engeland, B.; Stansfeld, C.; Pongs, O. Cloning and Functional Expression of Rat Eag2, a New Member of the Ether-à-Go-Go Family of Potassium Channels and Comparison of Its Distribution with That of Eag1. Mol. Cell. Neurosci. 2000, 16, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Bijlenga, P.; Occhiodoro, T.; Liu, J.H.; Bader, C.R.; Bernheim, L.; Fischer-Lougheed, J. An Ether-a-Go-Go K+ Current, I(h-Eag), Contributes to the Hyperpolarization of Human Fusion-Competent Myoblasts. J. Physiol. 1998, 512, 317. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, A.; Hinojosa, L.M.; Gonzales, J.D.J.; Montante-Montes, D.; Martínez-Benítez, B.; Aguilar-Guadarrama, R.; Gamboa-Domínguez, A.; Morales, F.; Carrillo-García, A.; Lizano, M.; et al. KCNH1 Potassium Channels Are Expressed in Cervical Cytologies from Pregnant Patients and Are Regulated by Progesterone. Reproduction 2013, 146, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Urrego, D.; Movsisyan, N.; Ufartes, R.; Pardo, L.A. Periodic Expression of Kv10.1 Driven by PRb/E2F1 Contributes to G2/M Progression of Cancer and Non-Transformed Cells. Cell Cycle 2016, 15, 799–811. [Google Scholar] [CrossRef] [Green Version]
- Hemmerlein, B.; Weseloh, R.M.; de Queiroz, F.M.; Knötgen, H.; Sánchez, A.; Rubio, M.E.; Martin, S.; Schliephacke, T.; Jenke, M.; Heinz-Joachim-Radzun; et al. Overexpression of Eag1 Potassium Channels in Clinical Tumours. Mol. Cancer 2006, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- de Queiroz, F.M.; Suarez-Kurtz, G.; Stühmer, W.; Pardo, L.A. Ether à Go-Go Potassium Channel Expression in Soft Tissue Sarcoma Patients. Mol. Cancer 2006, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Asher, V.; Khan, R.; Warren, A.; Shaw, R.; Schalkwyk, G.V.; Bali, A.; Sowter, H.M. The Eag Potassium Channel as a New Prognostic Marker in Ovarian Cancer. Diagn. Pathol. 2010, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, J.R.; Griesinger, F.; Stühmer, W.; Pardo, L.A. The Potassium Channel Ether à Go-Go Is a Novel Prognostic Factor with Functional Relevance in Acute Myeloid Leukemia. Mol. Cancer 2010, 9, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.W.; Wang, X.G.; Luo, H.S.; Tan, S.Y.; Gao, S.; Luo, B.; Jiang, H. Expression and Prognostic Roles of Eag1 in Resected Esophageal Squamous Cell Carcinomas. Dig. Dis. Sci. 2008, 53, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.W.; Luo, H.S.; Jin, X.; Yan, J.J.; Ai, Y.W. Aberrant Expression of Eag1 Potassium Channels in Gastric Cancer Patients and Cell Lines. Med. Oncol. 2007, 24, 345–350. [Google Scholar] [CrossRef]
- Menéndez, S.T.; Villaronga, M.Á.; Rodrigo, J.P.; Álvarez-Teijeiro, S.; García-Carracedo, D.; Urdinguio, R.G.; Fraga, M.F.; Pardo, L.A.; Viloria, C.G.; Suárez, C.; et al. Frequent Aberrant Expression of the Human Ether à Go-Go (HEAG1) Potassium Channel in Head and Neck Cancer: Pathobiological Mechanisms and Clinical Implications. J. Mol. Med. 2012, 90, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, S.; Wadhwa, P.; Dinda, A.K.; Gupta, N.P. Differential Expression of Potassium Ion Channels in Human Renal Cell Carcinoma. Int. Urol. Nephrol. 2009, 41, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Ramos, G.; Hernández-Gallegos, E.; Vera, E.; Chávez-López, M.; Zúñiga-García, V.; Sánchez-Pérez, Y.; Garrido, E.; Camacho, J. Astemizole Inhibits Cell Proliferation in Human Prostate Tumorigenic Cells Expressing Ether À-Go-Go-1 Potassium Channels. Cell. Mol. Biol. 2017, 63, 11–13. [Google Scholar] [CrossRef]
- García-Becerra, R.; Díaz, L.; Camacho, J.; Barrera, D.; Ordaz-Rosado, D.; Morales, A.; Ortiz, C.S.; Avila, E.; Bargallo, E.; Arrecillas, M.; et al. Calcitriol Inhibits Ether-à Go-Go Potassium Channel Expression and Cell Proliferation in Human Breast Cancer Cells. Exp. Cell Res. 2010, 316, 433–442. [Google Scholar] [CrossRef]
- Weber, C.; De Queiroz, F.M.; Downie, B.R.; Suckow, A.; Stühmer, W.; Pardo, L.A. Silencing the Activity and Proliferative Properties of the Human EagI Potassium Channel by RNA Interference. J. Biol. Chem. 2006, 281, 13030–13037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downie, B.R.; Sánchez, A.; Knötgen, H.; Contreras-Jurado, C.; Gymnopoulos, M.; Weber, C.; Stühmer, W.; Pardo, L.A. Eag1 Expression Interferes with Hypoxia Homeostasis and Induces Angiogenesis in Tumors. J. Biol. Chem. 2008, 283, 36234–36240. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.; Lan, Z.; Yue-Li, L.; Li-Lin, H.; Li-Lin, H. Knockdown of Eag1 Expression by RNA Interference Increases Chemosensitivity to Cisplatin in Ovarian Cancer Cells. Reprod. Sci. 2015, 22, 1618–1626. [Google Scholar] [CrossRef]
- Bai, Y.; Liao, H.; Liu, T.; Zeng, X.; Xiao, F.; Luo, L.; Guo, H.; Guo, L. MiR-296-3p Regulates Cell Growth and Multi-Drug Resistance of Human Glioblastoma by Targeting Ether-à-Go-Go (EAG1). Eur. J. Cancer 2013, 49, 710–724. [Google Scholar] [CrossRef]
- Luis, E.; Lara Figueroa, C.O.; Durán Pastén, M.L.; Azorín Vega, E.P. Role of Gamma Radiation on Functional Expression of the Voltage-Gated Potassium Channel Kv10.1 and Its Importance in the Radiobiological Response. Appl. Radiat. Isot. 2022, 187, 110331. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Neoplasia (United States) 2017, 19, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Ousingsawat, J.; Spitzner, M.; Puntheeranurak, S.; Terracciano, L.; Tornillo, L.; Bubendorf, L.; Kunzelmann, K.; Schreiber, R. Expression of Voltage-Gated Potassium Channels in Human and Mouse Colonic Carcinoma. Clin. Cancer Res. 2007, 13, 824–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farias, L.M.B.; Ocaña, D.B.; Díaz, L.; Larrea, F.; Avila-Chávez, E.; Cadena, A.; Hinojosa, L.M.; Lara, G.; Villanueva, L.A.; Vargas, C.; et al. Ether à Go-Go Potassium Channels as Human Cervical Cancer Markers. Cancer Res. 2004, 64, 6996–7001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz, C.S.; Montante-Montes, D.; Saqui-Salces, M.; Hinojosa, L.M.; Gamboa-Dominguez, A.; Hernández-Gallegos, E.; Martínez-Benítez, B.; Solís-Pancoatl, M.D.R.; Garcia-Villa, E.; Ramírez, A.; et al. Eag1 Potassium Channels as Markers of Cervical Dysplasia. Oncol. Rep. 2011, 26, 1377–1383. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.Q.; Li, Z.J.; Gao, X.; Zhang, X.B.; Li, F.J.; Shi, Y.J.; Luo, G.; Li, W. Expression of Eag1 K(+) Channel in Prostate Cancer and Its Significance. Zhonghua Nan Ke Xue 2013, 19, 205–209. [Google Scholar]
- Martínez, R.; Stühmer, W.; Martin, S.; Schell, J.; Reichmann, A.; Rohde, V.; Pardo, L. Analysis of the Expression of Kv10.1 Potassium Channel in Patients with Brain Metastases and Glioblastoma Multiforme: Impact on Survival. BMC Cancer 2015, 15, 839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowiec, A.-S.; Hague, F.; Harir, N.; Guénin, S.; Guerineau, F.; Gouilleux, F.; Roudbaraki, M.; Lassoued, K.; Ouadid-Ahidouch, H. IGF-1 Activates HEAG K+ Channels through an Akt-Dependent Signaling Pathway in Breast Cancer Cells: Role in Cell Proliferation. J. Cell. Physiol. 2007, 212, 690–701. [Google Scholar] [CrossRef]
- Ouadid-Ahidouch, H.; Le Bourhis, X.; Roudbaraki, M.; Toillon, R.A.; Delcourt, P.; Prevarskaya, N. Changes in the K+ Current-Density of MCF-7 Cells during Progression through the Cell Cycle: Possible Involvement of a h-Ether.a-Gogo K+ Channel. Recept. Channels 2001, 7, 345–356. [Google Scholar]
- Hammadi, M.; Chopin, V.; Matifat, F.; Dhennin-Duthille, I.; Chasseraud, M.; Sevestre, H.; Ouadid-Ahidouch, H. Human Ether À-Go-Go K+ Channel 1 (HEag1) Regulates MDA-MB-231 Breast Cancer Cell Migration through Orai1-Dependent Calcium Entry. J. Cell. Physiol. 2012, 227, 3837–3846. [Google Scholar] [CrossRef]
- Valdés-Abadía, B.; Morán-Zendejas, R.; Rangel-Flores, J.M.; Rodríguez-Menchaca, A.A. Chloroquine Inhibits Tumor-Related Kv10.1 Channel and Decreases Migration of MDA-MB-231 Breast Cancer Cells in Vitro. Eur. J. Pharmacol. 2019, 855, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova-Ruch, O.; Schönherr, K.; Gessner, G.; Schönherr, R.; Klapperstück, T.; Wohlrab, W.; Heinemann, S.H. Effects of Imipramine on Ion Channels and Proliferation of IGR1 Melanoma Cells. J. Membr. Biol. 2002, 188, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; McCormick, F. The RB and P53 Pathways in Cancer. Cancer Cell 2002, 2, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Li, Z.; Chen, C.; Luo, X.; Xiao, J.; Dong, D.; Lu, Y.; Yang, B.; Wang, Z. Transcriptional and Post-Transcriptional Mechanisms for Oncogenic Overexpression of Ether À Go-Go K+ Channel. PLoS ONE 2011, 6, e20362. [Google Scholar] [CrossRef]
- Moody, C.A.; Laimins, L.A. Human Papillomavirus Oncoproteins: Pathways to Transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Hosseinahli, N.; Aghapour, M.; Duijf, P.H.G.; Baradaran, B. Treating Cancer with MicroRNA Replacement Therapy: A Literature Review. J. Cell. Physiol. 2018, 233, 5574–5588. [Google Scholar] [CrossRef] [PubMed]
- Santoni, G.; Morelli, M.B.; Santoni, M.; Nabissi, M.; Marinelli, O.; Amantini, C. Targeting Transient Receptor Potential Channels by MicroRNAs Drives Tumor Development and Progression. In Advances in Experimental Medicine and Biology; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 1131. [Google Scholar]
- Jiang, X.H.; Zhang, J.T.; Chan, H.C. Ion Channels/Transporters as Epigenetic Regulators?—A MicroRNA Perspective. Sci. China Life Sci. 2012, 55. [Google Scholar] [CrossRef]
- Díaz, L.; Ceja-Ochoa, I.; Restrepo-Angulo, I.; Larrea, F.; Avila-Chávez, E.; García-Becerra, R.; Borja-Cacho, E.; Barrera, D.; Ahumada, E.; Gariglio, P.; et al. Estrogens and Human Papilloma Virus Oncogenes Regulate Human Ether-à-Go-Go-1 Potassium Channel Expression. Cancer Res. 2009, 69, 3300–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cázares-Ordoñez, V.; González-Duarte, R.J.; Díaz, L.; Ishizawa, M.; Uno, S.; Ortíz, V.; Ordoñez-Sánchez, M.L.; Makishima, M.; Larrea, F.; Avila, E. A Cis-Acting Element in the Promoter of Human Ether à Go-Go 1 Potassium Channel Gene Mediates Repression by Calcitriol in Human Cervical Cancer Cells. Biochem. Cell Biol. 2015, 93, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Kagohara, L.T.; Stein-O’Brien, G.L.; Kelley, D.; Flam, E.; Wick, H.C.; Danilova, L.V.; Easwaran, H.; Favorov, A.V.; Qian, J.; Gaykalova, D.A.; et al. Epigenetic Regulation of Gene Expression in Cancer: Techniques, Resources and Analysis. Brief. Funct. Genom. 2018, 17, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, J.; Gao, Y.; Pei, L.; Zhou, J.; Gu, L.; Zhang, L.; Zhu, B.; Hattori, N.; Ji, J.; et al. Large-Scale Characterization of DNA Methylation Changes in Human Gastric Carcinomas with and without Metastasis. Clin. Cancer Res. 2014, 20, 4598–4612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulczinski, J.C.; Shang, Y.; Dao, T.; Limjunyawong, N.; Sun, Q.; Mitzner, W.; Cheng, R.Y.S.; Tang, W.Y. Multigenerational Epigenetic Regulation of Allergic Diseases: Utilizing an Experimental Dust Mite-Induced Asthma Model. Front. Genet. 2021, 12, 624561. [Google Scholar] [CrossRef] [PubMed]
- Lamothe, S.M.; Zhang, S. Chapter Five—Ubiquitination of Ion Channels and Transporters. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2016; Volume 141. [Google Scholar]
- Hsu, P.H.; Ma, Y.T.; Fang, Y.C.; Huang, J.J.; Gan, Y.L.; Chang, P.T.; Jow, G.M.; Tang, C.Y.; Jeng, C.J. Cullin 7 Mediates Proteasomal and Lysosomal Degradations of Rat Eag1 Potassium Channels. Sci. Rep. 2017, 7, 40825. [Google Scholar] [CrossRef]
- Fang, Y.C.; Fu, S.J.; Hsu, P.H.; Chang, P.T.; Huang, J.J.; Chiu, Y.C.; Liao, Y.F.; Jow, G.M.; Tang, C.Y.; Jeng, C.J. Identification of MKRN1 as a Second E3 Ligase for Eag1 Potassium Channels Reveals Regulation via Differential Degradation. J. Biol. Chem. 2021, 296, 100484. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GLOBOCAN. Cancer Today. IARC. 2020. Available online: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=2&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10& (accessed on 25 July 2022).
- Zito Marino, F.; Rocco, G.; Morabito, A.; Mignogna, C.; Intartaglia, M.; Liguori, G.; Botti, G.; Franco, R. A New Look at the ALK Gene in Cancer: Copy Number Gain and Amplification. Expert Rev. Anticancer Ther. 2016, 16, 493–502. [Google Scholar] [CrossRef]
- Antolín, S.; García-Caballero, L.; Reboredo, C.; Molina, A.; Mosquera, J.; Vázquez-Boquete, Á.; Gallego, R.; Santiago, M.P.; Concha, Á.; Pérez, E.; et al. Is There a Correlation between HER2 Gene Amplification Level and Response to Neoadjuvant Treatment with Trastuzumab and Chemotherapy in HER2-Positive Breast Cancer? Virchows Arch. 2021, 479, 853–857. [Google Scholar] [CrossRef]
- Singh, J.C.; Jhaveri, K.; Esteva, F.J. HER2-Positive Advanced Breast Cancer: Optimizing Patient Outcomes and Opportunities for Drug Development. Br. J. Cancer 2014, 111, 1888–1898. [Google Scholar] [CrossRef] [Green Version]
- Rosendo-Pineda, M.J.; Moreno, C.M.; Vaca, L. Role of Ion Channels during Cell Division. Cell Calcium 2020, 91, 102258. [Google Scholar] [CrossRef]
- Rao, V.R.; Perez-Neut, M.; Kaja, S.; Gentile, S. Voltage-Gated Ion Channels in Cancer Cell Proliferation. Cancers 2015, 7, 849–875. [Google Scholar] [CrossRef] [PubMed]
- Cone, C.D. Unified Theory on the Basic Mechanism of Normal Mitotic Control and Oncogenesis. J. Theor. Biol. 1971, 30, 151–181. [Google Scholar] [CrossRef]
- Wang, B.; Liang, Z.; Liu, P. Functional Aspects of Primary Cilium in Signaling, Assembly and Microenvironment in Cancer. J. Cell. Physiol. 2021, 236, 3207–3219. [Google Scholar] [CrossRef] [PubMed]
- Napoli, G.; Panzironi, N.; Traversa, A.; Catalanotto, C.; Pace, V.; Petrizzelli, F.; Giovannetti, A.; Lazzari, S.; Cogoni, C.; Tartaglia, M.; et al. Potassium Channel KCNH1 Activating Variants Cause Altered Functional and Morphological Ciliogenesis. Mol. Neurobiol. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Urrego, D.; Sánchez, A.; Tomczak, A.P.; Pardo, L.A. The Electric Fence to Cell-Cycle Progression: Do Local Changes in Membrane Potential Facilitate Disassembly of the Primary Cilium? BioEssays 2017, 39, 1600190. [Google Scholar] [CrossRef] [PubMed]
- Delling, M.; Decaen, P.G.; Doerner, J.F.; Febvay, S.; Clapham, D.E. Primary Cilia Are Specialized Calcium Signalling Organelles. Nature 2013, 504, 311–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decaen, P.G.; Delling, M.; Vien, T.N.; Clapham, D.E. Direct Recording and Molecular Identification of the Calcium Channel of Primary Cilia. Nature 2013, 504, 315–318. [Google Scholar] [CrossRef] [Green Version]
- Du, R.; Huang, C.; Liu, K.; Li, X.; Dong, Z. Targeting AURKA in Cancer: Molecular Mechanisms and Opportunities for Cancer Therapy. Mol. Cancer 2021, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Movsisyan, N.; Pardo, L.A. Kv10.1 Regulates Microtubule Dynamics during Mitosis. Cancers 2020, 12, 2409. [Google Scholar] [CrossRef]
- Garcin, C.; Straube, A. Microtubules in Cell Migration. Essays Biochem. 2019, 63, 471–499. [Google Scholar]
- Pardo-Pastor, C.; Rubio-Moscardo, F.; Vogel-González, M.; Serra, S.A.; Afthinos, A.; Mrkonjic, S.; Destaing, O.; Abenza, J.F.; Fernández-Fernández, J.M.; Trepat, X.; et al. Piezo2 Channel Regulates RhoA and Actin Cytoskeleton to Promote Cell Mechanobiological Responses. Proc. Natl. Acad. Sci. USA 2018, 115, 1925–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peretti, M.; Badaoui, M.; Girault, A.; Van Gulick, L.; Mabille, M.P.; Tebbakha, R.; Sevestre, H.; Morjani, H.; Ouadid-Ahidouch, H. Original Association of Ion Transporters Mediates the ECM-Induced Breast Cancer Cell Survival: Kv10.1-Orai1-SPCA2 Partnership. Sci. Rep. 2019, 9, 1175. [Google Scholar] [CrossRef]
- Herrmann, S.; Ninkovic, M.; Kohl, T.; Lörinczi, É.; Pardo, L.A. Cortactin Controls Surface Expression of the Voltage-Gated Potassium Channel KV10.1. J. Biol. Chem. 2012, 287, 44151–44163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becchetti, A.; Petroni, G.; Arcangeli, A. Ion Channel Conformations Regulate Integrin-Dependent Signaling. Trends Cell Biol. 2019, 29, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Valbuena, S.; Lerma, J. Non-Canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. Neuron 2016, 92, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Hegle, A.P.; Marble, D.D.; Wilson, G.F. A Voltage-Driven Switch for Ion-Independent Signaling by Ether-à-Go-Go K+ Channels. Proc. Natl. Acad. Sci. USA 2006, 103, 2886–2891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badaoui, M.; Mimsy-Julienne, C.; Saby, C.; Van Gulick, L.; Peretti, M.; Jeannesson, P.; Morjani, H.; Ouadid-Ahidouch, H. Collagen Type 1 Promotes Survival of Human Breast Cancer Cells by Overexpressing Kv10.1 Potassium and Orai1 Calcium Channels through DDR1-Dependent Pathway. Oncotarget 2018, 9, 24653. [Google Scholar] [CrossRef]
- Girault, A.; Peretti, M.; Badaoui, M.; Hémon, A.; Morjani, H.; Ouadid-Ahidouch, H. The N and C-Termini of SPCA2 Regulate Differently Kv10.1 Function: Role in the Collagen 1-Induced Breast Cancer Cell Survival. Am. J. Cancer Res. 2021, 11, 251. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández-Reséndiz, I.; Pacheu-Grau, D.; Sánchez, A.; Pardo, L.A. Inhibition of Kv10.1 Channels Sensitizes Mitochondria of Cancer Cells to Antimetabolic Agents. Cancers 2020, 12, 920. [Google Scholar] [CrossRef] [Green Version]
- Roma-Rodrigues, C.; Mendes, R.; Baptista, P.V.; Fernandes, A.R. Targeting Tumor Microenvironment for Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boedtkjer, E.; Pedersen, S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. [Google Scholar] [CrossRef] [Green Version]
- Damaghi, M.; Wojtkowiak, J.W.; Gillies, R.J. PH Sensing and Regulation in Cancer. Front. Physiol. 2013, 4, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pethő, Z.; Najder, K.; Carvalho, T.; McMorrow, R.; Todesca, L.M.; Rugi, M.; Bulk, E.; Chan, A.; Löwik, C.W.G.M.; Reshkin, S.J.; et al. PH-Channeling in Cancer: How PH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers 2020, 12, 2484. [Google Scholar] [CrossRef] [PubMed]
- Kazmierczak, M.; Zhang, X.; Chen, B.; Mulkey, D.K.; Shi, Y.; Wagner, P.G.; Pivaroff-Ward, K.; Sassic, J.K.; Bayliss, D.A.; Jegla, T. External PH Modulates EAG Superfamily K+ Channels through EAG-Specific Acidic Residues in the Voltage Sensor. J. Gen. Physiol. 2013, 141, 721–735. [Google Scholar] [CrossRef] [Green Version]
- Terlau, H.; Ludwig, J.; Steffan, R.; Pongs, O.; Stühmer, W.; Heinemann, S.H. Extracellular Mg2+ Regulates Activation of Rat Eag Potassium Channel. Pflugers Arch. Eur. J. Physiol. 1996, 432, 301–312. [Google Scholar] [CrossRef]
- Spitzner, M.; Ousingsawat, J.; Scheidt, K.; Kunzelmann, K.; Schreiber, R. Voltage-Gated K+ Channels Support Proliferation of Colonic Carcinoma Cells. FASEB J. 2007, 21, 35–44. [Google Scholar] [CrossRef]
- Toral, C.; Mendoza-Garrido, M.E.; Azorín, E.; Hernández-Gallegos, E.; Gomora, J.C.; Delgadillo, D.M.; Solano-Agama, C.; Camacho, J. Effect of Extracellular Matrix on Adhesion, Viability, Actin Cytoskeleton and K+ Currents of Cells Expressing Human Ether à Go-Go Channels. Life Sci. 2007, 81, 255–265. [Google Scholar] [CrossRef]
- Lai, Q.; Wang, T.; Guo, Q.; Zhang, Y.; Wang, Y.; Yuan, L.; Ling, R.; He, Y.; Wang, W. Positive Correlation between the Expression of HEag1 and HIF-1α in Breast Cancers: An Observational Study. BMJ Open 2014, 4, e005049. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A Comprehensive Map of Molecular Drug Targets. Nat. Rev. Drug Discov. 2017, 16, 19–34. [Google Scholar] [CrossRef]
- Kale, V.P.; Amin, S.G.; Pandey, M.K. Targeting Ion Channels for Cancer Therapy by Repurposing the Approved Drugs. Biochim. Biophys. Acta Biomembr. 2015, 1848, 2747–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomasello, G.; Armenia, I.; Molla, G. The Protein Imager: A Full-Featured Online Molecular Viewer Interface with Server-Side HQ-Rendering Capabilities. Bioinformatics 2020, 36, 2909–2911. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luis, E.; Anaya-Hernández, A.; León-Sánchez, P.; Durán-Pastén, M.L. The Kv10.1 Channel: A Promising Target in Cancer. Int. J. Mol. Sci. 2022, 23, 8458. https://doi.org/10.3390/ijms23158458
Luis E, Anaya-Hernández A, León-Sánchez P, Durán-Pastén ML. The Kv10.1 Channel: A Promising Target in Cancer. International Journal of Molecular Sciences. 2022; 23(15):8458. https://doi.org/10.3390/ijms23158458
Chicago/Turabian StyleLuis, Enoch, Arely Anaya-Hernández, Paulina León-Sánchez, and María Luisa Durán-Pastén. 2022. "The Kv10.1 Channel: A Promising Target in Cancer" International Journal of Molecular Sciences 23, no. 15: 8458. https://doi.org/10.3390/ijms23158458
APA StyleLuis, E., Anaya-Hernández, A., León-Sánchez, P., & Durán-Pastén, M. L. (2022). The Kv10.1 Channel: A Promising Target in Cancer. International Journal of Molecular Sciences, 23(15), 8458. https://doi.org/10.3390/ijms23158458