Ectodysplasin A (EDA) Signaling: From Skin Appendage to Multiple Diseases
Abstract
:1. Introduction
2. EDA Signaling
3. EDA Pathway and Diseases
3.1. Hypohidrotic Ectodermal Dysplasia (HED)
3.2. Cancers
3.3. Nonalcoholic Fatty Liver Disease (NAFLD)
3.4. Other Diseases
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowalczyk-Quintas, C.; Schneider, P. Ectodysplasin A (EDA)—EDA receptor signalling and its pharmacological modulation. Cytokine Growth Factor Rev. 2014, 25, 195–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Deng, X.; Jia, J.; Wang, D.; Yuan, G. Ectodysplasin A/Ectodysplasin A Receptor System and Their Roles in Multiple Diseases. Front. Physiol. 2021, 12, 788411. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, S.; Mikkola, M. Ectodysplasin research—Where to next? Semin. Immunol. 2014, 26, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Rukan, A.; Ullah, A.; Bibi, N.; Humayun, M.; Ullah, W.; Raza, R.; Muhammad, N.; Ahmad, W.; Khan, S.; et al. Homozygous variants of EDAR underlying hypohidrotic ectodermal dysplasia in three consanguineous families. Eur. J. Dermatol. EJD 2020, 30, 408–416. [Google Scholar] [CrossRef]
- Reyes-Reali, J.; Mendoza-Ramos, M.I.; Garrido-Guerrero, E.; Mendez-Catala, C.F.; Mendez-Cruz, A.R.; Pozo-Molina, G. Hypohidrotic ectodermal dysplasia: Clinical and molecular review. Int. J. Dermatol. 2018, 57, 965–972. [Google Scholar] [CrossRef]
- Wright, J.; Fete, M.; Schneider, H.; Zinser, M.; Koster, M.; Clarke, A.; Hadj-Rabia, S.; Tadini, G.; Pagnan, N.; Visinoni, A.; et al. Ectodermal dysplasias: Classification and organization by phenotype, genotype and molecular pathway. Am. J. Med. Gen. Part A 2019, 179, 442–447. [Google Scholar] [CrossRef]
- Visinoni, A.; Lisboa-Costa, T.; Pagnan, N.; Chautard-Freire-Maia, E. Ectodermal dysplasias: Clinical and molecular review. Am. J. Med. Gen. Part A 2009, 9, 1980–2002. [Google Scholar] [CrossRef]
- Sima, J.; Piao, Y.; Chen, Y.; Schlessinger, D. Molecular dynamics of Dkk4 modulates Wnt action and regulates meibomian gland development. Development 2016, 143, 4723–4735. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liang, Y.; Chai, X.; Chen, S.; Ye, Z.; Li, R.; Li, X.; Kong, G.; Li, Y.; Zhang, X.; et al. Ectodysplasin A receptor (EDAR) promotes colorectal cancer cell proliferation via regulation of the Wnt/β-catenin signaling pathway. Exp. Cell Res. 2020, 395, 112170. [Google Scholar] [CrossRef]
- Vial, J.; Royet, A.; Cassier, P.; Tortereau, A.; Dinvaut, S.; Maillet, D.; Gratadou-Hupon, L.; Creveaux, M.; Sadier, A.; Tondeur, G.; et al. The Ectodysplasin receptor EDAR acts as a tumor suppressor in melanoma by conditionally inducing cell death. Cell Death Differ. 2019, 26, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, J.; Ooi, G.J.; De Nardo, W.; Shah, Y.J.H.; Montgomery, M.K.; McLean, C.; Kemp, W.; Roberts, S.K.; Brown, W.A.; Burton, P.R.; et al. Ectodysplasin A Is Increased in Non-Alcoholic Fatty Liver Disease, But Is Not Associated With Type 2 Diabetes. Front. Endocrinol. 2021, 12, 642432. [Google Scholar] [CrossRef] [PubMed]
- Kwack, M.H.; Jun, M.S.; Sung, Y.K.; Kim, J.C.; Kim, M.K. Ectodysplasin-A2 induces dickkopf 1 expression in human balding dermal papilla cells overexpressing the ectodysplasin A2 receptor. Biochem. Biophys. Res. Commun. 2020, 529, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Margolis, C.; Schneider, P.; Huttner, K.; Kirby, N.; Houser, T.; Wildman, L.; Grove, G.; Schneider, H.; Casal, M. Prenatal Treatment of X-Linked Hypohidrotic Ectodermal Dysplasia using Recombinant Ectodysplasin in a Canine Model. J. Pharmacol. Exp. Ther. 2019, 370, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Shen, Y.; Jiang, C.; Huang, W.; Wang, F.; Wu, Y. Two novel ectodysplasin A gene mutations and prenatal diagnosis of X-linked hypohidrotic ectodermal dysplasia. Mol. Genet. Genom. Med. 2021, 9, e1824. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Ullrich, R.; Tobin, D.; Lenhard, D.; Schneider, P.; Paus, R.; Scheidereit, C. NF-kappaB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 2006, 133, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Schlessinger, D. EDA signaling and skin appendage development. Cell Cycle 2006, 5, 2477–2483. [Google Scholar] [CrossRef]
- Verhelst, K.; Gardam, S.; Borghi, A.; Kreike, M.; Carpentier, I.; Beyaert, R. XEDAR activates the non-canonical NF-κB pathway. Biochem. Biophys. Res. Commun. 2015, 465, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Sima, J.; Yan, Z.; Chen, Y.; Lehrmann, E.; Zhang, Y.; Nagaraja, R.; Wang, W.; Wang, Z.; Schlessinger, D. Eda-activated RelB recruits an SWI/SNF (BAF) chromatin-remodeling complex and initiates gene transcription in skin appendage formation. Proc. Natl. Acad. Sci. USA 2018, 115, 8173–8178. [Google Scholar] [CrossRef] [Green Version]
- Sadier, A.; Viriot, L.; Pantalacci, S.; Laudet, V. The ectodysplasin pathway: From diseases to adaptations. Trends Genet. TIG 2014, 30, 24–31. [Google Scholar] [CrossRef]
- Petersheim, D.; Massaad, M.; Lee, S.; Scarselli, A.; Cancrini, C.; Moriya, K.; Sasahara, Y.; Lankester, A.; Dorsey, M.; Di Giovanni, D.; et al. Mechanisms of genotype-phenotype correlation in autosomal dominant anhidrotic ectodermal dysplasia with immune deficiency. J. Allergy Clin. Immunol. 2018, 141, 1060–1073.e3. [Google Scholar] [CrossRef] [Green Version]
- Darbinyan, A.; Major, E.; Morgello, S.; Holland, S.; Ryschkewitsch, C.; Monaco, M.; Naidich, T.; Bederson, J.; Malaczynska, J.; Ye, F.; et al. BK virus encephalopathy and sclerosing vasculopathy in a patient with hypohidrotic ectodermal dysplasia and immunodeficiency. Acta Neuropathol. Commun. 2016, 4, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshirfar, M.; Williams, D.; Ronquillo, Y.; Ply, B. Potential Risks of Corneal Refractive Surgery in Patients with Ectodermal Dysplasia. Ophthalmol. Ther. 2022, 11, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. The Variation of Animals and Plants under Domestication. Br. Foreign Med. Chir Rev. 1868, 42, 143–166. [Google Scholar]
- Kere, J.; Srivastava, A.K.; Montonen, O.; Zonana, J.; Thomas, N.; Ferguson, B.; Munoz, F.; Morgan, D.; Clarke, A.; Baybayan, P.; et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat. Genet. 1996, 13, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Headon, D.J.; Overbeek, P.A. Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat. Genet. 1999, 22, 370–374. [Google Scholar] [CrossRef]
- Headon, D.J.; Emmal, S.A.; Ferguson, B.M.; Tucker, A.S.; Justice, M.J.; Sharpe, P.T.; Zonana, J.; Overbeek, P.A. Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 2001, 414, 913–916. [Google Scholar] [CrossRef]
- Han, Y.; Wang, X.; Zheng, L.; Zhu, T.; Li, Y.; Hong, J.; Xu, C.; Wang, P.; Gao, M. EDAPathogenic Mutations in Chinese Han Families With Hypohidrotic Ectodermal Dysplasia and Genotype-Phenotype: A Correlation Analysis. Front. Genet. 2020, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhou, Y.; Tian, R.; Zhang, C. Prenatal ultrasound findings of ectodermal dysplasia: A case report. BMC Pregnancy Childbirth 2022, 22, 100. [Google Scholar] [CrossRef]
- Wünsche, S.; Jüngert, J.; Faschingbauer, F.; Mommsen, H.; Goecke, T.; Schwanitz, K.; Stepan, H.; Schneider, H. Noninvasive Prenatal Diagnosis of Hypohidrotic Ectodermal Dysplasia by Tooth Germ Sonography. Ultraschall Der Med. 2015, 36, 381–385. [Google Scholar] [CrossRef]
- Hammersen, J.; Wohlfart, S.; Goecke, T.; Köninger, A.; Stepan, H.; Gallinat, R.; Morris, S.; Bücher, K.; Clarke, A.; Wünsche, S.; et al. Reliability of prenatal detection of X-linked hypohidrotic ectodermal dysplasia by tooth germ sonography. Prenat. Diagn. 2019, 39, 796–805. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.; Sima, J.; Yin, M.; Michel, M.; Kunisada, M.; Schlessinger, D. Identification of potassium and chloride channels in eccrine sweat glands. J. Dermatol. Sci. 2016, 81, 129–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, C.; Yin, M.; Sima, J.; Childress, V.; Michel, M.; Piao, Y.; Schlessinger, D. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development. Development 2014, 141, 3752–3760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlbuhl, M.; Schuepbach-Mallepell, S.; Kowalczyk-Quintas, C.; Dick, A.; Fahlbusch, F.; Schneider, P.; Schneider, H. Attenuation of Mammary Gland Dysplasia and Feeding Difficulties in Tabby Mice by Fetal Therapy. J. Mammary Gland. Biol. Neoplasia 2018, 23, 125–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Körber, I.; Klein, O.; Morhart, P.; Faschingbauer, F.; Grange, D.; Clarke, A.; Bodemer, C.; Maitz, S.; Huttner, K.; Kirby, N.; et al. Safety and immunogenicity of Fc-EDA, a recombinant ectodysplasin A1 replacement protein, in human subjects. Br. J. Clin. Pharmacol. 2020, 86, 2063–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, H.; Faschingbauer, F.; Schuepbach-Mallepell, S.; Körber, I.; Wohlfart, S.; Dick, A.; Wahlbuhl, M.; Kowalczyk-Quintas, C.; Vigolo, M.; Kirby, N.; et al. Prenatal Correction of X-Linked Hypohidrotic Ectodermal Dysplasia. N. Engl. J. Med. 2018, 378, 1604–1610. [Google Scholar] [CrossRef]
- Akolekar, R.; Beta, J.; Picciarelli, G.; Ogilvie, C.; D’Antonio, F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2015, 45, 16–26. [Google Scholar] [CrossRef]
- Coletta, D.; Hlusko, L.; Scott, G.; Garcia, L.; Vachon, C.; Norman, A.; Funk, J.; Shaibi, G.; Hernandez, V.; De Filippis, E.; et al. Association of EDARV370A with breast density and metabolic syndrome in Latinos. PLoS ONE 2021, 16, e0258212. [Google Scholar] [CrossRef]
- Williams, R.; Jobling, S.; Sims, A.; Mou, C.; Wilkinson, L.; Collu, G.; Streuli, C.; Gilmore, A.; Headon, D.; Brennan, K. Elevated EDAR signalling promotes mammary gland tumourigenesis with squamous metaplasia. Oncogene 2022, 41, 1040–1049. [Google Scholar] [CrossRef]
- Le Campion, A.; Ribeiro, C.; Luiz, R.; da Silva Júnior, F.; Barros, H.; Dos Santos, K.; Ferreira, S.; Gonçalves, L.; Ferreira, S. Low Survival Rates of Oral and Oropharyngeal Squamous Cell Carcinoma. Int. J. Dent. 2017, 2017, 5815493. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Q.; Fan, S.; Su, F.; Jiang, C.; Cai, G.; Wang, Y.; Liao, G.; Lei, X.; Chen, W.; et al. LncRNA LTSCCAT promotes tongue squamous cell carcinoma metastasis via targeting the miR-103a-2-5p/SMYD3/TWIST1 axis. Cell Death Dis. 2021, 12, 144. [Google Scholar] [CrossRef]
- Li, M.; Bai, Y.; Han, K.; Li, X.; Meng, J. Knockdown of ectodysplasin-A receptor-associated adaptor protein exerts a tumor-suppressive effect in tongue squamous cell carcinoma cells. Exp. Ther. Med. 2020, 19, 3337–3347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namikawa, K.; Yamazaki, N. Targeted Therapy and Immunotherapy for Melanoma in Japan. Curr. Treat. Options Oncol. 2019, 20, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 2009, 361, 958–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soraas, L.; Stebbing, J. Geographic Variation in EGFR Mutation Frequency in Lung Adenocarcinoma May Be Explained by Interethnic Genetic Variation. J. Thorac. Oncol. 2018, 13, 454–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Younossi, Z.; Koenig, A.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bril, F.; Barb, D.; Portillo-Sanchez, P.; Biernacki, D.; Lomonaco, R.; Suman, A.; Weber, M.; Budd, J.; Lupi, M.; Cusi, K. Metabolic and histological implications of intrahepatic triglyceride content in nonalcoholic fatty liver disease. Hepatology 2017, 65, 1132–1144. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhou, W.; Zhu, J.; Wu, Y.; Xu, L.; Wang, Y.; Zhang, Q.; Yang, Y. Circulating ectodysplasin A is a potential biomarker for nonalcoholic fatty liver disease. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 499, 134–141. [Google Scholar] [CrossRef]
- Awazawa, M.; Gabel, P.; Tsaousidou, E.; Nolte, H.; Krüger, M.; Schmitz, J.; Ackermann, P.; Brandt, C.; Altmüller, J.; Motameny, S.; et al. A microRNA screen reveals that elevated hepatic ectodysplasin A expression contributes to obesity-induced insulin resistance in skeletal muscle. Nat. Med. 2017, 23, 1466–1473. [Google Scholar] [CrossRef]
- Kuony, A.; Ikkala, K.; Kalha, S.; Magalhaes, A.C.; Pirttiniemi, A.; Michon, F. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development 2019, 146, 14. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, J.; Bu, J.; Ning, K.; Zhang, L.; Li, J.; Guo, Y.; He, X.; He, H.; Cai, X.; et al. Ectodysplasin A protein promotes corneal epithelial cell proliferation. J. Biol. Chem. 2017, 292, 13391–13401. [Google Scholar] [CrossRef] [Green Version]
- Prodi, D.; Pirastu, N.; Maninchedda, G.; Sassu, A.; Picciau, A.; Palmas, M.; Mossa, A.; Persico, I.; Adamo, M.; Angius, A.; et al. EDA2R is associated with androgenetic alopecia. J. Investig. Dermatol. 2008, 128, 2268–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griggs, J.; Burroway, B.; Tosti, A. Pediatric androgenetic alopecia: A review. J. Am. Acad. Dermatol. 2021, 85, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Mei, Y.; Jiang, Y.; Li, H.; Zhao, R.; Sima, J.; Yao, Y. Ectodysplasin A (EDA) Signaling: From Skin Appendage to Multiple Diseases. Int. J. Mol. Sci. 2022, 23, 8911. https://doi.org/10.3390/ijms23168911
Yang R, Mei Y, Jiang Y, Li H, Zhao R, Sima J, Yao Y. Ectodysplasin A (EDA) Signaling: From Skin Appendage to Multiple Diseases. International Journal of Molecular Sciences. 2022; 23(16):8911. https://doi.org/10.3390/ijms23168911
Chicago/Turabian StyleYang, Ruihan, Yilan Mei, Yuhan Jiang, Huiling Li, Ruixi Zhao, Jian Sima, and Yuyuan Yao. 2022. "Ectodysplasin A (EDA) Signaling: From Skin Appendage to Multiple Diseases" International Journal of Molecular Sciences 23, no. 16: 8911. https://doi.org/10.3390/ijms23168911
APA StyleYang, R., Mei, Y., Jiang, Y., Li, H., Zhao, R., Sima, J., & Yao, Y. (2022). Ectodysplasin A (EDA) Signaling: From Skin Appendage to Multiple Diseases. International Journal of Molecular Sciences, 23(16), 8911. https://doi.org/10.3390/ijms23168911