Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico
Abstract
:1. Introduction
2. HPV Infection and Life Cycle
3. HPV Pathogenesis
4. Classification of HPV-16 and -18 Lineages and Sublineages
5. HPV-16 and -18 Intratype Variants and Risk of Persistence or Cervical Cancer
6. Distribution of HPV Variants in Mexico
7. Functional Analysis of HPV Variants: From Non-Coding Region Activity to Viral Protein Products, an Interesting Approach in HPV Research in Mexico
7.1. Long Control Region
7.2. E6
7.3. E7
7.4. E2
8. Concluding Remarks: Where We Are and Where We Are Going?
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global Burden of Cancer Attributable to Infections in 2018: A Worldwide Incidence Analysis. Lancet Glob. Health 2020, 8, e180–e190. [Google Scholar] [CrossRef] [Green Version]
- de Sanjose, S.; Quint, W.G.V.; Alemany, L.; Geraets, D.T.; Klaustermeier, J.E.; Lloveras, B.; Tous, S.; Felix, A.; Bravo, L.E.; Shin, H.R.; et al. Human Papillomavirus Genotype Attribution in Invasive Cervical Cancer: A Retrospective Cross-Sectional Worldwide Study. Lancet Oncol. 2010, 11, 1048–1056. [Google Scholar] [CrossRef]
- Adebamowo, S.N.; Befano, B.; Cheung, L.C.; Rodriguez, A.C.; Demarco, M.; Rydzak, G.; Chen, X.; Porras, C.; Herrero, R.; Kim, J.J.; et al. Different Human Papillomavirus Types Share Early Natural History Transitions in Immunocompetent Women. Int. J. Cancer 2022, 151, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Plummer, M.; de Martel, C.; Vignat, J.; Ferlay, J.; Bray, F.; Franceschi, S. Global Burden of Cancers Attributable to Infections in 2012: A Synthetic Analysis. Lancet Glob. Health 2016, 4, e609–e616. [Google Scholar] [CrossRef] [Green Version]
- de Martel, C.; Plummer, M.; Vignat, J.; Franceschi, S. Worldwide Burden of Cancer Attributable to HPV by Site, Country and HPV Type. Int. J. Cancer 2017, 141, 664–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.A.; Zhou, Y.; Jin, T. Epidemiology and Burden of Human Papillomavirus and Related Diseases, Molecular Pathogenesis, and Vaccine Evaluation. Front. Public Health 2021, 8, 552028. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bzhalava, D.; Guan, P.; Franceschi, S.; Dillner, J.; Clifford, G. A Systematic Review of the Prevalence of Mucosal and Cutaneous Human Papillomavirus Types. Virology 2013, 445, 224–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; Hausen, H.Z.; de Villiers, E.M. Classification of Papillomaviruses (PVs) Based on 189 PV Types and Proposal of Taxonomic Amendments. Virology 2010, 401, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Van Doorslaer, K.; Li, Z.; Xirasagar, S.; Maes, P.; Kaminsky, D.; Liou, D.; Sun, Q.; Kaur, R.; Huyen, Y.; McBride, A.A. The Papillomavirus Episteme: A Major Update to the Papillomavirus Sequence Database. Nucleic Acids Res. 2017, 45, D499–D506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, P.; Howell-Jones, R.; Li, N.; Bruni, L.; De Sanjosé, S.; Franceschi, S.; Clifford, G.M. Human Papillomavirus Types in 115,789 HPV-Positive Women: A Meta-Analysis from Cervical Infection to Cancer. Int. J. Cancer 2012, 131, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- LeConte, B.A.; Szaniszlo, P.; Fennewald, S.M.; Lou, D.I.; Qiu, S.; Chen, N.W.; Lee, J.H.; Resto, V.A. Differences in the Viral Genome between HPV-Positive Cervical and Oropharyngeal Cancer. PLoS ONE 2018, 13, e0203403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, B.; De Sanjosé, S.; Tous, S.; Quiros, B.; Muñoz, N.; Bosch, X.; Alemany, L. Human Papillomavirus Genotype Attribution for HPVs 6, 11, 16, 18, 31, 33, 45, 52 and 58 in Female Anogenital Lesions. Eur. J. Cancer 2015, 51, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Schrank, T.P.; Landess, L.; Stepp, W.H.; Rehmani, H.; Weir, W.H.; Lenze, N.; Lal, A.; Wu, D.; Kothari, A.; Hackman, T.G.; et al. Comprehensive Viral Genotyping Reveals Prognostic Viral Phylogenetic Groups in HPV16-Associated Squamous Cell Carcinoma of the Oropharynx. Mol. Cancer Res. 2022. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.A.; Gheit, T.; Franceschi, S.; Tommasino, M.; Clifford, G.M. Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide. J. Virol. 2015, 89, 10680–10687. [Google Scholar] [CrossRef] [Green Version]
- De Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; Zur Hausen, H. Classification of Papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.D.; Harari, A.; Chen, Z. Human Papillomavirus Genome Variants. Virology 2013, 445, 232–243. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz-Hernández, E.; García-Carrancá, A.; Mohar-Betancourt, A.; Dueñas-González, A.; Contreras-Paredes, A.; Pérez-Cardenas, E.; Herrera-Goepfert, R.; Lizano-Soberón, M. Differential Splicing of E6 within Human Papillomavirus Type 18 Variants and Functional Consequences. J. Gen. Virol. 2005, 86, 2459–2468. [Google Scholar] [CrossRef] [Green Version]
- Hadami, K.; Saby, C.; Dakka, N.; Collin, G.; Attaleb, M.; Khyatti, M.; Filali-Maltouf, A.; Morjani, H.; El Mzibri, M. Degradation of P53 by HPV16-E6 Variants Isolated from Cervical Cancer Specimens of Moroccan Women. Gene 2021, 791, 145709. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, J.; Guo, J.; Zhu, T.; Zhong, J.; Liu, M.; Ruan, Y.; Liao, S.; Li, F. Genetic Variability and Functional Implication of HPV16 from Cervical Intraepithelial Neoplasia in Shanghai Women. J. Med. Virol. 2020, 92, 372–381. [Google Scholar] [CrossRef]
- Hochmann, J.; Sobrinho, J.S.; Villa, L.L.; Sichero, L. The Asian-American Variant of Human Papillomavirus Type 16 Exhibits Higher Activation of MAPK and PI3K/AKT Signaling Pathways, Transformation, Migration and Invasion of Primary Human Keratinocytes. Virology 2016, 492, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Yeager, M.; Cullen, M.; Boland, J.F.; Chen, Z.; Wentzensen, N.; Zhang, X.; Yu, K.; Yang, Q.; Mitchell, J.; et al. HPV16 Sublineage Associations with Histology-Specific Cancer Risk Using HPV Whole-Genome Sequences in 3200 Women. J. Natl. Cancer Inst. 2016, 108, djw100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornet, I.; Gheit, T.; Iannacone, M.R.; Vignat, J.; Sylla, B.S.; Del Mistro, A.; Franceschi, S.; Tommasino, M.; Clifford, G.M. HPV16 Genetic Variation and the Development of Cervical Cancer Worldwide. Br. J. Cancer 2013, 108, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheit, T.; Cornet, I.; Clifford, G.M.; Iftner, T.; Munk, C.; Tommasino, M.; Kjaer, S.K. Risks for Persistence and Progression by Human Papillomavirus Type 16 Variant Lineages among a Population-Based Sample of Danish Women. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1315–1321. [Google Scholar] [CrossRef] [Green Version]
- Schiffman, M.; Rodriguez, A.C.; Chen, Z.; Wacholder, S.; Herrero, R.; Hildesheim, A.; Desalle, R.; Befano, B.; Yu, K.; Safaeian, M.; et al. A Population-Based Prospective Study of Carcinogenic Human Papillomavirus Variant Lineages, Viral Persistence, and Cervical Neoplasia. Cancer Res. 2010, 70, 3159–3169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sichero, L.; Ferreira, S.; Trottier, H.; Duarte-Franco, E.; Ferenczy, A.; Franco, E.L.; Villa, L.L. High Grade Cervical Lesions Are Caused Preferentially by Non-European Variants of HPVs 16 and 18. Int. J. Cancer 2007, 120, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.B.; Chen, Z.; Muqui, E.F.; Boldrini, N.A.T.; Miranda, A.E.; Spano, L.C.; Burk, R.D. Human Papillomavirus 16 Non-European Variants Are Preferentially Associated with High-Grade Cervical Lesions. PLoS ONE 2014, 9, e100746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mane, A.; Limaye, S.; Patil, L.; Kulkarni-Kale, U. Genetic Variations in the Long Control Region of Human Papillomavirus Type 16 Isolates from India: Implications for Cervical Carcinogenesis. J. Med. Microbiol. 2022, 71, 001475. [Google Scholar] [CrossRef] [PubMed]
- Larijani, M.S.; Omrani, M.D.; Soleimani, R.; Bavand, A.; Nejadeh, A.H.; Ezzatizadeh, V.; Jamshidi, M.; Ramezani, A. Determination of Human Papillomavirus Type 18 Lineage of E6: A Population Study from Iran. Biomed. Res. Int. 2022, 2022, 2839708. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.M.; Baker, C.C. Papillomavirus Genome Structure, Expression, and Post-Transcriptional Regulation. Front. Biosci. A J. Virtual Libr. 2006, 11, 2286–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozbun, M.A.; Campos, S.K. The Long and Winding Road: Human Papillomavirus Entry and Subcellular Trafficking. Curr. Opin. Virol. 2021, 50, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Schelhaas, M.; Shah, B.; Holzer, M.; Blattmann, P.; Kühling, L.; Day, P.M.; Schiller, J.T.; Helenius, A. Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis. PLoS Pathog. 2012, 8, e1002657. [Google Scholar] [CrossRef] [PubMed]
- Shafti-Keramat, S.; Handisurya, A.; Kriehuber, E.; Meneguzzi, G.; Slupetzky, K.; Kirnbauer, R. Different Heparan Sulfate Proteoglycans Serve as Cellular Receptors for Human Papillomaviruses. J. Virol. 2003, 77, 13125–13135. [Google Scholar] [CrossRef] [Green Version]
- Surviladze, Z.; Sterk, R.T.; DeHaro, S.A.; Ozbun, M.A. Cellular Entry of Human Papillomavirus Type 16 Involves Activation of the Phosphatidylinositol 3-Kinase/Akt/MTOR Pathway and Inhibition of Autophagy. J. Virol. 2013, 87, 2508–2517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evander, M.; Frazer, I.H.; Payne, E.; Qi, Y.M.; Hengst, K.; McMillan, N.A. Identification of the Alpha6 Integrin as a Candidate Receptor for Papillomaviruses. J. Virol. 1997, 71, 2449–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spoden, G.; Freitag, K.; Husmann, M.; Boller, K.; Sapp, M.; Lambert, C.; Florin, L. Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs). PLoS ONE 2008, 3, e3313. [Google Scholar] [CrossRef] [Green Version]
- Finke, J.; Hitschler, L.; Boller, K.; Florin, L.; Lang, T. HPV Caught in the Tetraspanin Web? Med. Microbiol. Immunol. 2020, 209, 447–459. [Google Scholar] [CrossRef]
- Dziduszko, A.; Ozbun, M.A. Annexin A2 and S100A10 Regulate Human Papillomavirus Type 16 Entry and Intracellular Trafficking in Human Keratinocytes. J. Virol. 2013, 87, 7502–7515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerqueira, C.; Ventayol, P.S.; Vogeley, C.; Schelhaas, M. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space to Facilitate Entry into Host Cells. J. Virol. 2015, 89, 7038–7052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, R.M.; Lowy, D.R.; Schiller, J.T.; Day, P.M. Cleavage of the Papillomavirus Minor Capsid Protein, L2, at a Furin Consensus Site Is Necessary for Infection. Proc. Natl. Acad. Sci. USA 2006, 103, 1522–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, T.; Zhang, P.; Zhang, W.; Goodner-Bingham, K.; Dupzyk, A.; DiMaio, D.; Tsai, B. γ-Secretase Promotes Membrane Insertion of the Human Papillomavirus L2 Capsid Protein during Virus Infection. J. Cell Biol. 2018, 217, 3545–3559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harwood, M.C.; Dupzyk, A.J.; Inoue, T.; DiMaio, D.; Tsai, B. P120 Catenin Recruits HPV to γ-Secretase to Promote Virus Infection. PLoS Pathog. 2020, 16, e1008946. [Google Scholar] [CrossRef]
- Bergant Marušič, M.; Ozbun, M.A.; Campos, S.K.; Myers, M.P.; Banks, L. Human Papillomavirus L2 Facilitates Viral Escape from Late Endosomes via Sorting Nexin 17. Traffic 2012, 13, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Lipovsky, A.; Popa, A.; Pimienta, G.; Wyler, M.; Bhan, A.; Kuruvilla, L.; Guie, M.A.; Poffenberger, A.C.; Nelson, C.D.S.; Atwood, W.J.; et al. Genome-Wide SiRNA Screen Identifies the Retromer as a Cellular Entry Factor for Human Papillomavirus. Proc. Natl. Acad. Sci. USA 2013, 110, 7452–7457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Giuseppe, S.; Luszczek, W.; Keiffer, T.R.; Bienkowska-Haba, M.; Guion, L.G.M.; Sapp, M.J. Incoming Human Papillomavirus Type 16 Genome Resides in a Vesicular Compartment throughout Mitosis. Proc. Natl. Acad. Sci. USA 2016, 113, 6289–6294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calton, C.M.; Bronnimann, M.P.; Manson, A.R.; Li, S.; Chapman, J.A.; Suarez-Berumen, M.; Williamson, T.R.; Molugu, S.K.; Bernal, R.A.; Campos, S.K. Translocation of the Papillomavirus L2/VDNA Complex across the Limiting Membrane Requires the Onset of Mitosis. PLoS Pathog. 2017, 13, e1006200. [Google Scholar] [CrossRef] [Green Version]
- Aydin, I.; Villalonga-Planells, R.; Greune, L.; Bronnimann, M.P.; Calton, C.M.; Becker, M.; Lai, K.Y.; Campos, S.K.; Schmidt, M.A.; Schelhaas, M. A Central Region in the Minor Capsid Protein of Papillomaviruses Facilitates Viral Genome Tethering and Membrane Penetration for Mitotic Nuclear Entry. PLoS Pathog. 2017, 13, e1006308. [Google Scholar] [CrossRef] [Green Version]
- Day, P.M.; Baker, C.C.; Lowy, D.R.; Schiller, J.T. Establishment of Papillomavirus Infection Is Enhanced by Promyelocytic Leukemia Protein (PML) Expression. Proc. Natl. Acad. Sci. USA 2004, 101, 14252–14257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, A.A. The Papillomavirus E2 Proteins. Virology 2013, 445, 57–79. [Google Scholar] [CrossRef] [Green Version]
- Bergvall, M.; Melendy, T.; Archambault, J. The E1 Proteins. Virology 2013, 445, 35–56. [Google Scholar] [CrossRef] [Green Version]
- Maglennon, G.A.; McIntosh, P.; Doorbar, J. Persistence of Viral DNA in the Epithelial Basal Layer Suggests a Model for Papillomavirus Latency Following Immune Regression. Virology 2011, 414, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Castro-Muñoz, L.J.; Manzo-Merino, J.; Muñoz-Bello, J.O.; Olmedo-Nieva, L.; Cedro-Tanda, A.; Alfaro-Ruiz, L.A.; Hidalgo-Miranda, A.; Madrid-Marina, V.; Lizano, M. The Human Papillomavirus (HPV) E1 Protein Regulates the Expression of Cellular Genes Involved in Immune Response. Sci. Rep. 2019, 9, 13620. [Google Scholar] [CrossRef] [PubMed]
- Moody, C.A.; Laimins, L.A. Human Papillomavirus Oncoproteins: Pathways to Transformation. Nat. Rev. Cancer 2010, 10, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Bello, J.O.M.; Nieva, L.O.; Paredes, A.C.; Gonzalez, A.M.F.; Zavaleta, L.R.; Lizano, M. Regulation of the Wnt/β-Catenin Signaling Pathway by Human Papillomavirus E6 and E7 Oncoproteins. Viruses 2015, 7, 4734–4755. [Google Scholar] [CrossRef]
- Manzo-Merino, J.; Contreras-Paredes, A.; Vázquez-Ulloa, E.; Rocha-Zavaleta, L.; Fuentes-Gonzalez, A.M.; Lizano, M. The Role of Signaling Pathways in Cervical Cancer and Molecular Therapeutic Targets. Arch. Med. Res. 2014, 45, 525–539. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Ulloa, E.; Lizano, M.; Sjöqvist, M.; Olmedo-Nieva, L.; Contreras-Paredes, A. Deregulation of the Notch Pathway as a Common Road in Viral Carcinogenesis. Rev. Med. Virol. 2018, 28, e1988. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Xicotencatl, L.; Pedroza-Saavedra, A.; Chihu-Amparan, L.; Salazar-Piña, A.; Maldonado-Gama, M.; Esquivel-Guadarrama, F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol. Cancer Res. MCR 2021, 19, 167–179. [Google Scholar] [CrossRef]
- Doorbar, J. The E4 Protein; Structure, Function and Patterns of Expression. Virology 2013, 445, 80–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, P.B.; Laskey, P.; Sullivan, K.; Davy, C.; Wang, Q.; Jackson, D.J.; Griffin, H.M.; Doorbar, J. E1–E4-Mediated Keratin Phosphorylation and Ubiquitylation: A Mechanism for Keratin Depletion in HPV16-Infected Epithelium. J. Cell Sci. 2010, 123, 2810–2822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buck, C.B.; Trus, B.L. The Papillomavirus Virion: A Machine Built to Hide Molecular Achilles’ Heels. Adv. Exp. Med. Biol. 2012, 726, 403–422. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.S.; Lundine, D.; Leeman, J.E.; Higginson, D.S. Genomic Signatures in HPV-Associated Tumors. Viruses 2021, 13, 1988. [Google Scholar] [CrossRef] [PubMed]
- Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The Estimated Lifetime Probability of Acquiring Human Papillomavirus in the United States. Sex. Transm. Dis. 2014, 41, 660–664. [Google Scholar] [CrossRef] [PubMed]
- Gravitt, P.E. The Known Unknowns of HPV Natural History. J. Clin. Investig. 2011, 121, 4593–4599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmugasundaram, S.; You, J. Targeting Persistent Human Papillomavirus Infection. Viruses 2017, 9, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.C.; Schiffman, M.; Lin, C.Y.; Pan, M.H.; You, S.L.; Chuang, L.C.; Hsieh, C.Y.; Liaw, K.L.; Hsing, A.W.; Chen, C.J. Persistence of Type-Specific Human Papillomavirus Infection and Increased Long-Term Risk of Cervical Cancer. J. Natl. Cancer Inst. 2011, 103, 1387–1396. [Google Scholar] [CrossRef]
- Gheit, T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front. Oncol. 2019, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.V. The Human Papillomavirus Replication Cycle, and Its Links to Cancer Progression: A Comprehensive Review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.M.; O’Leary, J.J. Histology of Cervical Intraepithelial Neoplasia and the Role of Biomarkers. Best Pract. Research. Clin. Obstet. Gynaecol. 2011, 25, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Chan, S.Y.; Burk, R.D.; Das, B.C.; Fujinaga, K.; Icenogle, J.P.; Kahn, T.; Kiviat, N.; Lancaster, W.; Mavromara-Nazos, P. The Genetic Drift of Human Papillomavirus Type 16 Is a Means of Reconstructing Prehistoric Viral Spread and the Movement of Ancient Human Populations. J. Virol. 1993, 67, 6413–6423. [Google Scholar] [CrossRef] [Green Version]
- Yamada, T.; Manos, M.M.; Peto, J.; Greer, C.E.; Munoz, N.; Bosch, F.X.; Wheeler, C.M. Human Papillomavirus Type 16 Sequence Variation in Cervical Cancers: A Worldwide Perspective. J. Virol. 1997, 71, 2463–2472. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, C.M.; Yamada, T.; Hildesheim, A.; Jenison, S.A. Human Papillomavirus Type 16 Sequence Variants: Identification by E6 and L1 Lineage-Specific Hybridization. J. Clin. Microbiol. 1997, 35, 11–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornet, I.; Gheit, T.; Franceschi, S.; Vignat, J.; Burk, R.D.; Sylla, B.S.; Tommasino, M.; Clifford, G.M. Human Papillomavirus Type 16 Genetic Variants: Phylogeny and Classification Based on E6 and LCR. J. Virol. 2012, 86, 6855–6861. [Google Scholar] [CrossRef] [Green Version]
- Mirabello, L.; Clarke, M.A.; Nelson, C.W.; Dean, M.; Wentzensen, N.; Yeager, M.; Cullen, M.; Boland, J.F.; Alemany, L.; Banks, L.; et al. The Intersection of HPV Epidemiology, Genomics and Mechanistic Studies of HPV-Mediated Carcinogenesis. Viruses 2018, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PaVE. The Papillomavirus Episteme. Available online: https://pave.niaid.nih.gov/ (accessed on 29 June 2022).
- Asensio-Puig, L.; Alemany, L.; Pavón, M.A. A Straightforward HPV16 Lineage Classification Based on Machine Learning. Front. Artif. Intell. 2022, 5, 118. [Google Scholar] [CrossRef]
- Ong, C.K.; Chan, S.Y.; Campo, M.S.; Fujinaga, K.; Mavromara-Nazos, P.; Labropoulou, V.; Pfister, H.; Tay, S.K.; ter Meulen, J.; Villa, L.L. Evolution of Human Papillomavirus Type 18: An Ancient Phylogenetic Root in Africa and Intratype Diversity Reflect Coevolution with Human Ethnic Groups. J. Virol. 1993, 67, 6424–6431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sichero, L.; Sobrinho, J.S.; Villa, L.L. Oncogenic Potential Diverge among Human Papillomavirus Type 16 Natural Variants. Virology 2012, 432, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.T.; Gonçalves, M.G.; López, R.V.M.; Sichero, L. Genetic Variants of HPV-16 and Their Geographical and Anatomical Distribution in Men: A Systematic Review with Meta-Analysis. Virology 2021, 558, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Cochicho, D.; da Costa, R.G.; Felix, A. Exploring the Roles of HPV16 Variants in Head and Neck Squamous Cell Carcinoma: Current Challenges and Opportunities. Virol. J. 2021, 18, 217. [Google Scholar] [CrossRef]
- Kukimoto, I.; Muramatsu, M. Genetic Variations of Human Papillomavirus Type 16: Implications for Cervical Carcinogenesis. Jpn. J. Infect. Dis. 2015, 68, 169–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pientong, C.; Wongwarissara, P.; Ekalaksananan, T.; Swangphon, P.; Kleebkaow, P.; Kongyingyoes, B.; Siriaunkgul, S.; Tungsinmunkong, K.; Suthipintawong, C. Association of Human Papillomavirus Type 16 Long Control Region Mutation and Cervical Cancer. Virol. J. 2013, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Villa, L.L.; Sichero, L.; Rahal, P.; Caballero, O.; Ferenczy, A.; Rohan, T.; Franco, E.L. Molecular Variants of Human Papillomavirus Types 16 and 18 Preferentially Associated with Cervical Neoplasia. J. Gen. Virol. 2000, 81, 2959–2968. [Google Scholar] [CrossRef] [PubMed]
- Totaro, M.E.; Gili, J.A.; Liotta, D.J.; Schurr, T.G.; Picconi, M.A.; Badano, I. Genetic Variation in the E6 and E7 Genes of Human Papillomavirus Type 16 in Northeastern Argentina. J. Med. Virol. 2022, 94, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Pista, A.; Oliveira, A.; Barateiro, A.; Costa, H.; Verdasca, N.; Paixão, M.T. Molecular Variants of Human Papillomavirus Type 16 and 18 and Risk for Cervical Neoplasia in Portugal. J. Med. Virol. 2007, 79, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.F.; Koutsky, L.A.; Hildesheim, A.; Galloway, D.A.; Wheeler, C.M.; Winer, R.L.; Ho, J.; Kiviat, N.B. Risk for High-Grade Cervical Intraepithelial Neoplasia Associated with Variants of Human Papillomavirus Types 16 and 18. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2007, 16, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, G.M.; Tenet, V.; Georges, D.; Alemany, L.; Pavón, M.A.; Chen, Z.; Yeager, M.; Cullen, M.; Boland, J.F.; Bass, S.; et al. Human Papillomavirus 16 Sub-Lineage Dispersal and Cervical Cancer Risk Worldwide: Whole Viral Genome Sequences from 7116 HPV16-Positive Women. Papillomavirus Res. 2019, 7, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Lizano, M.; Berumen, J.; Guido, M.C.; Casas, L.; García-Carranca, A. Association between Human Papillomavirus Type 18 Variants and Histopathology of Cervical Cancer. J. Natl. Cancer Inst. 1997, 89, 1227–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burk, R.D.; Terai, M.; Gravitt, P.E.; Brinton, L.A.; Kurman, R.J.; Barnes, W.A.; Greenberg, M.D.; Hadjimichael, O.C.; Fu, L.; Mcgowan, L.; et al. Distribution of Human Papillomavirus Types 16 and 18 Variants in Squamous Cell Carcinomas and Adenocarcinomas of the Cervix. Cancer Res. 2003, 63, 7215–7220. [Google Scholar]
- De Boer, M.A.; Peters, L.A.W.; Aziz, M.F.; Siregar, B.; Cornain, S.; Vrede, M.A.; Jordanova, E.S.; Fleuren, G.J. Human Papillomavirus Type 18 Variants: Histopathology and E6/E7 Polymorphisms in Three Countries. Int. J. Cancer 2005, 114, 422–425. [Google Scholar] [CrossRef] [PubMed]
- Berumen, J.; Ordoñez, R.M.; Lazcano, E.; Salmeron, J.; Galvan, S.C.; Estrada, R.A.; Yunes, E.; Garcia-Carranca, A.; Gonzalez-Lira, G.; Madrigal-De La Campa, A. Asian-American Variants of Human Papillomavirus 16 and Risk for Cervical Cancer: A Case-Control Study. J. Natl. Cancer Inst. 2001, 93, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, A.; Juárez-Torres, E.; Medina-Martínez, I.; Mateos-Guerrero, N.; Bautista-Huerta, M.; Román-Bassaure, E.; Villegas-Sepúlveda, N.; Berumen, J. Different Association of Human Papillomavirus 16 Variants with Early and Late Presentation of Cervical Cancer. PLoS ONE 2016, 11, e0169315. [Google Scholar] [CrossRef] [Green Version]
- González-Losa, M.D.R.; Mier, Y.; Teran, M.A.L.; Puerto-Solís, M.; García-Carrancá, A. Molecular Variants of HPV Type 16 E6 among Mexican Women with LSIL and Invasive Cancer. J. Clin. Virol. Off. Publ. Pan. Am. Soc. Clin. Virol. 2004, 29, 95–98. [Google Scholar] [CrossRef]
- Lizano, M.; De la Cruz-Hernández, E.; Carrillo-García, A.; García-Carrancá, A.; Ponce de Leon-Rosales, S.; Dueñas-González, A.; Hernández-Hernández, D.M.; Mohar, A. Distribution of HPV16 and 18 Intratypic Variants in Normal Cytology, Intraepithelial Lesions, and Cervical Cancer in a Mexican Population. Gynecol. Oncol. 2006, 102, 230–235. [Google Scholar] [CrossRef]
- Escobar-Escamilla, N.; González-Martínez, B.E.; Araiza-Rodríguez, A.; Fragoso-Fonseca, D.E.; Pedroza-Torres, A.; Landa-Flores, M.G.; Garcés-Ayala, F.; Mendieta-Condado, E.; Díaz-Quiñonez, J.A.; Castro-Escarpulli, G.; et al. Mutational Landscape and Intra-Host Diversity of Human Papillomavirus Type 16 Long Control Region and E6 Variants in Cervical Samples. Arch. Virol. 2019, 164, 2953–2961. [Google Scholar] [CrossRef]
- Camacho-Ureta, E.A.; Mendez-Martínez, R.S.; Vázquez-Vega, S.; Osuna Martínez, U.; Sánchez Arenas, R.; Castillo-Ureta, H.; Osuna Ramírez, I.; Torres Montoya, E.H.; López Moreno, H.S.; García-Carranca, A.; et al. High Frequency of HPV16 European Variant E350G among Mexican Women from Sinaloa. Indian J. Med. Res. 2018, 148, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Quintanilla, M.; Méndez-Martínez, R.; Vázquez-Vega, S.; Espinosa-Romero, R.; Sotelo-Regil, R.; Pérez-Montiel, M.D.; Ramos-Alamillo, U.; De Jesús Cabrera-López, T.; Barquet-Muñoz, S.A.; Pérez-Plascencia, C.; et al. High Prevalence of Human Papillomavirus and European Variants of HPV 16 Infecting Concomitantly to Cervix and Oral Cavity in HIV Positive Women. PLoS ONE 2020, 15, e0227900. [Google Scholar] [CrossRef] [Green Version]
- Calleja-Macias, I.E.; Kalantari, M.; Huh, J.; Ortiz-Lopez, R.; Rojas-Martinez, A.; Gonzalez-Guerrero, J.F.; Williamson, A.L.; Hagmar, B.; Wiley, D.J.; Villarreal, L.; et al. Genomic Diversity of Human Papillomavirus-16, 18, 31, and 35 Isolates in a Mexican Population and Relationship to European, African, and Native American Variants. Virology 2004, 319, 315–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortiz-Ortiz, J.; Alarcón-Romero, L.D.C.; Jiménez-López, M.A.; Garzón-Barrientos, V.H.; Calleja-Macías, I.; Barrera-Saldaña, H.A.; Leyva-Vázquez, M.A.; Illades-Aguiar, B. Association of Human Papillomavirus 16 E6 Variants with Cervical Carcinoma and Precursor Lesions in Women from Southern Mexico. Virol. J. 2015, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antaño-Arias, R.; Del Moral-Hernández, O.; Ortiz-Ortiz, J.; Alarcón-Romero, L.D.C.; Navor-Hernández, J.A.; Leyva-Vázquez, M.A.; Jiménez-López, M.A.; Organista-Nava, J.; Illades-Aguiar, B. E6/E7 Variants of Human Papillomavirus 16 Associated with Cervical Carcinoma in Women in Southern Mexico. Pathogens 2021, 10, 773. [Google Scholar] [CrossRef]
- Artaza-Irigaray, C.; Flores-Miramontes, M.G.; Olszewski, D.; Magaña-Torres, M.T.; López-Cardona, M.G.; Leal-Herrera, Y.A.; Piña-Sánchez, P.; Jave-Suárez, L.F.; Aguilar-Lemarroy, A. Genetic Variability in E6, E7 and L1 Genes of Human Papillomavirus 62 and Its Prevalence in Mexico. Infect. Agents Cancer 2017, 12, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Conde-Ferraez, L.; Pacheco-Arjona, R.; Canul, C.N.; Gomez-Carballo, J.; Ramirez-Prado, J.H.; Ayora-Talavera, G.; Del Refugio González-Losa, M. Genetic Variability in E6 and E7 Oncogenes from Human Papillomavirus Type 58 in Mexican Women. Intervirology 2017, 60, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Gutiérrez, F.; Sánchez-Minutti, L.; Martínez-Herrera, J.F.; Torres-Escobar, I.D.; Pezzat-Said, E.B.; Márquez-Domínguez, L.; Grandes-Blanco, A.I. Identification of Genetic Variants of Human Papillomavirus in a Group of Mexican HIV/AIDS Patients and Their Possible Association with Cervical Cancer. Pol. J. Microbiol. 2021, 70, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Casas, L.; Galvan, S.C.; Ordoñez, R.M.; Ordoñez, O.; Lopez, N.; Guido, M.; Berumen, J. Asian-American variants of Human Papillomavirus type 16 have extensive mutations in the E2 gene and are highly amplified in cervical carcinomas. Int. J. Cancer 1999, 83, 449–455. [Google Scholar] [CrossRef]
- Ordóñez, R.M.; Espinosa, A.M.; Sánchez-González, D.J.; Armendáriz-Borunda, J.; Berumen, J. Enhanced Oncogenicity of Asian-American Human Papillomavirus 16 Is Associated with Impaired E2 Repression of E6/E7 Oncogene Transcription. J. Gen. Virol. 2004, 85, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Amador-Molina, A.; González-Montoya, J.L.; García-Carrancá, A.; Mohar, A.; Lizano, M. Intratypic Changes of the E1 Gene and the Long Control Region Affect Ori Function of Human Papillomavirus Type 18 Variants. J. Gen. Virol. 2013, 94, 393–402. [Google Scholar] [CrossRef] [Green Version]
- López-Saavedra, A.; González-Maya, L.; Ponce-De-León, S.; García-Carrancá, A.; Mohar, A.; Lizano, M. Functional Implication of Sequence Variation in the Long Control Region and E2 Gene among Human Papillomavirus Type 18 Variants. Arch. Virol. 2009, 154, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Zacapala-Gómez, A.E.; Del Moral-Hernández, O.; Villegas-Sepúlveda, N.; Hidalgo-Miranda, A.; Romero-Córdoba, S.L.; Beltrán-Anaya, F.O.; Leyva-Vázquez, M.A.; Alarcón-Romero, L.D.C.; Illades-Aguiar, B. Changes in Global Gene Expression Profiles Induced by HPV 16 E6 Oncoprotein Variants in Cervical Carcinoma C33-A Cells. Virology 2016, 488, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Fragoso-Ontiveros, V.; Alvarez-García, R.M.; Contreras-Paredes, A.; Vaca-Paniagua, F.; Herrera, L.A.; López-Camarillo, C.; Jacobo-Herrera, N.; Lizano-Soberón, M.; Pérez-Plasencia, C. Gene Expression Profiles Induced by E6 from Non-European HPV18 Variants Reveals a Differential Activation on Cellular Processes Driving to Carcinogenesis. Virology 2012, 432, 81–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Bacho, E.G.; Beltrán-Anaya, F.O.; Arechaga-Ocampo, E.; Hernández-Sotelo, D.; Garibay-Cerdenares, O.L.; Illades-Aguiar, B.; Alarcón-Romero, L.D.C.; Del Moral-Hernández, O. The E6 Oncoprotein of HPV16 AA-c Variant Regulates Cell Migration through the MINCR/MiR-28-5p/RAP1B Axis. Viruses 2022, 14, 963. [Google Scholar] [CrossRef]
- Garibay-Cerdenares, O.L.; Sánchez-Meza, L.V.; Encarnación-Guevara, S.; Hernández-Ortíz, M.; Martínez-Batallar, G.; Torres-Rojas, F.I.; Mendoza-Catalán, M.Á.; Moral-Hernández, O.D.; Leyva-Vázquez, M.A.; Illades-Aguiar, B. Effect of HPV 16 E6 Oncoprotein Variants on the Alterations of the Proteome of C33A Cells. Cancer Genom. Proteom. 2021, 18, 273–283. [Google Scholar] [CrossRef]
- Araujo-Arcos, L.E.; Montaño, S.; Bello-Rios, C.; Garibay-Cerdenares, O.L.; Leyva-Vázquez, M.A.; Illades-Aguiar, B. Molecular Insights into the Interaction of HPV-16 E6 Variants against MAGI-1 PDZ1 Domain. Sci. Rep. 2022, 12, 1898. [Google Scholar] [CrossRef]
- Vazquez-Vega, S.; Sanchez-Suarez, L.P.; Andrade-Cruz, R.; Castellanos-Juarez, E.; Contreras-Paredes, A.; Lizano-Soberon, M.; Garcia-Carranca, A.; Benitez Bribiesca, L. Regulation of P14ARF Expression by HPV-18 E6 Variants. J. Med. Virol. 2013, 85, 1215–1221. [Google Scholar] [CrossRef]
- Muñoz-Bello, J.O.; Olmedo-Nieva, L.; Castro-Muñoz, L.J.; Manzo-Merino, J.; Contreras-Paredes, A.; González-Espinosa, C.; López-Saavedra, A.; Lizano, M. HPV-18 E6 Oncoprotein and Its Spliced Isoform E6*I Regulate the Wnt/β-Catenin Cell Signaling Pathway through the TCF-4 Transcriptional Factor. Int. J. Mol. Sci. 2018, 19, 3153. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Paredes, A.; De la Cruz-Hernández, E.; Martínez-Ramírez, I.; Dueñas-González, A.; Lizano, M. E6 Variants of Human Papillomavirus 18 Differentially Modulate the Protein Kinase B/Phosphatidylinositol 3-Kinase (Akt/PI3K) Signaling Pathway. Virology 2009, 383, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Olmedo-Nieva, L.; Muñoz-Bello, J.O.; Contreras-Paredes, A.; Lizano, M. The Role of E6 Spliced Isoforms (E6*) in Human Papillomavirus-Induced Carcinogenesis. Viruses 2018, 10, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello-Rios, C.; Montaño, S.; Garibay-Cerdenares, O.L.; Araujo-Arcos, L.E.; Leyva-Vázquez, M.A.; Illades-Aguiar, B. Modeling and Molecular Dynamics of the 3D Structure of the HPV16 E7 Protein and Its Variants. Int. J. Mol. Sci. 2021, 22, 1400. [Google Scholar] [CrossRef]
- Fuentes-González, A.M.; Muñoz-Bello, J.O.; Manzo-Merino, J.; Contreras-Paredes, A.; Pedroza-Torres, A.; Fernández-Retana, J.; Pérez-Plasencia, C.; Lizano, M. Intratype Variants of the E2 Protein from Human Papillomavirus Type 18 Induce Different Gene Expression Profiles Associated with Apoptosis and Cell Proliferation. Arch. Virol. 2019, 164, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- IARC. Cancer Today. Available online: https://gco.iarc.fr/today/home (accessed on 29 June 2022).
- World Health Organization. Human Papillomavirus (HPV) Vaccination Coverage. Available online: https://immunizationdata.who.int/pages/coverage/hpv.html (accessed on 29 June 2022).
- Brotherton, J.M.L.; Giuliano, A.R.; Markowitz, L.E.; Dunne, E.F.; Ogilvie, G.S. Monitoring the Impact of HPV Vaccine in Males-Considerations and Challenges. Papillomavirus Res. 2016, 2, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, I.; Plata, M.; Gonzalez, M.; Correa, A.; Nossa, C.; Giuliano, A.R.; Joura, E.A.; Ferenczy, A.; Ronnett, B.M.; Stoler, M.H.; et al. Effectiveness, Immunogenicity, and Safety of the Quadrivalent HPV Vaccine in Women and Men Aged 27–45 Years. Hum. Vaccin. Immunother. 2022, 2078626. [Google Scholar] [CrossRef] [PubMed]
- Goldstone, S.E.; Giuliano, A.R.; Palefsky, J.M.; Lazcano-Ponce, E.; Penny, M.E.; Cabello, R.E.; Moreira, E.D.; Baraldi, E.; Jessen, H.; Ferenczy, A.; et al. Efficacy, Immunogenicity, and Safety of a Quadrivalent HPV Vaccine in Men: Results of an Open-Label, Long-Term Extension of a Randomised, Placebo-Controlled, Phase 3 Trial. Lancet Infect. Dis. 2022, 22, 413–425. [Google Scholar] [CrossRef]
Region | HPV | HPV Gene | Variant/Sublineage | Prevalence in Cancer | Cancer Risk (OR) | Reference |
---|---|---|---|---|---|---|
Mexico City | 16 | E6/L1 | D2 (AA-c) | 23.2% | 27 | [90] |
D3 (AA-a) | ||||||
European | 27.1% | 3.4 | ||||
Mexico City | 16 | E6/L1/LCR | A1/A2 | 31.2% | 1.3 | [91] |
D2 | 10.8% | 3.3 | ||||
D3 | 8.9% | 0.6 | ||||
Mexico City | 16 | E6 | European | 58% | - | [93] |
D3 (AA-a) | 32.3% | - | ||||
D2 (AA-c) | 8.8% | - | ||||
Mexico City | 16 | E6 | E350G | 80.77% | - | [96] |
Mexico City, Mexico State, Jalisco | 16 | E6/LCR | A1/A2 | 82% | - | [94] |
Mexico City | 18 | E6/LCR | European | 62% | - | [93] |
Af | 24% | - | ||||
AsAi | 14% | - | ||||
Guerrero | 16 | E6 | E350G | 40% | - | [98] |
AA-a | 10.6% | 69 | ||||
Guerrero | 16 | E7 | E7-prototype (A1, A2) | 74.74% | 1 | [99] |
E7-C732/C789/G795 (D2) | 20.53% | 3.79 | ||||
E6/E7 | E6-AA-a/E7- C732/C789/G795 (D2) | 11.1% | 110 | |||
E6-AA-c/E7- C732/C789/G795 (D2) | 8.9% | 35 | ||||
Yucatan | 16 | E6 | D2 (AA) | 44% | - | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Bello, J.O.; Carrillo-García, A.; Lizano, M. Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico. Int. J. Mol. Sci. 2022, 23, 8566. https://doi.org/10.3390/ijms23158566
Muñoz-Bello JO, Carrillo-García A, Lizano M. Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico. International Journal of Molecular Sciences. 2022; 23(15):8566. https://doi.org/10.3390/ijms23158566
Chicago/Turabian StyleMuñoz-Bello, J. Omar, Adela Carrillo-García, and Marcela Lizano. 2022. "Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico" International Journal of Molecular Sciences 23, no. 15: 8566. https://doi.org/10.3390/ijms23158566
APA StyleMuñoz-Bello, J. O., Carrillo-García, A., & Lizano, M. (2022). Epidemiology and Molecular Biology of HPV Variants in Cervical Cancer: The State of the Art in Mexico. International Journal of Molecular Sciences, 23(15), 8566. https://doi.org/10.3390/ijms23158566