Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases
Abstract
:1. Introduction
2. Most Long Non-Coding RNAs Contain TE Sequences
3. Biogenesis of microRNAs
3.1. Canonical Biogenesis of miRNAs
3.2. Non-Canonical Biogenesis of miRNAs
3.3. Analysis of MDTEs in Human
4. MDTEs in Human Diseases
4.1. MDTEs in Relation to Pathogen-Associated Diseases
4.2. MDTEs in Relation to Cancer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palazzo, A.F.; Gregory, T.R. The Case for Junk DNA. PLoS Genet. 2014, 10, e1004351. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, E. Genomics. ENCODE project writes eulogy for junk DNA. Science 2012, 337, 1159–1161. [Google Scholar] [CrossRef] [PubMed]
- de Hoon, M.; Shin, J.W.; Carninci, P. Paradigm shifts in genomics through the FANTOM projects. Mamm. Genome 2015, 26, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Hon, C.C.; Ramilowski, J.A.; Harshbarger, J.; Bertin, N.; Rackham, O.J.L.; Gough, J.; Denisenko, E.; Schmeier, S.; Poulsen, T.M.; Severin, J.; et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 2017, 543, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb. Protoc. 2015, 2015, 951–969. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.C.R.; Acuna, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-Coding RNA 2019, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, A.; Kronenberg, Z.; Lynch, V.J.; Zhuo, X.Y.; Ramsay, L.; Bourque, G.; Yandell, M.; Feschotte, C. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs. PLoS Genet. 2013, 9, e1003470. [Google Scholar] [CrossRef] [PubMed]
- Hadjiargyrou, M.; Delihas, N. The Intertwining of Transposable Elements and Non-Coding RNAs. Int. J. Mol. Sci. 2013, 14, 13307–13328. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Jin, P.; Zhou, X.; Chen, L.M.; Ma, F. The Role of Transposable Elements in the Origin and Evolution of MicroRNAs in Human. PLoS ONE 2015, 10, e0131365. [Google Scholar] [CrossRef] [PubMed]
- Boeke, J.D.; Garfinkel, D.J.; Styles, C.A.; Fink, G.R. Ty Elements Transpose through an Rna Intermediate. Cell 1985, 40, 491–500. [Google Scholar] [CrossRef]
- Brown, P.O.; Bowerman, B.; Varmus, H.E.; Bishop, J.M. Correct integration of retroviral DNA in vitro. Cell 1987, 49, 347–356. [Google Scholar] [CrossRef]
- Goodier, J.L.; Kazazian, H.H. Retrotransposons revisited: The restraint and rehabilitation of parasites. Cell 2008, 135, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Pace, J.K.; Feschotte, C. The evolutionary history of human DNA transposons: Evidence for intense activity in the primate lineage. Genome Res. 2007, 17, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Bourque, G.; Burns, K.H.; Gehring, M.; Gorbunova, V.; Seluanov, A.; Hammell, M.; Imbeault, M.; Izsvak, Z.; Levin, H.L.; Macfarlan, T.S.; et al. Ten things you should know about transposable elements. Genome Biol. 2018, 19, 199. [Google Scholar] [CrossRef] [PubMed]
- Carey, K.M.; Patterson, G.; Wheeler, T.J. Transposable element subfamily annotation has a reproducibility problem. Mob. DNA 2021, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.E.; Huh, J.W.; Kim, H.S. Bioinformatics Analysis of Evolution and Human Disease Related Transposable Element-Derived microRNAs. Life 2020, 10, 95. [Google Scholar] [CrossRef]
- Chishima, T.; Iwakiri, J.; Hamada, M. Identification of Transposable Elements Contributing to Tissue-Specific Expression of Long Non-Coding RNAs. Genes 2018, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Fort, V.; Khelifi, G.; Hussein, S.M.I. Long non-coding RNAs and transposable elements: A functional relationship. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 118837. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Lekka, E.; Hall, J. Noncoding RNAs in disease. FEBS Lett. 2018, 592, 2884–2900. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; et al. The Nuclear-Retained Noncoding RNA MALAT1 Regulates Alternative Splicing by Modulating SR Splicing Factor Phosphorylation. Mol. Cell 2010, 39, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.G.; Maquat, L.E. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3′ UTRs via Alu elements. Nature 2011, 470, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Carlevaro-Fita, J.; Polidori, T.; Das, M.; Navarro, C.; Zoller, T.I.; Johnson, R. Ancient exapted transposable elements promote nuclear enrichment of human long noncoding RNAs. Genome Res. 2019, 29, 208–222. [Google Scholar] [CrossRef]
- Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Armstrong, J.; Barnes, I.; et al. Gencode 2021. Nucleic Acids Res. 2021, 49, D916–D923. [Google Scholar] [CrossRef]
- Gonzalez, J.N.; Zweig, A.S.; Speir, M.L.; Schmelter, D.; Rosenbloom, K.R.; Raney, B.J.; Powell, C.C.; Nassar, L.R.; Maulding, N.D.; Lee, C.M.; et al. The UCSC Genome Browser database: 2021 update. Nucleic Acids Res. 2021, 49, D1046–D1057. [Google Scholar]
- Quinlan, A.R. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. Curr. Protoc. Bioinform. 2014, 47, 11–12. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2007, 131, 11–29, Reprinted from Cell 2004, 116, 281–297. [Google Scholar]
- Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002, 30, 363–364. [Google Scholar] [CrossRef]
- de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Astrom, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat. Biotechnol. 2017, 35, 872–878. [Google Scholar] [CrossRef]
- Rodriguez, A.; Griffiths-Jones, S.; Ashurst, J.L.; Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004, 14, 1902–1910. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, M.; Han, J.J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23, 4051–4060. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. Metazoan MicroRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Miyoshi, T.; Siomi, H. Many ways to generate microRNA-like small RNAs: Non-canonical pathways for microRNA production. Mol. Genet. Genom. 2010, 284, 95–103. [Google Scholar] [CrossRef]
- Westholm, J.O.; Lai, E.C. Mirtrons: microRNA biogenesis via splicing. Biochimie 2011, 93, 1897–1904. [Google Scholar] [CrossRef] [PubMed]
- Curtis, H.J.; Sibley, C.R.; Wood, M.J.A. Mirtrons, an emerging class of atypical miRNA. Wires RNA 2012, 3, 617–632. [Google Scholar] [CrossRef] [PubMed]
- Smalheiser, N.R.; Torvik, V.I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 2005, 21, 322–326. [Google Scholar] [CrossRef]
- Piriyapongsa, J.; Jordan, I.K. A Family of Human MicroRNA Genes from Miniature Inverted-Repeat Transposable Elements. PLoS ONE 2007, 2, e203. [Google Scholar] [CrossRef]
- Yuan, Z.D.; Sun, X.A.; Jiang, D.K.; Ding, Y.; Lu, Z.Y.; Gong, L.J.; Liu, H.D.; Xie, J.M. Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol. Biol. 2010, 10, 346. [Google Scholar] [CrossRef]
- Ahn, K.; Gim, J.A.; Ha, H.S.; Han, K.; Kim, H.S. The novel MER transposon-derived miRNAs in human genome. Gene 2013, 512, 422–428. [Google Scholar] [CrossRef]
- Ou-Yang, F.Q.; Luo, Q.J.; Zhang, Y.; Richardson, C.R.; Jiang, Y.W.; Rock, C.D. Transposable element-associated microRNA hairpins produce 21-nt sRNAs integrated into typical microRNA pathways in rice. Funct. Integr. Genom. 2013, 13, 207–216. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef]
- Sohel, M.M.H. Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci. 2020, 248, 117473. [Google Scholar] [CrossRef]
- Huang, Z.; Shi, J.C.; Gao, Y.X.; Cui, C.M.; Zhang, S.; Li, J.W.; Zhou, Y.; Cui, Q.H. HMDD v3.0: A database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019, 47, D1013–D1017. [Google Scholar] [CrossRef] [PubMed]
- Piedade, D.; Azevedo-Pereira, J.M. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses 2016, 8, 156. [Google Scholar] [CrossRef]
- Ho, B.C.; Yang, P.C.; Yu, S.L. MicroRNA and Pathogenesis of Enterovirus Infection. Viruses 2016, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Trobaugh, D.W.; Klimstra, W.B. MicroRNA Regulation of RNA Virus Replication and Pathogenesis. Trends Mol. Med. 2017, 23, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Huang, M.J.; Li, Z.; Li, W.; Wang, F.; Wang, L.; Li, X.L.; Zheng, X.Y.; Zou, Y. Identification of potential whole blood MicroRNA biomarkers for the blood stage of adult imported falciparum malaria through integrated mRNA and miRNA expression profiling. Biochem. Biophys. Res. Commun. 2018, 506, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.Q.; Li, S.L.; Holmes, J.A.; Tu, Z.; Li, Y.J.; Cai, D.C.; Liu, X.; Li, W.T.; Yang, C.H.; Jiao, B.H.; et al. MicroRNA 130a Regulates both Hepatitis C Virus and Hepatitis B Virus Replication through a Central Metabolic Pathway. J. Virol. 2018, 92, e02009-17. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.L.; Zhao, H.; Yang, S.G.; Chen, E.M.; Chen, W.Q.; Li, L.J. Plasma miRNA-122-5p and miRNA-151a-3p identified as potential biomarkers for liver injury among CHB patients with PNALT. Hepatol. Int. 2018, 12, 277–287. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Q.X.; Zhang, X.Y.; Zhu, M. Circulating microRNA signatures serve as potential diagnostic biomarkers for Helicobacter pylori infection. J. Cell Biochem. 2019, 120, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.Y.; Sun, Y.; Duan, Y.Y.; Li, B.; Xia, J.M.; Yu, S.H.; Zhang, G.M. Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease. BMC Cardiovasc. Disor. 2018, 18, 53. [Google Scholar] [CrossRef] [PubMed]
- Eilam-Frenkel, B.; Naaman, H.; Berkic, G.; Veksler-Lublinsky, I.; Rall, G.; Shemer, Y.; Gopas, J. MicroRNA 146-5p, miR-let-7c-5p, miR-221 and miR-345-5p are differentially expressed in Respiratory Syncytial Virus (RSV) persistently infected HEp-2 cells. Virus Res. 2018, 251, 34–39. [Google Scholar] [CrossRef]
- Santangelo, L.; Bordoni, V.; Montaldo, C.; Cimini, E.; Zingoni, A.; Battistelli, C.; D’Offizi, G.; Capobianchi, M.R.; Santoni, A.; Tripodi, M.; et al. Hepatitis C virus direct-acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver Int. 2018, 38, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Zhang, P.; Tan, Z.M.; Xu, J.F. MiR-1202 suppresses hepatocellular carcinoma cells migration and invasion by targeting cyclin dependent kinase 14. Biomed. Pharmacother. 2017, 96, 1246–1252. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, W.M.; Zhang, H.; Li, Y.Q.; Peng, Y.; Wang, J.; Liu, G.N.; Huang, X.T.; Zhao, J.J.; Li, G.; et al. MiR-646 inhibited cell proliferation and EMT-induced metastasis by targeting FOXK1 in gastric cancer. Br. J. Cancer 2017, 117, 525–534. [Google Scholar] [CrossRef]
- Zhong, J.T.; Liu, Y.F.; Xu, Q.L.; Yu, J.; Zhang, M.C. Inhibition of DIXDC1 by microRNA-1271 suppresses the proliferation and invasion of prostate cancer cells. Biochem. Biophys. Res. Commun. 2017, 484, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiang, S.M.; Hu, F.; Xu, Y.J.; Wang, T.; Mei, Q. Foxk2 inhibits non-small cell lung cancer epithelial-mesenchymal transition and proliferation through the repression of different key target genes. Oncol. Rep. 2017, 37, 2335–2347. [Google Scholar] [CrossRef]
- Chen, X.W.; Zhao, M.; Huang, J.; Li, Y.H.; Wang, S.Q.; Harrington, C.A.; Qian, D.Z.; Sun, X.X.; Dai, M.S. microRNA-130a suppresses breast cancer cell migration and invasion by targeting FOSL1 and upregulating ZO-1. J. Cell. Biochem. 2018, 119, 4945–4956. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.J.; Zhang, J.F.; Li, J.; Shao, J.F.; Fang, L. MiR-130a-3p inhibits migration and invasion by regulating RAB5B in human breast cancer stem cell-like cells. Biochem. Biophys. Res. Commun. 2018, 501, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.J.; Cao, Y.; Han, G.; Zhang, Y.; You, Q.; Wang, Y.D.; Pan, Y.M. p53/microRNA-374b/AKT1 regulates colorectal cancer cell apoptosis in response to DNA damage. Int. J. Oncol. 2017, 50, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Li, G.C.; Cao, X.Y.; Li, Y.N.; Qiu, Y.Y.; Li, Y.N.; Liu, X.J.; Sun, X.X. MicroRNA-374b inhibits cervical cancer cell proliferation and induces apoptosis through the p38/ERK signaling pathway by binding to JAM-2. J. Cell. Physiol. 2018, 233, 7379–7390. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.G.; Zhang, G.; Zheng, W.X.; Xue, Q.; Wei, D.; Zheng, Y.; Yuan, J.L. MiR-454-3p and miR-374b-5p suppress migration and invasion of bladder cancer cells through targetting ZEB2. Biosci. Rep. 2018, 38, BSR20181436. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Liu, Z.P.; Shen, J. MicroRNA-421-targeted PDCD4 regulates breast cancer cell proliferation. Int. J. Mol. Med. 2019, 43, 267–275. [Google Scholar] [CrossRef]
- Wang, B.; Sun, L.W.; Li, J.D.; Jiang, R. miR-577 suppresses cell proliferation and epithelial-mesenchymal transition by regulating the WNT2B mediated Wnt/beta-catenin pathway in non-small cell lung cancer. Mol. Med. Rep. 2018, 18, 2753–2761. [Google Scholar]
- Li, L.L.; Ma, L. Upregulation of miR-582-5p regulates cell proliferation and apoptosis by targeting AKT3 in human endometrial carcinoma. Saudi J. Biol. Sci. 2018, 25, 965–970. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Meng, D.J.; Zhang, S.H.; Zhang, Y.; Deng, Z.M.; Kong, L.B. microRNA-608 inhibits human hepatocellular carcinoma cell proliferation via targeting the BET family protein BRD4. Biochem. Biophys. Res. Commun. 2018, 501, 1060–1067. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.X.; Wang, X.M.; Han, X.D.; Cao, B.F. MiR-608 exerts tumor suppressive function in lung adenocarcinoma by directly targeting MIF. Eur. Rev. Med. Pharmacol. 2018, 22, 4908–4916. [Google Scholar]
- Zhang, L.; Wang, Y.F.; Wang, L.; Yin, G.Z.; Li, W.M.; Xian, Y.; Yang, W.; Liu, Q.G. miR-23c suppresses tumor growth of human hepatocellular carcinoma by attenuating ERBB2IP. Biomed. Pharmacother. 2018, 107, 424–432. [Google Scholar] [CrossRef]
- Mesci, A.; Huang, X.Y.; Taeb, S.; Jahangiri, S.; Kim, Y.H.; Fokas, E.; Bruce, J.; Leong, H.S.; Liu, S.K. Targeting of CCBE1 by miR-330-3p in human breast cancer promotes metastasis. Br. J. Cancer 2017, 116, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shan, F.; Chen, J.L. Lipid raft-mediated miR-3908 inhibition of migration of breast cancer cell line MCF-7 by regulating the interactions between AdipoR1 and Flotillin-1. World J. Surg. Oncol. 2017, 15, 69. [Google Scholar] [CrossRef]
- He, X.; Chen, S.Y.; Yang, Z.; Zhang, J.; Wang, W.; Liu, M.Y.; Niu, Y.; Wei, X.M.; Li, H.M.; Hu, W.N.; et al. miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J. Exp. Clin. Cancer Res. 2018, 37, 230. [Google Scholar] [CrossRef]
- Yan, S.Y.; Tang, Z.R.; Chen, K.; Liu, Y.Y.; Yu, G.F.; Chen, Q.X.; Dang, H.; Chen, F.J.; Ling, J.J.; Zhu, L.Y.; et al. Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. J. Exp. Clin. Cancer Res. 2018, 37, 214. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.N.; Chen, Y.F.; Huang, B.S.; Mao, S.Y.; Cai, K.K.; Wang, L.S.; Yao, X.D. Tumor-suppressing effects of microRNA-612 in bladder cancer cells by targeting malic enzyme 1 expression. Int. J. Oncol. 2018, 52, 1923–1933. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Figlin, R.A. MiR-193a-3p and miR-224 mediate renal cell carcinoma progression by targeting alpha-2,3-sialyltransferase IV and the phosphatidylinositol 3 kinase/Akt pathway. Mol. Carcinogen. 2018, 57, 1067–1077. [Google Scholar]
- He, C.; Wang, L.B.; Zhang, J.T.; Xu, H. Hypoxia-inducible microRNA-224 promotes the cell growth, migration and invasion by directly targeting RASSF8 in gastric cancer. Mol. Cancer 2017, 16, 35. [Google Scholar] [CrossRef]
- Zhu, G.H.; Zhou, L.M.; Liu, H.J.; Shan, Y.Z.; Zhang, X.L. MicroRNA-224 Promotes Pancreatic Cancer Cell Proliferation and Migration by Targeting the TXNIP-Mediated HIF1 alpha Pathway. Cell. Physiol. Biochem. 2018, 48, 1735–1746. [Google Scholar] [CrossRef]
- Yu, L.M.; Wang, W.W.; Qi, R.; Leng, T.G.; Zhang, X.L. MicroRNA-224 inhibition prevents progression of cervical carcinoma by targeting PTX3. J. Cell. Biochem. 2018, 119, 10278–10290. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.Q.; Li, L.; Lu, C.; Liu, J.; Chen, Y.H.; Wu, H.B. Involvement of H19/miR-326 axis in hepatocellular carcinoma development through modulating TWIST1. J. Cell. Physiol. 2019, 234, 5153–5162. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.N.; Guo, W.N.; Jian, Q.; Xue, K.; Huang, M.; Chi, S.M.; Li, C.Y.; Li, C.X. MicroRNA-340 inhibits squamous cell carcinoma cell proliferation, migration and invasion by downregulating RhoA. J. Dermatol. Sci. 2018, 92, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.A.; Chen, X.; Liu, H.; Yu, K.D.; Bao, Y.; Chai, J.; Gao, H.; Zou, L.B. LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/beta-catenin pathway. Gene 2019, 683, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Wijayakumara, D.D.; Mackenzie, P.I.; McKinnon, R.A.; Hu, D.G.; Meech, R. Regulation of UDP-Glucuronosyltransferases UGT2B4 and UGT2B7 by MicroRNAs in Liver Cancer Cells. J. Pharmacol. Exp. Ther. 2017, 361, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Liu, Z.K.; Wang, Y.F.; Wang, L.; Yin, G.Z.; Yang, W.; Tu, K.S.; Liu, Q.G. MicroRNA-645 represses hepatocellular carcinoma progression by inhibiting SOX30-mediated p53 transcriptional activation. Int. J. Biol. Macromol. 2019, 121, 214–222. [Google Scholar] [CrossRef] [PubMed]
miRNA | Subclass | Superfamily | Subfamily | Disease | Dysregulation | Ref. |
---|---|---|---|---|---|---|
hsa-mir-1246 | LTR | ERVL-MaLR | MLT1M | Plasmodium Falciparum Malaria | upregulated | [50] |
hsa-mir-130a | LINE | RTE-BovB | MamRTE1 | Hepatitis C Virus Infection | upregulated | [51] |
hsa-mir-151a-3p | LINE | L2 | L2c | Chronic Hepatitis B | downregulated | [52] |
Helicobacter pylori Infection | upregulated | [53] | ||||
hsa-mir-28-3p | LINE | L2 | L2c | Helicobacter pylori Infection | upregulated | [53] |
hsa-mir-3909 | LINE | L2 | L2c | Rheumatic Heart Diseases | downregulated | [54] |
hsa-mir-3135b | SINE | Alu | FRAM | Plasmodium Falciparum Malaria | upregulated | [50] |
hsa-mir-345-5p | SINE | MIR | MIRc | Respiratory Syncytial Virus Pneumonia | downregulated | [55] |
hsa-mir-378a-3p | SINE | MIR | MIRc | Hepatitis C Virus Infection | upregulated | [56] |
miRNA | Subclass | Superfamily | Subfamily | Target Gene | Disease | Ref. |
---|---|---|---|---|---|---|
hsa-mir-1202 | LTR | ERV1 | MER52A | CDK14 | Hepatocellular cancer | [57] |
hsa-mir-646 | LTR | ERVL | LTR67B | FOXK1 | Gastric cancer | [58] |
hsa-mir-1271-5p | LINE | L2 | L2a | DIXDC1 | Prostate cancer | [59] |
Foxk2 | Non-small-cell lung cancer | [60] | ||||
hsa-mir-130a-3p | LINE | RTE-BovB | MamRTE1 | FOSL1 | Breast cancer | [61] |
RAB5B | [62] | |||||
hsa-mir-374b-5p | LINE | L2 | L2c | AKT1 | Colon cancer | [63] |
JAM2 | Cervical cancer | [64] | ||||
ZEB2 | Bladder cancer | [65] | ||||
hsa-mir-421 | LINE | L2 | L2c | PDCD4 | Breast cancer | [66] |
hsa-mir-577 | LINE | L2 | L2a | WNT2B | Non-small-cell lung cancer | [67] |
hsa-mir-582-5p | LINE | CR1 | L3 | AKT3 | Endometrial cancer | [68] |
hsa-mir-608 | LINE | L2 | L2 | BRD4 | Hepatocellular cancer | [69] |
MIF | Lung cancer | [70] | ||||
hsa-mir-23c | SINE | MIR | MIRb | ERBB2IP | Hepatocellular cancer | [71] |
hsa-mir-330-3p | SINE | MIR | MIRb | CCBE1 | Breast cancer | [72] |
hsa-mir-345-5p | SINE | MIR | MIRc | AKT2 | Acute myelogenous leukemia | [64] |
hsa-mir-3908 | SINE | Alu | AluSx | AdipoR1 | Breast cancer | [73] |
hsa-mir-4317 | SINE | MIR | MIR | FGF9, CCND2 | Non-small-cell lung cancer | [74] |
hsa-mir-575 | SINE | MIR | MIR | ST7L | Hepatocellular cancer | [75] |
hsa-mir-612 | SINE | MIR | MIR1_Amn | ME1 | Bladder cancer | [76] |
hsa-mir-224-3p | DNA | DNA | MER135 | ST3GalIV | Renal Cell cancer | [77] |
hsa-mir-224-5p | RASSF8 | Gastric cancer | [78] | |||
TXNIP | Pancreatic cancer | [79] | ||||
PTX3 | Cervical cancer | [80] | ||||
hsa-mir-326 | DNA | hAT-Tip100 | Arthur1B | TWIST1 | Hepatocellular cancer | [81] |
hsa-mir-340-5p | DNA | TcMar-Mariner | MARNA | CDK4 | Non-small-cell lung cancer | [74] |
RhoA | Squamous Cell cancer | [82] | ||||
LGR5 | Breast cancer | [83] | ||||
hsa-mir-3664-3p | DNA | TcMar-Tigger | MER46C | UGT2B7 | Hepatocellular cancer | [84] |
hsa-mir-645 | DNA | hAT-Charlie | MER1B | SOX30 | Hepatocellular cancer | [85] |
Types of Cancer | Expression | miRNA | Subclass | Superfamily | Subfamily | log2FC | p-Value |
---|---|---|---|---|---|---|---|
BLCA | up | hsa-mir-584 | DNA | hAT-Blackjack | MER81 | 2.406 | 1.1 × 10−11 |
down | hsa-mir-28 | LINE | L2 | L2c | −1.276 | 3.8 × 10−9 | |
hsa-mir-582 | LINE | CR1 | L3b | −1.058 | 4.7 × 10−5 | ||
hsa-mir-378a | SINE | MIR | MIRc | −1.426 | 7.2 × 10−5 | ||
BRCA | up | hsa-mir-342 | SINE | tRNA-RTE | MamSINE1 | 2.392 | 5.2 × 10−18 |
down | hsa-mir-378a | SINE | MIR | MIRc | −2.078 | 1.4 × 10−12 | |
hsa-mir-335 | SINE | MIR | MIRb | −1.759 | 2.2 × 10−7 | ||
CESC | up | hsa-mir-625 | LINE | L1 | L1MCa | 1.590 | 1.6 × 10−3 |
hsa-mir-708 | LINE | L2 | L2c | 1.116 | 2.3 × 10−2 | ||
down | hsa-mir-28 | LINE | L2 | L2c | −1.389 | 2.0 × 10−3 | |
COAD | up | hsa-mir-151a | LINE | L2 | L2c | 1.010 | 6.6 × 10−8 |
hsa-mir-584 | DNA | hAT-Blackjack | MER81 | 1.420 | 1.1 × 10−3 | ||
down | hsa-mir-361 | DNA | hAT-Charlie | MER5A | −2.503 | 9.6 × 10−37 | |
hsa-mir-378a | SINE | MIR | MIRc | −3.311 | 4.3 × 10−33 | ||
hsa-mir-28 | LINE | L2 | L2c | −1.122 | 2.7 × 10−6 | ||
hsa-mir-342 | SINE | tRNA-RTE | MamSINE1 | −1.454 | 1.1 × 10−4 | ||
hsa-mir-625 | LINE | L1 | L1MCa | −1.484 | 1.9 × 10−4 | ||
KIRC | up | hsa-mir-342 | SINE | tRNA-RTE | MamSINE1 | 1.085 | 5.8 × 10−8 |
down | hsa-mir-891a | SINE | MIR | MIRc | −3.789 | 4.7 × 10−7 | |
LIHC | up | hsa-mir-151a | LINE | L2 | L2c | 1.084 | 2.8 × 10−16 |
LUAD | down | hsa-mir-378a | SINE | MIR | MIRc | −1.386 | 6.9 × 10−7 |
PAAD | down | hsa-mir-342 | SINE | tRNA-RTE | MamSINE1 | −1.289 | 2.1 × 10−2 |
STAD | down | hsa-mir-28 | LINE | L2 | L2c | −1.346 | 2.3 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.G.; Ha, H.; Lee, D.H.; Kim, W.R.; Lee, Y.J.; Bae, W.H.; Kim, H.-S. Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. Int. J. Mol. Sci. 2022, 23, 8950. https://doi.org/10.3390/ijms23168950
Park EG, Ha H, Lee DH, Kim WR, Lee YJ, Bae WH, Kim H-S. Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. International Journal of Molecular Sciences. 2022; 23(16):8950. https://doi.org/10.3390/ijms23168950
Chicago/Turabian StylePark, Eun Gyung, Hongseok Ha, Du Hyeong Lee, Woo Ryung Kim, Yun Ju Lee, Woo Hyeon Bae, and Heui-Soo Kim. 2022. "Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases" International Journal of Molecular Sciences 23, no. 16: 8950. https://doi.org/10.3390/ijms23168950
APA StylePark, E. G., Ha, H., Lee, D. H., Kim, W. R., Lee, Y. J., Bae, W. H., & Kim, H. -S. (2022). Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. International Journal of Molecular Sciences, 23(16), 8950. https://doi.org/10.3390/ijms23168950