The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea
Abstract
:1. Introduction
1.1. Pathophysiology of OSA
1.2. General Pain Mechanisms
1.3. Pain Transduction
1.4. Pain Sensitization and Modulation
1.5. OSA and Pain
2. OSA, Inflammation, and Pain
3. OSA, Pain, and Hypoxia Markers
4. OSA and Opioid Receptors
5. BDNF Role in OSA Neuronal Dysfunction
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CGRP—Calcitonin gene related peptide | ASICs—acid-sensing ion channels |
CNS—central nervous system | AHI—apnea-hypopnea index |
CPAP—continuous positive airway pressure | ATP—adenosine triphosphate |
COX-2—cyclooxygenase—2 | B1—bradykinin receptor |
CREB—cAMP response element-binding protein | BDNF—brain-derived neurotrophic factor |
DOR—delta-opioid receptor | BMI—body mass index |
MOR—mu-opioid receptor | EP—prostaglandin E2 receptor |
OSA—obstructive sleep apnea | FWL—finger withdrawal latency |
P2X—purinergic receptors | Glu—glutamate |
PGE2—prostaglandin E2 | Glu—glutamate |
PIC—proinflammatory cytokines | GPCRs—G protein-coupled receptors |
PKA—protein kinase A | HIF-1α—hypoxia inducible factor 1α |
PKC—protein kinase C | IGF-1—insulin growth factor -1 |
PSG—polysomnography | IGFBP—insulin growth factor binding protein |
ROS—reactive oxygen species | IL-6—interleukin 6 |
SaO2—oxygen saturation | IL-8—interleukin 8 |
SNS—sympathetic nervous system | IH—intermittent hypoxia |
SP—substance P | JAK—Janus kinase |
STATs—signal transducers and activators of transcription | MAPK—mitogen-activated protein kinase |
TNFα—tumor necrosis factor α | Nav—voltage-gated Na channels |
TNFR1—tumor necrosis factor α receptor | nCPAP—nasal continuous positive airway pressure therapy |
TRPA1—transient receptor potential ankyrin 1 | NH—nocturnal hypoxemia |
TRPV—transient receptor potential subfamily V | NK-1R—neurokinin receptor |
TTX—tetrodotoxin | NMDA—N-Methyl-D-Aspartate receptor |
trkB—tyrosine kinase receptor | NOX—NADPH oxidases |
VGSCs—voltage-gated Na channels | NF κB—nuclear factor κB |
VGCCs—voltage-gated Ca2+ channels | Mean SaO2—mean oxygen saturation |
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.L.D.; et al. Estimation of the Global Prevalence and Burden of Obstructive Sleep Apnoea: A Literature-Based Analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of Sleep-Disordered Breathing in the General Population: THE HypnoLaus Study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef]
- Gabryelska, A.; Łukasik, Z.M.; Makowska, J.S.; Białasiewicz, P. Obstructive Sleep Apnea: From Intermittent Hypoxia to Cardiovascular Complications via Blood Platelets. Front. Neurol. 2018, 9, 635. [Google Scholar] [CrossRef]
- Doufas, A.G.; Tian, L.; Padrez, K.A.; Suwanprathes, P.; Cardell, J.A.; Maecker, H.T.; Panousis, P. Experimental Pain and Opioid Analgesia in Volunteers at High Risk for Obstructive Sleep Apnea. PLoS ONE 2013, 8, e54807. [Google Scholar] [CrossRef] [PubMed]
- Hassamal, S.; Miotto, K.; Wang, T.; Saxon, A.J. A Narrative Review: The Effects of Opioids on Sleep Disordered Breathing in Chronic Pain Patients and Methadone Maintained Patients. Am. J. Addict. 2016, 25, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Strollo, P.J., Jr.; Rogers, R.M. Obstructive Sleep Apnea. N. Engl. J. Med. 2009, 334, 99–104. [Google Scholar] [CrossRef]
- Doufas, A.G.; Tian, L.; Davies, M.F.; Warby, S.C. Nocturnal Intermittent Hypoxia Is Independently Associated with Pain in Subjects Suffering from Sleep-Disordered Breathing. Anesthesiology 2013, 119, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Roehrs, T.; Hyde, M.; Blaisdell, B.; Greenwald, M.; Roth, T. Sleep Loss and REM Sleep Loss Are Hyperalgesic. Sleep 2006, 29, 145–151. [Google Scholar] [CrossRef]
- Eckert, D.J.; Malhotra, A. Pathophysiology of Adult Obstructive Sleep Apnea. Proc. Am. Thorac. Soc. 2008, 5, 144. [Google Scholar] [CrossRef]
- Mezzanotte, W.S.; Tangel, D.J.; White, D.P. Influence of Sleep Onset on Upper-Airway Muscle Activity in Apnea Patients versus Normal Controls. Am. J. Respir. Crit. Care Med. 1996, 153, 1880–1887. [Google Scholar] [CrossRef]
- Trinder, J.; Whitworth, F.; Kay, A.; Wilkin, P. Respiratory Instability during Sleep Onset. J. Appl. Physiol. 1992, 73, 2462–2469. [Google Scholar] [CrossRef] [PubMed]
- Eckert, D.J.; McEvoy, R.D.; George, K.E.; Thomson, K.J.; Catcheside, P.G. Genioglossus Reflex Inhibition to Upper-Airway Negative-Pressure Stimuli during Wakefulness and Sleep in Healthy Males. J. Physiol. 2007, 581, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Medical Science Monitor. Variation in the Duration of Arousal in Obstructive Sleep Apnea—Article Abstract #15882. Available online: https://medscimonit.com/abstract/index/idArt/15882 (accessed on 6 August 2022).
- Sands, S.A.; Terrill, P.I.; Edwards, B.A.; Montemurro, L.T.; Azarbarzin, A.; Marques, M.; de Melo, C.M.; Loring, S.H.; Butler, J.P.; White, D.P.; et al. Quantifying the Arousal Threshold Using Polysomnography in Obstructive Sleep Apnea. Sleep 2018, 41, zsx183. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, W.T. Obstructive Sleep Apnea and Inflammation. Prog. Cardiovasc. Dis. 2009, 51, 392–399. [Google Scholar] [CrossRef]
- Charokopos, A.; Card, M.E.; Gunderson, C.; Steffens, C.; Bastian, L.A. The Association of Obstructive Sleep Apnea and Pain Outcomes in Adults: A Systematic Review. Pain Med. 2018, 19, S69–S75. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Karuga, F.F.; Szmyd, B.; Białasiewicz, P. HIF-1α as a Mediator of Insulin Resistance, T2DM, and Its Complications: Potential Links with Obstructive Sleep Apnea. Front. Physiol. 2020, 11, 1035. [Google Scholar] [CrossRef]
- Williams, A.C.D.C.; Craig, K.D. Updating the Definition of Pain. Pain 2016, 157, 2420–2423. [Google Scholar] [CrossRef]
- Ng, L.; Cashman, J. The Management of Acute Pain. Medicine 2018, 46, 780–785. [Google Scholar] [CrossRef]
- Terminology. International Association for the Study of Pain. Available online: https://www.iasp-pain.org/resources/terminology/?ItemNumber=1698 (accessed on 13 July 2022).
- Koneti, K.K.; Jones, M. Management of Acute Pain. Surg.-Oxf. Int. Ed. 2013, 31, 77–83. [Google Scholar] [CrossRef]
- Lee, G.I.; Neumeister, M.W. Pain: Pathways and Physiology. Clin. Plast. Surg. 2020, 47, 173–180. [Google Scholar] [CrossRef]
- Yam, M.F.; Loh, Y.C.; Tan, C.S.; Adam, S.K.; Manan, N.A.; Basir, R. General Pathways of Pain Sensation and the Major Neurotransmitters Involved in Pain Regulation. Int. J. Mol. Sci. 2018, 19, 2164. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic Pain. Nat. Rev. Dis. Primers 2017, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.S.; Gebhart, G.F. Nociceptor Sensitization in Pain Pathogenesis. Nat. Med. 2010, 16, 1248. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, A. Transient Receptor Potential (TRP) Channels in Health and Disease. Cells 2019, 8, 413. [Google Scholar] [CrossRef]
- Alomone Labs. Contribution of Ion Channels in Pain Sensation. Available online: https://www.alomone.com/article/contribution-ion-channels-pain-sensation (accessed on 13 July 2022).
- Fernandes, E.S.; Fernandes, M.A.; Keeble, J.E. The Functions of TRPA1 and TRPV1: Moving Away from Sensory Nerves. Br. J. Pharmacol. 2012, 166, 510. [Google Scholar] [CrossRef]
- Gouin, O.; L’Herondelle, K.; Lebonvallet, N.; le Gall-Ianotto, C.; Sakka, M.; Buhé, V.; Plée-Gautier, E.; Carré, J.L.; Lefeuvre, L.; Misery, L.; et al. TRPV1 and TRPA1 in Cutaneous Neurogenic and Chronic Inflammation: Pro-Inflammatory Response Induced by Their Activation and Their Sensitization. Protein Cell 2017, 8, 644. [Google Scholar] [CrossRef]
- Nummenmaa, E.; Hamalainen, M.; Pemmari, A.; Moilanen, L.; Nieminen, R.; Moilanen, T.; Vuolteenaho, K.; Moilanen, E. TRPA1 as a Factor and Drug Target in Osteoarthritis: TRPA1 (Transient Receptor Potential Ankyrin 1) Mediates Interleukin-6 Expression in Chondrocytes. Osteoarthr. Cartil. 2018, 26, S124. [Google Scholar] [CrossRef]
- Cummins, T.R. Setting up for the Block: The Mechanism Underlying Lidocaine’s Use-Dependent Inhibition of Sodium Channels. J. Physiol. 2007, 582, 11. [Google Scholar] [CrossRef]
- Gangadharan, V.; Kuner, R. Pain Hypersensitivity Mechanisms at a Glance. Dis. Models Mech. 2013, 6, 889. [Google Scholar] [CrossRef]
- Gonçalves dos Santos, G.; Delay, L.; Yaksh, T.L.; Corr, M. Neuraxial Cytokines in Pain States. Front. Immunol. 2020, 10, 3061. [Google Scholar] [CrossRef]
- Varga, I.; Mravec, B. Nerve Fiber Types. Nerves Nerve Inj. 2015, 1, 107–113. [Google Scholar] [CrossRef]
- Granovsky, Y. Conditioned Pain Modulation: A Predictor for Development and Treatment of Neuropathic Pain. Curr. Pain Headache Rep. 2013, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peciña, M.; Karp, J.F.; Mathew, S.; Todtenkopf, M.S.; Ehrich, E.W.; Zubieta, J.K. Endogenous Opioid System Dysregulation in Depression: Implications for New Therapeutic Approaches. Mol. Psychiatry 2018, 24, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Fabbretti, E. ATP P2X3 Receptors and Neuronal Sensitization. Front. Cell. Neurosci. 2013, 7, 236. [Google Scholar] [CrossRef]
- Vardeh, D.; Naranjo, J.F. Peripheral and Central Sensitization. In Pain Medicine: An Essential Review; Springer: Cham, Switzerland, 2017; pp. 15–17. [Google Scholar] [CrossRef]
- Bhave, G.; Gereau IV, R.W. Posttranslational Mechanisms of Peripheral Sensitization. J. Neurobiol. 2004, 61, 88–106. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain Off. J. Am. Pain Soc. 2009, 10, 895. [Google Scholar] [CrossRef]
- Carlton, S.M.; Du, J.; Tan, H.Y.; Nesic, O.; Hargett, G.L.; Bopp, A.C.; Yamani, A.; Lin, Q.; Willis, W.D.; Hulsebosch, C.E. Peripheral and Central Sensitization in Remote Spinal Cord Regions Contribute to Central Neuropathic Pain after Spinal Cord Injury. PAIN® 2009, 147, 265–276. [Google Scholar] [CrossRef]
- Ji, R.R.; Kohno, T.; Moore, K.A.; Woolf, C.J. Central Sensitization and LTP: Do Pain and Memory Share Similar Mechanisms? Trends Neurosci. 2003, 26, 696–705. [Google Scholar] [CrossRef]
- Zieglgänsberger, W. Substance P and Pain Chronicity. Cell Tissue Res. 2018, 375, 227–241. [Google Scholar] [CrossRef]
- Navratilova, E.; Porreca, F. Substance P and Inflammatory Pain: Getting It Wrong and Right Simultaneously. Neuron 2019, 101, 353–355. [Google Scholar] [CrossRef]
- Wang, H.; Kohno, T.; Amaya, F.; Brenner, G.J.; Ito, N.; Allchorne, A.; Ji, R.R.; Woolf, C.J. Bradykinin Produces Pain Hypersensitivity by Potentiating Spinal Cord Glutamatergic Synaptic Transmission. J. Neurosci. 2005, 25, 7986–7992. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, A. Prostaglandin E2 and Pain—An Update. Biol. Pharm. Bull. 2011, 34, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- St-Jacques, B.; Ma, W. Peripheral Prostaglandin E2 Prolongs the Sensitization of Nociceptive Dorsal Root Ganglion Neurons Possibly by Facilitating the Synthesis and Anterograde Axonal Trafficking of EP4 Receptors. Exp. Neurol. 2014, 261, 354–366. [Google Scholar] [CrossRef]
- Damerill, I.; Biggar, K.K.; Shehab, M.A.; Li, S.S.C.; Jansson, T.; Gupta, M.B. Hypoxia Increases IGFBP-1 Phosphorylation Mediated by MTOR Inhibition. Mol. Endocrinol. 2016, 30, 201. [Google Scholar] [CrossRef] [PubMed]
- Terzi, R.; Yılmaz, Z. Evaluation of Pain Sensitivity by Tender Point Counts and Myalgic Score in Patients with and without Obstructive Sleep Apnea Syndrome. Int. J. Rheum. Dis. 2017, 20, 340–345. [Google Scholar] [CrossRef]
- Gabryelska, A.; Sochal, M.; Wasik, B.; Szczepanowski, P.; Białasiewicz, P. Factors Affecting Long-Term Compliance of CPAP Treatment—A Single Centre Experience. J. Clin. Med. 2021, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Khalid, I.; Roehrs, T.A.; Hudgel, D.W.; Roth, T. Continuous Positive Airway Pressure in Severe Obstructive Sleep Apnea Reduces Pain Sensitivity. Sleep 2011, 34, 1687–1691. [Google Scholar] [CrossRef]
- Nadeem, R.; Bawaadam, H.; Asif, A.; Waheed, I.; Ghadai, A.; Khan, A.; Hamon, S. Effect of Musculoskeletal Pain on Sleep Architecture in Patients with Obstructive Sleep Apnea. Sleep Breath. 2014, 18, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.R.; Catcheside, P.G.; McEvoy, R.D.; Paul, D.; Kapur, D.; Peak, E.; Vakulin, A.; Antic, N.A. Sleep Disordered Breathing and Chronic Respiratory Failure in Patients with Chronic Pain on Long Term Opioid Therapy. J. Clin. Sleep Med. 2014, 10, 847–852. [Google Scholar] [CrossRef]
- Dray, A. Inflammatory Mediators of Pain. Br. J. Anaesth. 1995, 75, 125–131. [Google Scholar] [CrossRef]
- Raoof, R.; Willemen, H.L.D.M.; Eijkelkamp, N. Divergent Roles of Immune Cells and Their Mediators in Pain. Rheumatology 2018, 57, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Parada, C.A.; Yeh, J.J.; Joseph, E.K.; Levine, J.D. Tumor Necrosis Factor Receptor Type-1 in Sensory Neurons Contributes to Induction of Chronic Enhancement of Inflammatory Hyperalgesia in Rat. Eur. J. Neurosci. 2003, 17, 1847–1852. [Google Scholar] [CrossRef] [PubMed]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF Biology, Pathogenic Mechanisms and Emerging Therapeutic Strategies. Nat. Rev. Rheumatol. 2016, 12, 49. [Google Scholar] [CrossRef]
- Zhang, J.M.; An, J. Cytokines, Inflammation and Pain. Int. Anesthesiol. Clin. 2007, 45, 27. [Google Scholar] [CrossRef] [PubMed]
- Hanada, T.; Yoshimura, A. Regulation of Cytokine Signaling and Inflammation. Cytokine Growth Factor Rev. 2002, 13, 413–421. [Google Scholar] [CrossRef]
- de Jongh, R.F.; Vissers, K.C.; Meert, T.F.; Booij, L.H.D.J.; de Deyne, C.S.; Heylen, R.J. The Role of Interleukin-6 in Nociception and Pain. Anesth. Analg. 2003, 96, 1096–1103. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 Trans-Signaling via the Soluble IL-6 Receptor: Importance for the pro-Inflammatory Activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [Google Scholar] [CrossRef]
- Schaible, H.G. Nociceptive Neurons Detect Cytokines in Arthritis. Arthritis Res. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Fang, D.; Kong, L.Y.; Cai, J.; Li, S.; Liu, X.D.; Han, J.S.; Xing, G.G. Interleukin-6-Mediated Functional Upregulation of TRPV1 Receptors in Dorsal Root Ganglion Neurons through the Activation of JAK/PI3K Signaling Pathway: Roles in the Development of Bone Cancer Pain in a Rat Model. Pain 2015, 156, 1124–1144. [Google Scholar] [CrossRef]
- Ditmer, M.; Gabryelska, A.; Turkiewicz, S.; Białasiewicz, P.; Małecka-wojciesko, E.; Sochal, M. Sleep Problems in Chronic Inflammatory Diseases: Prevalence, Treatment, and New Perspectives: A Narrative Review. J. Clin. Med. 2021, 11, 67. [Google Scholar] [CrossRef]
- Gabryelska, A.; Sochal, M.; Wasik, B.; Bialasiewicz, P. Patients with Obstructive Sleep Apnea Are Over Four Times More Likely to Suffer from Psoriasis Than the General Population. J. Clin. Sleep Med. 2018, 14, 153. [Google Scholar] [CrossRef] [PubMed]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef] [PubMed]
- Imani, M.M.; Sadeghi, M.; Khazaie, H.; Emami, M.; Sadeghi Bahmani, D.; Brand, S. Evaluation of Serum and Plasma Interleukin-6 Levels in Obstructive Sleep Apnea Syndrome: A Meta-Analysis and Meta-Regression. Front. Immunol. 2020, 11, 1343. [Google Scholar] [CrossRef]
- Nadeem, R.; Molnar, J.; Madbouly, E.M.; Nida, M.; Aggarwal, S.; Sajid, H.; Naseem, J.; Loomba, R. Serum Inflammatory Markers in Obstructive Sleep Apnea: A Meta-Analysis. J. Clin. Sleep Med. 2013, 9, 1003–1012. [Google Scholar] [CrossRef]
- Vgontzas, A.N.; Papanicolaou, D.A.; Bixler, E.O.; Lotsikas, A.; Zachman, K.; Kales, A.; Prolo, P.; Wong, M.L.; Licinio, J.; Gold, P.W.; et al. Circadian Interleukin-6 Secretion and Quantity and Depth of Sleep. J. Clin. Endocrinol. Metab. 1999, 84, 2603–2607. [Google Scholar] [CrossRef]
- Ghezzi, P.; Dinarello, C.A.; Bianchi, M.; Rosandich, M.E.; Repine, J.E.; White, C.W. Hypoxia Increases Production of Interleukin-1 and Tumor Necrosis Factor by Human Mononuclear Cells. Cytokine 1991, 3, 189–194. [Google Scholar] [CrossRef]
- Li, X.; Hu, R.; Ren, X.; He, J. Interleukin-8 Concentrations in Obstructive Sleep Apnea Syndrome: A Systematic Review and Meta-Analysis. Bioengineered 2021, 12, 10650. [Google Scholar] [CrossRef]
- Greenberg, H.; Ye, X.; Wilson, D.; Htoo, A.K.; Hendersen, T.; Liu, S.F. Chronic Intermittent Hypoxia Activates Nuclear Factor-ΚB in Cardiovascular Tissues in Vivo. Biochem. Biophys. Res. Commun. 2006, 343, 591–596. [Google Scholar] [CrossRef]
- Mills, P.J.; Dimsdale, J.E. Sleep Apnea: A Model for Studying Cytokines, Sleep, and Sleep Disruption. Brain Behav. Immun. 2004, 18, 298–303. [Google Scholar] [CrossRef]
- Narkiewicz, K.; Somers, V.K. Sympathetic Nerve Activity in Obstructive Sleep Apnoea. Acta Physiol. Scand. 2003, 177, 385–390. [Google Scholar] [CrossRef]
- Narkiewicz, K.; Pesek, C.A.; Kato, M.; Phillips, B.G.; Davison, D.E.; Somers, V.K. Baroreflex Control of Sympathetic Nerve Activity and Heart Rate in Obstructive Sleep Apnea. Hypertension 1998, 32, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Serednytskyy, O.; Alonso-Fernández, A.; Ribot, C.; Herranz, A.; Álvarez, A.; Sánchez, A.; Rodríguez, P.; Gil, A.V.; Pía, C.; Cubero, J.P.; et al. Systemic Inflammation and Sympathetic Activation in Gestational Diabetes Mellitus with Obstructive Sleep Apnea. BMC Pulm. Med. 2022, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haack, M.; Sanchez, E.; Mullington, J.M. Elevated Inflammatory Markers in Response to Prolonged Sleep Restriction Are Associated with Increased Pain Experience in Healthy Volunteers. Sleep 2007, 30, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Wang, M.; Campomayor, C.O.; Collado-Hidalgo, A.; Cole, S. Sleep Deprivation and Activation of Morning Levels of Cellular and Genomic Markers of Inflammation. Arch. Intern. Med. 2006, 166, 1756–1762. [Google Scholar] [CrossRef]
- Yokoe, T.; Minoguchi, K.; Matsuo, H.; Oda, N.; Minoguchi, H.; Yoshino, G.; Hirano, T.; Adachi, M. Elevated Levels of C-Reactive Protein and Interleukin-6 in Patients with Obstructive Sleep Apnea Syndrome Are Decreased by Nasal Continuous Positive Airway Pressure. Circulation 2003, 107, 1129–1134. [Google Scholar] [CrossRef]
- Ryan, S.; Taylor, C.T.; McNicholas, W.T. Selective Activation of Inflammatory Pathways by Intermittent Hypoxia in Obstructive Sleep Apnea Syndrome. Circulation 2005, 112, 2660–2667. [Google Scholar] [CrossRef]
- Jin, X.; Gereau, R.W. Acute P38-Mediated Modulation of Tetrodotoxin-Resistant Sodium Channels in Mouse Sensory Neurons by Tumor Necrosis Factor-α. J. Neurosci. 2006, 26, 246–255. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Zhang, L.; Cheng, J.-K.; Ji, R.-R. Cytokine Mechanisms of Central Sensitization: Distinct and Overlapping Role of Interleukin-1beta, Interleukin-6, and Tumor Necrosis Factor-Alpha in Regulating Synaptic and Neuronal Activity in the Superficial Spinal Cord. J. Neurosci. 2008, 28, 5189–5194. [Google Scholar] [CrossRef]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Campillo, N.; Torres, M.; Vilaseca, A.; Nonaka, P.N.; Gozal, D.; Roca-Ferrer, J.; Picado, C.; Montserrat, J.M.; Farré, R.; Navajas, D.; et al. Role of Cyclooxygenase-2 on Intermittent Hypoxia-Induced Lung Tumor Malignancy in a Mouse Model of Sleep Apnea. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Russell, F.A.; King, R.; Smillie, S.J.; Kodji, X.; Brain, S.D. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol. Rev. 2014, 94, 1099. [Google Scholar] [CrossRef] [PubMed]
- Salio, C.; Averill, S.; Priestley, J.V.; Merighi, A. Costorage of BDNF and Neuropeptides within Individual Dense-Core Vesicles in Central and Peripheral Neurons. Dev. Neurobiol. 2007, 67, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Supowit, S.C.; Zhao, H.; DiPette, D.J. Nerve Growth Factor Enhances Calcitonin Gene-Related Peptide Expression in the Spontaneously Hypertensive Rat. Hypertension 2001, 37, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Gibbins, I.L.; Furness, J.B.; Costa, M.; MacIntyre, I.; Hillyard, C.J.; Girgis, S. Co-Localization of Calcitonin Gene-Related Peptide-like Immunoreactivity with Substance P in Cutaneous, Vascular and Visceral Sensory Neurons of Guinea Pigs. Neurosci. Lett. 1985, 57, 125–130. [Google Scholar] [CrossRef]
- McGillis, J.P.; Humphreys, S.; Rangnekar, V.; Ciallella, J. Modulation of B Lymphocyte Differentiation by Calcitonin Gene-Related Peptide (CGRP). I. Characterization of High-Affinity CGRP Receptors on Murine 70Z/3 Cells. Cell Immunol. 1993, 150, 391–404. [Google Scholar] [CrossRef]
- Umeda, Y.; Takamiya, M.; Yoshizaki, H.; Arisawa, M. Inhibition of Mitogen-Stimulated T Lymphocyte Proliferation by Calcitonin Gene-Related Peptide. Biochem. Biophys. Res. Commun. 1988, 154, 227–235. [Google Scholar] [CrossRef]
- Saxen, M.A.; Welch, S.P.; Dewey, W.L. The Mouse Paw Withdrawal Assay: A Method for Determining the Effect of Calcitonin Gene-Related Peptide on Cutaneous Heat Nociceptive Latency Time. Life Sci. 1993, 53, 397–405. [Google Scholar] [CrossRef]
- Sun, R.Q.; Tu, Y.J.; Lawand, N.B.; Yan, J.Y.; Lin, Q.; Willis, W.D. Calcitonin Gene-Related Peptide Receptor Activation Produces PKA- and PKC-Dependent Mechanical Hyperalgesia and Central Sensitization. J. Neurophysiol. 2004, 92, 2859–2866. [Google Scholar] [CrossRef]
- Zhang, L.; Hoff, A.O.; Wimalawansa, S.J.; Cote, G.J.; Gagel, R.F.; Westlund, K.N. Arthritic Calcitonin/Alpha Calcitonin Gene-Related Peptide Knockout Mice Have Reduced Nociceptive Hypersensitivity. Pain 2001, 89, 265–273. [Google Scholar] [CrossRef]
- Massaad, C.A.; Safieh-Garabedian, B.; Poole, S.; Atweh, S.F.; Jabbur, S.J.; Saadé, N.E. Involvement of Substance P, CGRP and Histamine in the Hyperalgesia and Cytokine Upregulation Induced by Intraplantar Injection of Capsaicin in Rats. J. Neuroimmunol. 2004, 153, 171–182. [Google Scholar] [CrossRef]
- Yu, L.C.; Hansson, P.; Lundeberg, T. The Calcitonin Gene-Related Peptide Antagonist CGRP8-37 Increases the Latency to Withdrawal Responses Bilaterally in Rats with Unilateral Experimental Mononeuropathy, an Effect Reversed by Naloxone. Neuroscience 1996, 71, 523–531. [Google Scholar] [CrossRef]
- Hua, X.Y.; Chen, P.; Fox, A.; Myers, R.R. Involvement of Cytokines in Lipopolysaccharide-Induced Facilitation of CGRP Release from Capsaicin-Sensitive Nerves in the Trachea: Studies with Interleukin-1β and Tumor Necrosis Factor-α. J. Neurosci. 1996, 16, 4742–4748. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Szmyd, B.; Szemraj, J.; Stawski, R.; Sochal, M.; Białasiewicz, P. Patients with Obstructive Sleep Apnea Present with Chronic Upregulation of Serum HIF-1α Protein. J. Clin. Sleep Med. 2020, 6, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Stawski, R.; Sochal, M.; Szmyd, B.; Białasiewicz, P. Influence of One-Night CPAP Therapy on the Changes of HIF-1α Protein in OSA Patients: A Pilot Study. J. Sleep Res. 2020, 29, e12995. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Chrzanowski, J.; Sochal, M.; Kaczmarski, P.; Turkiewicz, S.; Ditmer, M.; Karuga, F.F.; Czupryniak, L.; Białasiewicz, P. Nocturnal Oxygen Saturation Parameters as Independent Risk Factors for Type 2 Diabetes Mellitus among Obstructive Sleep Apnea Patients. J. Clin. Med. 2021, 10, 3770. [Google Scholar] [CrossRef]
- Gabryelska, A.; Sochal, M.; Turkiewicz, S.; Białasiewicz, P. Relationship between HIF-1 and Circadian Clock Proteins in Obstructive Sleep Apnea Patients—Preliminary Study. J. Clin. Med. 2020, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Gabryelska, A.; Turkiewicz, S.; Karuga, F.F.; Sochal, M.; Strzelecki, D.; Białasiewicz, P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients—Possible Mechanisms Involved and Clinical Implication. Int. J. Mol. Sci. 2022, 23, 709. [Google Scholar] [CrossRef]
- Gabryelska, A.; Szmyd, B.; Panek, M.; Szemraj, J.; Kuna, P.; Białasiewicz, P. Serum Hypoxia–Inducible Factor–1α Protein Level as a Diagnostic Marker of Obstructive Sleep Apnea. Pol. Arch. Intern. Med. 2020, 130, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Li, N.; Yao, X.; Zhou, L. Potential Inflammatory Markers in Obstructive Sleep Apnea-Hypopnea Syndrome. Bosn. J. Basic Med. Sci. 2017, 17, 47–53. [Google Scholar] [CrossRef]
- Albanese, A.; Daly, L.A.; Mennerich, D.; Kietzmann, T.; Sée, V. The Role of Hypoxia-Inducible Factor Post-Translational Modifications in Regulating Its Localisation, Stability, and Activity. Int. J. Mol. Sci. 2020, 22, 268. [Google Scholar] [CrossRef]
- Diebold, I.; Petry, A.; Hess, J.; Görlach, A. The NADPH Oxidase Subunit NOX4 Is a New Target Gene of the Hypoxia-Inducible Factor-1. Mol. Biol. Cell 2010, 21, 2087. [Google Scholar] [CrossRef]
- Yuan, G.; Khan, S.A.; Luo, W.; Nanduri, J.; Semenza, G.L.; Prabhakar, N.R. Hypoxia-Inducible Factor 1 Mediates Increased Expression of NADPH Oxidase-2 in Response to Intermittent Hypoxia. J. Cell Physiol. 2011, 226, 2925–2933. [Google Scholar] [CrossRef]
- Kallenborn-Gerhardt, W.; Schröder, K.; Del Turco, D.; Lu, R.; Kynast, K.; Kosowski, J.; Niederberger, E.; Shah, A.M.; Brandes, R.P.; Geisslinger, G.; et al. NADPH Oxidase-4 Maintains Neuropathic Pain after Peripheral Nerve Injury. J. Neurosci. 2012, 32, 10136. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Maiorino, M.; Ursini, F. Signaling Functions of Reactive Oxygen Species. Biochemistry 2010, 49, 835–842. [Google Scholar] [CrossRef]
- Turkiewicz, S.; Ditmer, M.; Sochal, M.; Białasiewicz, P.; Strzelecki, D.; Gabryelska, A. Obstructive Sleep Apnea as an Acceleration Trigger of Cellular Senescence Processes through Telomere Shortening. Int. J. Mol. Sci. 2021, 22, 12536. [Google Scholar] [CrossRef] [PubMed]
- Kanngiesser, M.; Mair, N.; Lim, H.-Y.; Zschiebsch, K.; Blees, J.; Häussler, A.; Brüne, B.; Ferreiròs, N.; Kress, M.; Tegeder, I. Hypoxia-Inducible Factor 1 Regulates Heat and Cold Pain Sensitivity and Persistence. Antioxid. Redox Signal. 2014, 20, 2555–2571. [Google Scholar] [CrossRef]
- Hatano, N.; Itoh, Y.; Suzuki, H.; Muraki, Y.; Hayashi, H.; Onozaki, K.; Wood, I.C.; Beech, D.J.; Muraki, K. Hypoxia-Inducible Factor-1α (HIF1α) Switches on Transient Receptor Potential Ankyrin Repeat 1 (TRPA1) Gene Expression via a Hypoxia Response Element-like Motif to Modulate Cytokine Release. J. Biol. Chem. 2012, 287, 31962–31972. [Google Scholar] [CrossRef]
- Tazuke, S.I.; Mazure, N.M.; Sugawara, J.; Carland, G.; Faessen, G.H.; Suen, L.-F.; Irwin, J.C.; Powell, D.R.; Giaccia, A.J.; Giudice, L.C. Hypoxia Stimulates Insulin-like Growth Factor Binding Protein 1 (IGFBP-1) Gene Expression in HepG2 Cells: A Possible Model for IGFBP-1 Expression in Fetal Hypoxia. Proc. Natl. Acad. Sci. USA 1998, 95, 10188–10193. [Google Scholar] [CrossRef] [PubMed]
- Lewitt, M.S.; Boyd, G.W. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. Biochem. Insights 2019, 12, 1178626419842176. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Rajkumar, K.; Nagy, J.I.; Murphy, L.J. Impaired Brain Development and Reduced Astrocyte Response to Injury in Transgenic Mice Expressing IGF Binding Protein-1. Brain Res. 1997, 769, 97–107. [Google Scholar] [CrossRef]
- Russo, V.C.; Rekaris, G.; Baker, N.L.; Bach, L.A.; Werther, G.A. Basic Fibroblast Growth Factor Induces Proteolysis of Secreted and Cell Membrane-Associated Insulin-like Growth Factor Binding Protein-2 in Human Neuroblastoma Cells. Endocrinology 1999, 140, 3082–3090. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhao, J.; Ju, L.; Liu, Y.; Wang, B.; Zou, X.; Xu, C.; Xu, Q. Temporal Expression Patterns of Insulin-like Growth Factor Binding Protein-4 in the Embryonic and Postnatal Rat Brain. BMC Neurosci. 2013, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Alterki, A.; Al Shawaf, E.; Al-Khairi, I.; Cherian, P.; Sriraman, D.; Hammad, M.; Thanaraj, T.A.; Ebrahim, M.A.K.; Al-Mulla, F.; Abu-Farha, M.; et al. The Rise of IGFBP4 in People with Obstructive Sleep Apnea and Multilevel Sleep Surgery Recovers Its Basal Levels. Dis. Markers 2021, 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, W.; Qian, Z.; Liu, X.; Wang, H.; Gong, S.; Sun, Y.-G.; Snutch, T.P.; Jiang, X.; Tao, J. Peripheral Pain Is Enhanced by Insulin-like Growth Factor 1 through a G Protein-Mediated Stimulation of T-Type Calcium Channels. Sci. Signal. 2014, 7, ra94. [Google Scholar] [CrossRef] [PubMed]
- Bjersing, J.L.; Dehlin, M.; Erlandsson, M.; Bokarewa, M.I.; Mannerkorpi, K. Changes in Pain and Insulin-like Growth Factor 1 in Fibromyalgia during Exercise: The Involvement of Cerebrospinal Inflammatory Factors and Neuropeptides. Arthritis Res. Ther. 2012, 14, R162. [Google Scholar] [CrossRef]
- Freire, C.; Sennes, L.U.; Polotsky, V.Y. Opioids and Obstructive Sleep Apnea. J. Clin. Sleep Med. 2022, 18, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Hajiha, M.; Dubord, M.A.; Liu, H.; Horner, R.L. Opioid Receptor Mechanisms at the Hypoglossal Motor Pool and Effects on Tongue Muscle Activity in Vivo. J. Physiol. 2009, 587, 2677–2692. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Ahmad, R.; Meteb, M.; Ryan, C.M.; Leung, R.S.; Montandon, G.; Luks, V.; Kendzerska, T. The Relationship between Opioid Use and Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2021, 58, 101441. [Google Scholar] [CrossRef]
- Brown, K.A.; Laferrière, A.; Moss, I.R. Recurrent Hypoxemia in Young Children with Obstructive Sleep Apnea Is Associated with Reduced Opioid Requirement for Analgesia. Anesthesiology 2004, 100, 806–810. [Google Scholar] [CrossRef]
- Moss, I.R.; Brown, K.A.; Laferrière, A. Recurrent Hypoxia in Rats during Development Increases Subsequent Respiratory Sensitivity to Fentanyl. Anesthesiology 2006, 105, 715–718. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Wu, X.; Chen, W. Chronic Intermittent Hypoxia Decreases Pain Sensitivity and Increases the Expression of HIF1α and Opioid Receptors in Experimental Rats. Sleep Breath. 2014, 19, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Laferrière, A.; Liu, J.K.; Moss, I.R. Neurokinin-1 versus Mu-Opioid Receptor Binding in Rat Nucleus Tractus Solitarius after Single and Recurrent Intermittent Hypoxia. Brain Res. Bull. 2003, 59, 307–313. [Google Scholar] [CrossRef]
- Moss, I.R.; Laferrière, A. Central Neuropeptide Systems and Respiratory Control during Development. Respir. Physiol. Neurobiol. 2002, 131, 15–27. [Google Scholar] [CrossRef]
- Tsao, P.; Cao, T.; von Zastrow, M. Role of Endocytosis in Mediating Downregulation of G-Protein-Coupled Receptors. Trends Pharmacol. Sci. 2001, 22, 91–96. [Google Scholar] [CrossRef]
- Substance P Receptors in Brain Stem Respiratory Centers of the Rat: Regulation of NK1 Receptors by Hypoxia-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/9316871/ (accessed on 14 July 2022).
- de Koninck, Y.; Henry, J.L. Substance P-Mediated Slow Excitatory Postsynaptic Potential Elicited in Dorsal Horn Neurons in Vivo by Noxious Stimulation. Proc. Natl. Acad. Sci. USA 1991, 88, 11344–11348. [Google Scholar] [CrossRef]
- Sarton, E.; Teppema, L.J.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.D.; Kieffer, B.L.; Dahan, A. The Involvement of the Mu-Opioid Receptor in Ketamine-Induced Respiratory Depression and Antinociception. Anesth. Analg. 2001, 93, 1495–1500. [Google Scholar] [CrossRef]
- Przewlocki, R.; Przewlocka, B. Opioids in Chronic Pain. Eur. J. Pharmacol. 2001, 429, 79–91. [Google Scholar] [CrossRef]
- Doufas, A.G. Obstructive Sleep Apnea, Pain, and Opioid Analgesia in the Postoperative Patient. Curr. Anesthesiol. Rep. 2013, 4, 1–9. [Google Scholar] [CrossRef]
- Kowiański, P.; Lietzau, G.; Czuba, E.; Waśkow, M.; Steliga, A.; Moryś, J. BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. Cell. Mol. Neurobiol. 2017, 38, 579–593. [Google Scholar] [CrossRef]
- Sochal, M.; Małecka-Panas, E.; Gabryelska, A.; Fichna, J.; Talar-Wojnarowska, R.; Szmyd, B.; Białasiewicz, P. Brain-Derived Neurotrophic Factor Is Elevated in the Blood Serum of Crohn’s Disease Patients, but Is Not Influenced by Anti-TNF-α Treatment—A Pilot Study. Neurogastroenterol. Motil. 2021, 33, e13978. [Google Scholar] [CrossRef] [PubMed]
- Lindvall, O.; Ernfors, P.; Bengzon, J.; Kokaia, Z.; Smith, M.L.; Siesjo, B.K.; Persson, H. Differential Regulation of MRNAs for Nerve Growth Factor, Brain-Derived Neurotrophic Factor, and Neurotrophin 3 in the Adult Rat Brain Following Cerebral Ischemia and Hypoglycemic Coma. Proc. Natl. Acad. Sci. USA 1992, 89, 648–652. [Google Scholar] [CrossRef]
- Hubold, C.; Lang, U.E.; Gehring, H.; Schultes, B.; Schweiger, U.; Peters, A.; Hellweg, R.; Oltmanns, K.M. Increased Serum Brain-Derived Neurotrophic Factor Protein upon Hypoxia in Healthy Young Men. J. Neural Transm. 2009, 116, 1221–1225. [Google Scholar] [CrossRef]
- Westberg, J.A.; Serlachius, M.; Lankila, P.; Penkowa, M.; Hidalgo, J.; Andersson, L.C. Hypoxic Preconditioning Induces Neuroprotective Stanniocalcin-1 in Brain via IL-6 Signaling. Stroke 2007, 38, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Yung, W.H. Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Neurocognitive Functions: A Role for Brain-Derived Neurotrophic Factor. Acta Pharmacol. Sin. 2012, 33, 5–10. [Google Scholar] [CrossRef]
- Xie, H.; Leung, K.L.; Chen, L.; Chan, Y.S.; Ng, P.C.; Fok, T.F.; Wing, Y.K.; Ke, Y.; Li, A.M.; Yung, W.H. Brain-Derived Neurotrophic Factor Rescues and Prevents Chronic Intermittent Hypoxia-Induced Impairment of Hippocampal Long-Term Synaptic Plasticity. Neurobiol. Dis. 2010, 40, 155–162. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, X.; Shi, Y.W.; Ma, J.; Wang, G.F. Intermittent Hypoxia with or without Hypercapnia Is Associated with Tumorigenesis by Decreasing the Expression of Brain Derived Neurotrophic Factor and MiR-34a in Rats. Chin. Med. J. 2014, 127, 43–47. [Google Scholar] [CrossRef]
- Gagnon, K.; Baril, A.A.; Gagnon, J.F.; Fortin, M.; Décary, A.; Lafond, C.; Desautels, A.; Montplaisir, J.; Gosselin, N. Cognitive Impairment in Obstructive Sleep Apnea. Pathol. Biol. 2014, 62, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.J.; Prather, A.A.; Wager, T.D.; Lindquist, M.A.; Walker, M.P. The Pain of Sleep Loss: A Brain Characterization in Humans. J. Neurosci. 2019, 39, 2291–2300. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, C.; Latremoliere, A.; Ferreira, A.; Miracca, G.; Yamamoto, M.; Scammell, T.E.; Woolf, C.J. Decreased Alertness Due to Sleep Loss Increases Pain Sensitivity in Mice. Nat. Med. 2017, 23, 768–774. [Google Scholar] [CrossRef]
- Turan, A.; You, J.; Egan, C.; Fu, A.; Khanna, A.; Eshraghi, Y.; Ghosh, R.; Bose, S.; Qavi, S.; Arora, L.; et al. Chronic Intermittent Hypoxia Is Independently Associated with Reduced Postoperative Opioid Consumption in Bariatric Patients Suffering from Sleep-Disordered Breathing. PLoS ONE 2015, 10, e0127809. [Google Scholar] [CrossRef]
- Athar, W.; Card, M.E.; Charokopos, A.; Akgün, K.M.; DeRycke, E.C.; Haskell, S.G.; Yaggi, H.K.; Bastian, L.A. Obstructive Sleep Apnea and Pain Intensity in Young Adults. Ann. Am. Thorac. Soc. 2020, 17, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarski, P.; Karuga, F.F.; Szmyd, B.; Sochal, M.; Białasiewicz, P.; Strzelecki, D.; Gabryelska, A. The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int. J. Mol. Sci. 2022, 23, 9080. https://doi.org/10.3390/ijms23169080
Kaczmarski P, Karuga FF, Szmyd B, Sochal M, Białasiewicz P, Strzelecki D, Gabryelska A. The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. International Journal of Molecular Sciences. 2022; 23(16):9080. https://doi.org/10.3390/ijms23169080
Chicago/Turabian StyleKaczmarski, Piotr, Filip Franciszek Karuga, Bartosz Szmyd, Marcin Sochal, Piotr Białasiewicz, Dominik Strzelecki, and Agata Gabryelska. 2022. "The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea" International Journal of Molecular Sciences 23, no. 16: 9080. https://doi.org/10.3390/ijms23169080
APA StyleKaczmarski, P., Karuga, F. F., Szmyd, B., Sochal, M., Białasiewicz, P., Strzelecki, D., & Gabryelska, A. (2022). The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. International Journal of Molecular Sciences, 23(16), 9080. https://doi.org/10.3390/ijms23169080