The Chloronium Cation [(C2H3)2Cl+] and Unsaturated C4-Carbocations with C=C and C≡C Bonds in Their Solid Salts and in Solutions: An H1/C13 NMR and Infrared Spectroscopic Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Chloronium Cation
2.2. The C4-Carbocations
2.3. Comparative Discussion of the IR and NMR Spectroscopic Data
2.3.1. The Chloronium Cation
2.3.2. The C4-Carbocations
3. Methods and Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olah, G.A.; Baker, E.B.; Evans, J.C.; Tolgyesi, W.S.; McIntyre, J.S.; Bastien, I.J. Stable Carbonium Ions. V.1a Alkylcarbonium Hexafluoroantimonates. J. Am. Chem. Soc. 1964, 86, 1360–1373. [Google Scholar] [CrossRef]
- Olah, G.A.; Bollinger, J.M.; Cupas, C.A.; Lukas, J. Stable carbonium ions. XXXIV. 1-Methylcyclopentyl cation. J. Am. Chem. Soc. 1967, 89, 2692–2694. [Google Scholar] [CrossRef]
- Olah, G.A.; DeMember, J.R.; Commeyras, A.; Bribes, J.L. Stable carbonium ions. LXXXV. Laser Raman and infrared spectroscopic study of alkylcarbonium ions. J. Am. Chem. Soc. 1971, 93, 459–463. [Google Scholar] [CrossRef]
- Olah, G.A. Stable Carbonium Ions in Solution. Science 1970, 168, 1298–1311. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, D.M.; Hogeveen, H. Electrophilic Substitutions at Alkanes and in Alkylcarbonium Ions. Prog. Phys. Org. Chem. 1972, 9, 179–240. [Google Scholar]
- Stoyanov, E.S.; Gomes, G.P. tert-Butyl Carbocation in Condensed Phases: Stabilization via Hyperconjugation, Polarization, and Hydrogen Bonding. J. Phys. Chem. A 2015, 119, 8619–8629. [Google Scholar] [CrossRef]
- Stoyanov, E.S.; Nizovtsev, A.S. Stabilization of carbocations CH3+, C2H5+, i-C3H7+, tert-Bu+, and cyclo-pentyl+ in solid phases: Experimental data versus calculations. Phys. Chem. Chem. Phys. 2017, 19, 7270–7279. [Google Scholar] [CrossRef]
- Stoyanov, E.S. Stabilization of Saturated Carbocations in Condensed Phases. J. Phys. Chem. A 2017, 121, 9638–9644. [Google Scholar] [CrossRef]
- Koptyug, V.A. Contemporary Problems in Carbonium Ion Chemistry III: Arenium Ions-Structure and Reactivity; Rees, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 1–227. [Google Scholar]
- Reed, C.A.; Kim, K.-C.; Stoyanov, E.S.; Stasko, D.; Tham, F.S.; Mueller, L.J.; Boyd, P.D.W. Isolating Benzenium Ion Salts. J. Am. Chem. Soc. 2003, 125, 1796–1804. [Google Scholar] [CrossRef]
- Duncan, M.A. Infrared Laser Spectroscopy of Mass-Selected Carbocations. J. Phys. Chem. A 2012, 116, 11477–11491. [Google Scholar]
- Ricks, A.M.; Douberly, G.E.; Schleyer, P.V.R.; Duncan, M.A. Infrared spectroscopy of gas phase C3H3+ ions: The cyclopropenyl and propargyl cations. J. Chem. Phys. 2010, 132, 051101. [Google Scholar] [CrossRef] [PubMed]
- Douberly, G.E.; Risks, A.M.; Schleyer, P.V.R.; Duncan, M.A. Infrared spectroscopy of gas phase C3H5+: The allyl and 2-propenyl cations. J. Chem. Phys. 2008, 128, 021102. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P. Carbocation Chemistry; Elsevier: Amsterdam, The Netherlands, 1985; p. 173. [Google Scholar]
- Buzek, P.; Schleyer, P.R.; Vančik, H.; Mihalic, Z.; Gauss, J. Generation of the Parent Allyl Cation in a Superacid Cryogenic Matrix. Angew. Chem. Int. Ed. 1994, 33, 448–451. [Google Scholar] [CrossRef]
- Mišić, V.; Piech, K.; Bally, T. Carbocations Generated under Stable Conditions by Ionization of Matrix-Isolated Radicals: The Allyl and Benzyl Cations. J. Am. Chem. Soc. 2013, 135, 8625–8631. [Google Scholar] [CrossRef]
- Siehl, H.-U.; Müller, T.; Gauss, J.; Buzek, P.; Schleyer, P.V.R. Cyclopropylcyclopropylidenemethyl Cation: A Unique Stabilized Vinyl Cation Characterized by NMR Spectroscopy and Quantum Chemical ab Initio Calculations. J. Am. Chem. Soc. 1994, 116, 6384–6387. [Google Scholar] [CrossRef]
- Siehl, H.-U.; Müller, T.; Gauss, J. NMR Spectroscopic and quantum chemical characterization of the (E)- and (Z)-isomers of the penta-1,3-dienyl-2-cation. J. Phys. Org. Chem. 2003, 16, 577–581. [Google Scholar] [CrossRef]
- Olah, G.A.; Staral, J.S.; Liang., G. Novel aromatic systems. I. Homocyclopropenyl cation, the simplest 2.pi. homoaromatic system. J. Am. Chem. Soc. 1974, 96, 6233–6235. [Google Scholar] [CrossRef]
- Mayr, H.; Olah, G.A. Stable carbocations. 202. Ring closure reactions of allyl to cyclopropylcarbinyl cations. J. Am. Chem. Soc. 1977, 99, 510–513. [Google Scholar] [CrossRef]
- Olah, G.A.; Spear, R.J. Stable carbocations. CLXXX. Carbon-13 and proton nuclear magnetic resonance spectroscopic study of phenyl-, methyl-, and cyclopropyl-substituted alkenyl (allyl) cations. Further studies of the trend of charge distribution and the relative delocalization afforded by phenyl, methyl, and cyclopropyl. J. Am. Chem. Soc. 1975, 97, 1539–1546. [Google Scholar]
- Siehl, H.-U. Dicoordinated Carbocations; Rappoport, Z., Stang, P., Eds.; Wiley: Chichester, UK; New York, NY, USA, 1997; pp. 189–236. [Google Scholar]
- Siehl, H.-U. Stable Carbocation Chemistry; Prakash, G.K.S., Schleyer, P.V.R., Eds.; Wiley: New York, NY, USA, 1997; pp. 165–196. [Google Scholar]
- Siehl, H.-U.; Kaufmann, F.-P.; Apeloig, Y.; Braude, V.; Danovich, D.; Berndt, A.; Stamatis, N. The First Persistent β-Silyl-Substituted Vinyl Cation. Angew. Chem. 1991, 30, 1479–1482. [Google Scholar] [CrossRef]
- Müller, T.; Margraf, D.; Syha, Y.; Nasiri, H.R.; Kaiser, C.; Maier, R.; Boltre, B.; Juhasz, M.; Reed, C.A. Recent Developments in Carbocation and Onium Ion Chemistry; Kenneth, K.L., Ed.; American Chemical Society: Chicago, IL, USA, 2007; Chapter 3; pp. 51–67. [Google Scholar]
- Stoyanov, E.S.; Bagryanskaya, I.Y.; Stoyanova, I.V. Unsaturated vinyl-type carbocation [(CH3)2C=CH]+ in its carborane salts. ACS Omega 2021, 6, 15834–15843. [Google Scholar] [CrossRef] [PubMed]
- Stoyanov, E.S.; Bagryanskaya, I.Y.; Stoyanova, I.V. Isomers of the Allyl Carbocation C3H5+ in Solid Salts: Infrared Spectra and Structures. ACS Omega 2021, 6, 23691–23699. [Google Scholar] [CrossRef] [PubMed]
- Stoyanov, E.S.; Bagryanskaya, I.Y.; Stoyanova, I.V. An IR-spectroscopic and X-ray-structural study of vinyl-type carbocations in their carborane salts. ACS Omega 2022, 7, 27560–27572. [Google Scholar] [CrossRef]
- Cunje, A.; Rodriquez, C.F.; Lien, M.H.; Hopkinson, A.C. The C4H5+ Potential Energy Surface. Structure, Relative Energies, and Enthalpies of Formation of Isomers of C4H5+. J. Org. Chem. 1996, 61, 5212–5220. [Google Scholar] [CrossRef]
- Reed, C. Carborane acids. New “strong yet gentle” acids for organic and inorganic chemistry. Chem. Commun. 2005, 13, 1669–1677. [Google Scholar] [CrossRef]
- Stoyanov, E.S. Chemical Properties of Dialkyl Halonium Ions (R2Hal+) and Their Neutral Analogues, Methyl Carboranes, CH3−(CHB11Hal11), Where Hal = F., Cl. J. Phys. Chem. A 2017, 121, 2918–2923. [Google Scholar] [CrossRef] [PubMed]
- Stoyanov, E.S.; Stoyanova, I.V.; Tham, F.S.; Reed, C.A. Dialkyl Chloronium Ions. J. Am. Chem. Soc. 2010, 132, 4062–4063. [Google Scholar] [CrossRef] [PubMed]
- Whipple, E.B.; Steward, W.E.; Reddy, G.S.; Goldstein, J.H. NMR Spectra of Vinyl Chloride and the Chloroethylenes. J. Chem. Phys. 1961, 34, 2136–2138. [Google Scholar] [CrossRef]
- Breitmair, E.; Volter, W. Carbon-13 NMR Spectroscopy, 2nd ed.; Gordon & Breach Science: New York, NY, USA, 1978; p. 149. [Google Scholar]
- Narita, S.; Ichinohe, S.; Enomoto, S. Infrared Spectra of Vinyl Chloride and Vinyl Chloride-d3. J. Chem. Phys. 1959, 31, 1151–1157. [Google Scholar] [CrossRef]
- Olah, G.A.; Donovan, D.J. Stable carbocations. 208. Carbon-13 nuclear magnetic resonance spectroscopic study of alkyl cations. The constancy of carbon-13 nuclear magnetic resonance methyl substituent effects and their application in the study of equilibrating carbocations and the mechanism of some rearrangements. J. Am. Chem. Soc. 1977, 99, 5026–5037. [Google Scholar]
- Olah, G.A.; Staral, J.S.; Spear, R.J.; Liang, G. Novel aromatic systems. II. Cyclobutenyl cations and the question of their homoaromaticity. Preparation and study of the homocyclopropenium ion, the simplest homoaromatic system. J. Am. Chem. Soc. 1975, 97, 5489–5497. [Google Scholar] [CrossRef]
- Stanton, J.F.; Gauss, J.; Siehl, H.-U. CCSD(T) calculation of NMR chemical shifts: Consistency of calculated and measured 13C chemical shifts in the 1-cyclopropylcyclopropylidenemethyl cation. Chem. Phys. Lett. 1996, 262, 183–186. [Google Scholar] [CrossRef]
- Muller, T.; Juhasz, M.; Reed, C.A. The X-ray Structure of a Vinyl Cation. Angew. Chem. Int. Ed. 2004, 43, 1543–1546. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, M.; Hoffmann, S.; Stoyanov, E.S.; Kim, K.; Reed, C.A. The strongest isolable acid. Angew. Chem. Int. Ed. 2004, 43, 5352–5355. [Google Scholar] [CrossRef] [PubMed]
- Nava, M.; Stoyanova, I.V.; Cummings, S.; Stoyanov, E.S.; Reed, C.A. The Strongest Brønsted Acid: Protonation of Alkanes by H(CHB11F11) at Room Temperature. Angew. Chem. Int. Ed. 2014, 53, 1131–1134. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Kesharwani, M.K.; Brauer, B.; Martin, J.M.L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2015, 119, 1701–1714. [Google Scholar] [CrossRef]
Atom | Cation I | CH2CHCl [33,34] | Atom | Cation I | CH2CHCl [33,34] | |
---|---|---|---|---|---|---|
Solid | Solution | Solid | ||||
Ha | 5.58 5.14 * | 4.87 4.49 * | 6.13 | Cα | 83.2 78.6 * | 124.9 |
Hb | 4.77 | 4.11 3.97 * | 5.23 | Cβ | 60.6 43.9 * | 116 |
Hc | 2.73 2.22 * | 2.91 2.49 * | 5.39 |
Sample | C-H Stretches | C-H Bending | CC Stretch | CH Bending | CCCl Bending | CCl+C Stretches | |||
---|---|---|---|---|---|---|---|---|---|
protio | 3055 3044 | 2987 2974 2961 2938 | 1418 * | 1324 | 1269 | 1238 | 914 | 740 | 628 594 |
deuterio | 2303 2295 | 2244 2218 2191 2171 | ** | ** | 960 | 1208 | 694 | 748 | 635 582 |
ratio | 1.327 1.326 | 1.331 1.341 1.351 1.353 | - | - | 1.323 | 1.024 | 1.320 | 0.989 | 0.989 1.020 |
Isomer | Stretch Vibrations of C-Cl+-C Group, cm−1 (calc a/exp) | |
---|---|---|
C4H6Cl+ (exp) | 628 | 594 |
I (calc) | 568 (0.91) | 538 (0.91) |
II (calc) | 494 (0.79) | 385 (0.65) |
III (calc) | 478 (0.76) | 460 (0.77) |
Nucleus | CH3 | CαH | CβH | CγH (Cl) |
---|---|---|---|---|
1H δ | 2.69 | 8.42 | 7.04 | 9.58 |
1JCH | 130 | 158 | 168 | 183 |
3JHH | 7 | b | 7 | b |
13C δ | 20.8 | 183.6 | 129.2 | 203.6 |
1JCC | 39 | 60 | 60 | 60 |
Nucleus | CH3 | CαH | Cβ | CγH (1JCH in Hz) |
---|---|---|---|---|
1H | 2.25 | 9.35 | - | 7.44 (184) |
13C | 36 | 215 | 150 | 231 |
C4H5+ | C4D5+ | H/D Ratio | Assignment * |
---|---|---|---|
3058 | 2284 | 1.339 | νCαH (CαD) and |
3039 | 2251 | 1.350 | νCβH (CβD) |
2942 | 2129 | 1.381 | νasCH3 (CD3) |
2891 | - | - | 2νCC overtone |
2871 | 2077 | 1.380 | νasCH3 (CD3) |
2829 | 2055 | 1.377 | νsCH3 (CD3) |
1563 | 1521 1497 | 1.028 1.044 | νC≡C |
1447 | 1368 | 1.057 | νCC |
1327 | 997 | 1.341 | δCH (CD) |
1303 | 971 | 1.341 | δCH (CD) |
964 | 719 | 1.354 | δCH (CD) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoyanov, E.S.; Stoyanova, I.V. The Chloronium Cation [(C2H3)2Cl+] and Unsaturated C4-Carbocations with C=C and C≡C Bonds in Their Solid Salts and in Solutions: An H1/C13 NMR and Infrared Spectroscopic Study. Int. J. Mol. Sci. 2022, 23, 9111. https://doi.org/10.3390/ijms23169111
Stoyanov ES, Stoyanova IV. The Chloronium Cation [(C2H3)2Cl+] and Unsaturated C4-Carbocations with C=C and C≡C Bonds in Their Solid Salts and in Solutions: An H1/C13 NMR and Infrared Spectroscopic Study. International Journal of Molecular Sciences. 2022; 23(16):9111. https://doi.org/10.3390/ijms23169111
Chicago/Turabian StyleStoyanov, Evgenii S., and Irina V. Stoyanova. 2022. "The Chloronium Cation [(C2H3)2Cl+] and Unsaturated C4-Carbocations with C=C and C≡C Bonds in Their Solid Salts and in Solutions: An H1/C13 NMR and Infrared Spectroscopic Study" International Journal of Molecular Sciences 23, no. 16: 9111. https://doi.org/10.3390/ijms23169111
APA StyleStoyanov, E. S., & Stoyanova, I. V. (2022). The Chloronium Cation [(C2H3)2Cl+] and Unsaturated C4-Carbocations with C=C and C≡C Bonds in Their Solid Salts and in Solutions: An H1/C13 NMR and Infrared Spectroscopic Study. International Journal of Molecular Sciences, 23(16), 9111. https://doi.org/10.3390/ijms23169111