Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms
Abstract
:1. Introduction
2. Oxidised LDL Are Heterogeneous Particles
3. The Role of oxLDL in the Pathogenesis of Metabolic Disease
4. Functional Responses of Platelets to Modified Low-Density Lipoproteins
5. Scavenger Receptors—The Transducers of oxLDL into Platelet Hyperactivity
5.1. CD36—Class B Scavenger Receptor
5.2. Lectin-like Oxidised Low-Density Receptor 1—Class E Scavenger Receptor
5.3. Scavenger Receptor A1 (SR-A)—Class A Scavenger Receptor
5.4. LPA Receptor
5.5. Platelet Activating Factor (PAF) Receptor
5.6. Toll-like Receptors (TLR)
6. Concluding Remarks
Funding
Conflicts of Interest
References
- Jackson, S.P. Arterial thrombosis—Insidious, unpredictable and deadly. Nat. Med. 2011, 17, 1423–1436. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K. Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention. Lipids 2010, 45, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Eitzman, D.T.; Westrick, R.J.; Xu, Z.; Tyson, J.; Ginsburg, D. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1831–1834. [Google Scholar] [CrossRef] [PubMed]
- Van Geffen, J.P.; Swieringa, F.; van Kuijk, K.; Tullemans, B.M.E.; Solari, F.A.; Peng, B.; Clemetson, K.J.; Farndale, R.W.; Dubois, L.J.; Sickmann, A.; et al. Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome. Sci. Rep. 2020, 10, 21407. [Google Scholar] [CrossRef] [PubMed]
- Pawelczyk, M.; Kaczorowska, B.; Baj, Z. The impact of hyperglycemia and hyperlipidemia on plasma P-selectin and platelet markers after ischemic stroke. Arch. Med. Sci. 2017, 13, 1049–1056. [Google Scholar] [CrossRef]
- Broijersen, A.; Hamsten, A.; Eriksson, M.; Angelin, B.; Hjemdahl, P. Platelet activity in vivo in hyperlipoproteinemia—Importance of combined hyperlipidemia. Thromb. Haemost. 1998, 79, 268–275. [Google Scholar] [CrossRef]
- Suehiro, A.; Kakishita, E.; Nagai, K. The role of platelet hyperfunction in thrombus formation in hyperlipidemia. Thromb. Res. 1982, 25, 331–339. [Google Scholar] [CrossRef]
- Carvalho, A.C.; Colman, R.W.; Lees, R.S. Platelet function in hyperlipoproteinemia. N. Engl. J. Med. 1974, 290, 434–438. [Google Scholar] [CrossRef]
- Lacoste, L.; Lam, J.Y.; Hung, J.; Letchacovski, G.; Solymoss, C.B.; Waters, D. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation 1995, 92, 3172–3177. [Google Scholar] [CrossRef]
- Lu, J.; Chen, B.; Chen, T.; Guo, S.; Xue, X.; Chen, Q.; Zhao, M.; Xia, L.; Zhu, Z.; Zheng, L.; et al. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases. Redox Biol. 2017, 12, 899–907. [Google Scholar] [CrossRef]
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Toshima, S.; Hasegawa, A.; Kurabayashi, M.; Itabe, H.; Takano, T.; Sugano, J.; Shimamura, K.; Kimura, J.; Michishita, I.; Suzuki, T.; et al. Circulating oxidized low density lipoprotein levels. A biochemical risk marker for coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2243–2247. [Google Scholar] [CrossRef] [PubMed]
- Ehara, S.; Ueda, M.; Naruko, T.; Haze, K.; Itoh, A.; Otsuka, M.; Komatsu, R.; Matsuo, T.; Itabe, H.; Takano, T.; et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation 2001, 103, 1955–1960. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, P.; Mertens, A.; Verhamme, P.; Bogaerts, K.; Beyens, G.; Verhaeghe, R.; Collen, D.; Muls, E.; Van de Werf, F. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, P.; Collen, D.; Van de Werf, F. Malondialdehyde-modified LDL as a marker of acute coronary syndromes. JAMA 1999, 281, 1718–1721. [Google Scholar] [CrossRef]
- Tsimikas, S.; Bergmark, C.; Beyer, R.W.; Patel, R.; Pattison, J.; Miller, E.; Juliano, J.; Witztum, J.L. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J. Am. Coll. Cardiol. 2003, 41, 360–370. [Google Scholar] [CrossRef]
- Avogaro, P.; Bon, G.B.; Cazzolato, G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988, 8, 79–87. [Google Scholar] [CrossRef]
- Wu, R.; Lefvert, A.K. Autoantibodies against oxidized low density lipoproteins (oxLDL): Characterization of antibody isotype, subclass, affinity and effect on the macrophage uptake of oxLDL. Clin. Exp. Immunol. 1995, 102, 174–180. [Google Scholar] [CrossRef]
- Palinski, W.; Horkko, S.; Miller, E.; Steinbrecher, U.P.; Powell, H.C.; Curtiss, L.K.; Witztum, J.L. Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J. Clin. Investig. 1996, 98, 800–814. [Google Scholar] [CrossRef]
- Tsimikas, S.; Palinski, W.; Witztum, J.L. Circulating autoantibodies to oxidized LDL correlate with arterial accumulation and depletion of oxidized LDL in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 95–100. [Google Scholar] [CrossRef]
- Erkkila, A.T.; Narvanen, O.; Lehto, S.; Uusitupa, M.I.; Yla-Herttuala, S. Autoantibodies against oxidized low-density lipoprotein and cardiolipin in patients with coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, V.J.; Vroegindewey, M.M.; Kardys, I.; Boersma, E.; Haskard, D.; Hartley, A.; Khamis, R. Anti-Oxidized LDL Antibodies and Coronary Artery Disease: A Systematic Review. Antioxidants 2019, 8, 484. [Google Scholar] [CrossRef] [PubMed]
- Itabe, H.; Takeshima, E.; Iwasaki, H.; Kimura, J.; Yoshida, Y.; Imanaka, T.; Takano, T. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J. Biol. Chem. 1994, 269, 15274–15279. [Google Scholar] [CrossRef]
- Itabe, H.; Yamamoto, H.; Imanaka, T.; Shimamura, K.; Uchiyama, H.; Kimura, J.; Sanaka, T.; Hata, Y.; Takano, T. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J. Lipid Res. 1996, 37, 45–53. [Google Scholar] [CrossRef]
- Itabe, H.; Yamamoto, H.; Suzuki, M.; Kawai, Y.; Nakagawa, Y.; Suzuki, A.; Imanaka, T.; Takano, T. Oxidized phosphatidylcholines that modify proteins. Analysis by monoclonal antibody against oxidized low density lipoprotein. J. Biol. Chem. 1996, 271, 33208–33217. [Google Scholar] [CrossRef]
- Imazu, M.; Ono, K.; Tadehara, F.; Kajiwara, K.; Yamamoto, H.; Sumii, K.; Tasaki, N.; Oiwa, J.; Shimohara, Y.; Gomyo, Y.; et al. Plasma levels of oxidized low density lipoprotein are associated with stable angina pectoris and modalities of acute coronary syndrome. Int. Heart J. 2008, 49, 515–524. [Google Scholar] [CrossRef]
- Holy, E.W.; Akhmedov, A.; Speer, T.; Camici, G.G.; Zewinger, S.; Bonetti, N.; Beer, J.H.; Luscher, T.F.; Tanner, F.C. Carbamylated Low-Density Lipoproteins Induce a Prothrombotic State Via LOX-1: Impact on Arterial Thrombus Formation In Vivo. J. Am. Coll. Cardiol. 2016, 68, 1664–1676. [Google Scholar] [CrossRef]
- Colas, R.; Sassolas, A.; Guichardant, M.; Cugnet-Anceau, C.; Moret, M.; Moulin, P.; Lagarde, M.; Calzada, C. LDL from obese patients with the metabolic syndrome show increased lipid peroxidation and activate platelets. Diabetologia 2011, 54, 2931–2940. [Google Scholar] [CrossRef]
- Van Tits, L.; De Graaf, J.; Hak-Lemmers, H.; Bredie, S.; Demacker, P.; Holvoet, P.; Stalenhoef, A. Increased levels of low-density lipoprotein oxidation in patients with familial hypercholesterolemia and in end-stage renal disease patients on hemodialysis. Lab. Investig. 2003, 83, 13–21. [Google Scholar] [CrossRef]
- Calzada, C.; Coulon, L.; Halimi, D.; Le Coquil, E.; Pruneta-Deloche, V.; Moulin, P.; Ponsin, G.; Véricel, E.; Lagarde, M. In vitro glycoxidized low-density lipoproteins and low-density lipoproteins isolated from type 2 diabetic patients activate platelets via p38 mitogen-activated protein kinase. J. Clin. Endocrinol. Metab. 2007, 92, 1961–1964. [Google Scholar] [CrossRef]
- Meisinger, C.; Baumert, J.; Khuseyinova, N.; Loewel, H.; Koenig, W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 2005, 112, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.Y.; Chen, F.Y.; Hsu, J.F.; Fu, R.H.; Chang, C.M.; Chang, C.T.; Liu, C.H.; Wu, J.R.; Lee, A.S.; Chan, H.C.; et al. Plasma L5 levels are elevated in ischemic stroke patients and enhance platelet aggregation. Blood 2016, 127, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.; Ke, L.Y.; Chu, C.S.; Lee, A.S.; Shen, M.Y.; Cruz, M.A.; Hsu, J.F.; Cheng, K.H.; Chan, H.C.; Lu, J.; et al. Highly electronegative LDL from patients with ST-elevation myocardial infarction triggers platelet activation and aggregation. Blood 2013, 122, 3632–3641. [Google Scholar] [CrossRef]
- Stellos, K.; Sauter, R.; Fahrleitner, M.; Grimm, J.; Stakos, D.; Emschermann, F.; Panagiota, V.; Gnerlich, S.; Perk, A.; Schonberger, T.; et al. Binding of oxidized low-density lipoprotein on circulating platelets is increased in patients with acute coronary syndromes and induces platelet adhesion to vascular wall in vivo—Brief report. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2017–2020. [Google Scholar] [CrossRef] [PubMed]
- Nording, H.; Giesser, A.; Patzelt, J.; Sauter, R.; Emschermann, F.; Stellos, K.; Gawaz, M.; Langer, H.F. Platelet bound oxLDL shows an inverse correlation with plasma anaphylatoxin C5a in patients with coronary artery disease. Platelets 2016, 27, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Moriel, P.; Okawabata, F.S.; Abdalla, D.S. Oxidized lipoproteins in blood plasma: Possible marker of atherosclerosis progression. IUBMB Life 1999, 48, 413–417. [Google Scholar] [CrossRef]
- Trip, M.D.; Cats, V.M.; van Capelle, F.J.; Vreeken, J. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N. Engl. J. Med. 1990, 322, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Johnston, N.; Jernberg, T.; Lagerqvist, B.; Siegbahn, A.; Wallentin, L. Oxidized low-density lipoprotein as a predictor of outcome in patients with unstable coronary artery disease. Int. J. Cardiol. 2006, 113, 167–173. [Google Scholar] [CrossRef]
- Fuchs, I.; Frossard, M.; Spiel, A.; Riedmuller, E.; Laggner, A.N.; Jilma, B. Platelet function in patients with acute coronary syndrome (ACS) predicts recurrent ACS. J. Thromb. Haemost. 2006, 4, 2547–2552. [Google Scholar] [CrossRef]
- Dardik, R.; Varon, D.; Tamarin, I.; Zivelin, A.; Salomon, O.; Shenkman, B.; Savion, N. Homocysteine and oxidized low density lipoprotein enhanced platelet adhesion to endothelial cells under flow conditions: Distinct mechanisms of thrombogenic modulation. Thromb. Haemost. 2000, 83, 338–344. [Google Scholar]
- Liu, B.; Sidiropoulos, A.; Zhao, B.; Dierichs, R. Oxidized LDL damages endothelial cell monolayer and promotes thrombocyte adhesion. Am. J. Hematol. 1998, 57, 341–343. [Google Scholar] [CrossRef]
- Chatterjee, M.; Rath, D.; Schlotterbeck, J.; Rheinlaender, J.; Walker-Allgaier, B.; Alnaggar, N.; Zdanyte, M.; Muller, I.; Borst, O.; Geisler, T.; et al. Regulation of oxidized platelet lipidome: Implications for coronary artery disease. Eur. Heart J. 2017, 38, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Vink, H.; Constantinescu, A.A.; Spaan, J.A.E. Oxidized Lipoproteins Degrade the Endothelial Surface Layer: Implications for Platelet-Endothelial Cell Adhesion. Circulation 2000, 101, 1500–1502. [Google Scholar] [CrossRef] [PubMed]
- Nergiz-Unal, R.; Lamers, M.M.E.; Kruchten, V.R.; Luiken, J.J.; Cosemans, J.; Glatz, J.F.C.; Kuijpers, M.J.E.; Heekerk, J.W.M. Signaling role of CD36 in platelet activation and thrombus formation on immobilized thrombospondin or oxidized low-density lipoprotein. J. Thromb. Haemost. 2011, 9, 1835–1846. [Google Scholar] [CrossRef]
- Zhao, B.; Rickert, C.H.; Filler, T.J.; Liu, B.; Verhallen, P.F.J.; Dierichs, R. Adhesion of washed blood platelets in vitro is advanced, accelerated, and enlarged by oxidized low-density lipoprotein. Am. J. Hematol. 1995, 49, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Wraith, K.S.; Magwenzi, S.; Aburima, A.; Wen, Y.; Leake, D.; Naseem, K.M. Oxidized low-density lipoproteins induce rapid platelet activation and shape change through tyrosine kinase and Rho kinase–signaling pathways. Blood 2013, 122, 580–589. [Google Scholar] [CrossRef]
- Hartwich, J.; Dembinska-Kieć, A.; Gruca, A.; Motyka, M.; Partyka, L.; Skrzeczyńska, J.; Bzowska, M.; Pryjma, J.; Huber, J.; Leitinger, N.; et al. Regulation of platelet adhesion by oxidized lipoproteins and oxidized phospholipids. Platelets 2002, 13, 141–151. [Google Scholar] [CrossRef]
- Maschberger, P.; Bauer, M.; Baumann-Siemons, J.; Zangl, K.J.; Negrescu, E.V.; Reininger, A.J.; Siess, W. Mildly oxidized low density lipoprotein rapidly stimulates via activation of the lysophosphatidic acid receptor Src family and Syk tyrosine kinases and Ca2+ influx in human platelets. J. Biol. Chem. 2000, 275, 19159–19166. [Google Scholar] [CrossRef]
- Zhao, B.; Filler, T.J.; Rickert, C.H.; Dierichs, R. Decreased adhesion of oxidized LDL-stimulated platelets caused by cytochalasin D. Cell Tissue Res. 1995, 280, 183–188. [Google Scholar] [CrossRef]
- Sutipornpalangkul, W.; Unchen, S.; Sanvarinda, Y.; Chantharaksri, U. Modification of platelet shape change parameter by modified phospholipids in oxidized LDL. J. Med. Assoc. Thail. = Chotmaihet Thangphaet 2009, 92, 229–235. [Google Scholar]
- Zhao, B.; Dierichs, R.; Liu, B.; Holling-Rauβ, M. Functional morphological alterations of human blood platelets induced by oxidized low density lipoprotein. Thromb. Res. 1994, 74, 293–301. [Google Scholar] [CrossRef]
- Korporaal, S.J.; Van Eck, M.; Adelmeijer, J.; Ijsseldijk, M.; Out, R.; Lisman, T.; Lenting, P.J.; Van Berkel, T.J.; Akkerman, J.-W.N. Platelet activation by oxidized low density lipoprotein is mediated by CD36 and scavenger receptor-A. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2476–2483. [Google Scholar] [CrossRef] [PubMed]
- Siess, W.; Zangl, K.J.; Essler, M.; Bauer, M.; Brandl, R.; Corrinth, C.; Bittman, R.; Tigyi, G.; Aepfelbacher, M. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 1999, 96, 6931–6936. [Google Scholar] [CrossRef]
- Haserück, N.; Erl, W.; Pandey, D.; Tigyi, G.; Ohlmann, P.; Ravanat, C.; Gachet, C.; Siess, W. The plaque lipid lysophosphatidic acid stimulates platelet activation and platelet-monocyte aggregate formation in whole blood: Involvement of P2Y1 and P2Y12 receptors. Blood 2004, 103, 2585–2592. [Google Scholar] [CrossRef] [PubMed]
- Suttnar, J.; Otáhalová, E.; Cermák, J.; Dyr, J.E. Effects of malondialdehyde content in low density lipoproteins on platelet adhesion. Platelets 2006, 17, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Daub, K.; Seizer, P.; Stellos, K.; Krämer, B.F.F.; Bigalke, B.; Schaller, M.; Fateh-Moghadam, S.; Gawaz, M.; Lindemann, S. Oxidized LDL-activated platelets induce vascular inflammation. Semin. Thromb. Hemost. 2010, 36, 146–156. [Google Scholar] [CrossRef]
- Murohara, T.; Scalia, R.; Lefer, A.M. Lysophosphatidylcholine promotes P-selectin expression in platelets and endothelial cells. Possible involvement of protein kinase C activation and its inhibition by nitric oxide donors. Circ. Res. 1996, 78, 780–789. [Google Scholar] [CrossRef]
- Takahashi, Y.; Fuda, H.; Yanai, H.; Akita, H.; Shuping, H.; Chiba, H.; Matsuno, K. Significance of Membrane Glycoproteins in Platelet Interaction with Oxidized Low-Density Lipoprotein. Semin. Thromb. Hemost. 1998, 24, 251–253. [Google Scholar] [CrossRef]
- Chen, K.; Febbraio, M.; Li, W.; Silverstein, R.L. A specific CD36-dependent signaling pathway is required for platelet activation by oxidized low-density lipoprotein. Circ. Res. 2008, 102, 1512–1519. [Google Scholar] [CrossRef]
- Nomura, S.; Shouzu, A.; Omoto, S.; Nishikawa, M.; Iwasaka, T.; Fukuhara, S. Activated platelet and oxidized LDL induce endothelial membrane vesiculation: Clinical significance of endothelial cell-derived microparticles in patients with type 2 diabetes. Clin. Appl. Thromb. Hemost. Off. J. Int. Acad. Clin. Appl. Thromb. Hemost. 2004, 10, 205–215. [Google Scholar] [CrossRef]
- Podrez, E.A.; Byzova, T.V.; Febbraio, M.; Salomon, R.G.; Ma, Y.; Valiyaveettil, M.; Poliakov, E.; Sun, M.; Finton, P.J.; Curtis, B.R.; et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 2007, 13, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Zimman, A.; Gao, D.; Byzova, T.V.; Podrez, E.A. TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis Associated With Hyperlipidemia. Circ. Res. 2017, 121, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Coleman, L.G.; Polanowska-Grabowska, R.K.; Marcinkiewicz, M.; Gear, A.R. LDL oxidized by hypochlorous acid causes irreversible platelet aggregation when combined with low levels of ADP, thrombin, epinephrine, or macrophage-derived chemokine (CCL22). Blood 2004, 104, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Dierichs, R.; Harrach-Ruprecht, B.; Winterhorff, H. Oxidized LDL induces serotonin release from blood platelets. Am. J. Hematol. 1995, 48, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Yoshida, H.; Hirowatari, Y.; Tomono, Y.; Tada, N. Oxidized low density lipoprotein elevates platelet serotonin release. Am. J. Hematol. 2007, 82, 686–687. [Google Scholar] [CrossRef] [PubMed]
- Puccetti, L.; Sawamura, T.; Pasqui, A.L.; Pastorelli, M.; Auteri, A.; Bruni, F. Atorvastatin reduces platelet-oxidized-LDL receptor expression in hypercholesterolaemic patients. Eur. J. Clin. Investig. 2005, 35, 47–51. [Google Scholar] [CrossRef]
- Bruni, F.; Pasqui, A.L.; Pastorelli, M.; Bova, G.; Cercignani, M.; Palazzuoli, A.; Sawamura, T.; Gioffre, W.R.; Auteri, A.; Puccetti, L. Different effect of statins on platelet oxidized-LDL receptor (CD36 and LOX-1) expression in hypercholesterolemic subjects. Clin. Appl. Thromb. Hemost. Off. J. Int. Acad. Clin. Appl. Thromb. Hemost. 2005, 11, 417–428. [Google Scholar] [CrossRef]
- Chen, R.; Chen, X.; Salomon, R.G.; McIntyre, T.M. Platelet Activation by Low Concentrations of Intact Oxidized LDL Particles Involves the PAF Receptor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 363–371. [Google Scholar] [CrossRef]
- Yang, S.-H.H.; Li, Y.-T.T.; Du, D.-Y.Y. Oxidized low-density lipoprotein-induced CD147 expression and its inhibition by high-density lipoprotein on platelets in vitro. Thromb. Res. 2013, 132, 702–711. [Google Scholar] [CrossRef]
- Mahfouz, M.M.; Kummerow, F.A. Oxysterols and TBARS are among the LDL oxidation products which enhance thromboxane A2 synthesis by platelets. Prostaglandins Other Lipid Mediat. 1998, 56, 197–217. [Google Scholar] [CrossRef]
- Mahfouz, M.M.; Kummerow, F.A. Oxidized low-density lipoprotein (LDL) enhances thromboxane A(2) synthesis by platelets, but lysolecithin as a product of LDL oxidation has an inhibitory effect. Prostaglandins Other Lipid Mediat. 2000, 62, 183–200. [Google Scholar] [CrossRef]
- Strüßmann, T.; Tillmann, S.; Wirtz, T.; Bucala, R.; von Hundelshausen, P.; Bernhagen, J. Platelets are a previously unrecognised source of MIF. Thromb. Haemost. 2013, 110, 1004–1013. [Google Scholar] [PubMed]
- Naseem, K.M.; Goodall, A.H.; Bruckdorfer, K.R. Differential effects of native and oxidatively modified low-density lipoproteins on platelet function. Platelets 1997, 8, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Volf, I.; Roth, A.; Cooper, J.; Moeslinger, T.; Koller, E. Hypochlorite modified LDL are a stronger agonist for platelets than copper oxidized LDL. FEBS Lett. 2000, 483, 155–159. [Google Scholar] [CrossRef]
- Weidtmann, A.; Scheithe, R.; Hrboticky, N.; Pietsch, A.; Lorenz, R.; Siess, W. Mildly oxidized LDL induces platelet aggregation through activation of phospholipase A2. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 1131–1138. [Google Scholar] [CrossRef]
- Vlasova, I.I.; Azizova, O.A.; Lopukhin Yu, M. Inhibitor analysis of LDL-induced platelet aggregation. Biochem. Biokhimiia 1997, 62, 307–311. [Google Scholar]
- Szuwart, T.; Dierichs, R.B.; Zhao, B. Vitamin E (α-tocopherol) does not inhibit platelet stimulation by oxidized low density lipoprotein in vitro. Am. J. Hematol. 1999, 60, 242–244. [Google Scholar] [CrossRef]
- Mehta, J.L.; Chen, L.Y. Reversal by high-density lipoprotein of the effect of oxidized low-density lipoprotein on nitric oxide synthase protein expression in human platelets. J. Lab. Clin. Med. 1996, 127, 287–295. [Google Scholar] [CrossRef]
- Tornvall, P.; Chirkova, L.; Toverud, K.D.; Horowitz, J.D.; Chirkov, Y. Native and oxidized low density lipoproteins enhance platelet aggregation in whole blood. Thromb. Res. 1999, 95, 177–183. [Google Scholar] [CrossRef]
- Ardlie, N.G.; Selley, M.L.; Simons, L.A. Platelet activation by oxidatively modified low density lipoproteins. Atherosclerosis 1989, 76, 117–124. [Google Scholar] [CrossRef]
- Rother, E.; Brandl, R.; Baker, D.L.; Goyal, P.; Gebhard, H.; Tigyi, G.; Siess, W. Subtype-selective antagonists of lysophosphatidic Acid receptors inhibit platelet activation triggered by the lipid core of atherosclerotic plaques. Circulation 2003, 108, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Schmid, W.; Assinger, A.; Lee, A.; Bielek, E.; Koller, E.; Volf, I. Platelet-stimulating effects of oxidized LDL are not attributable to toxic properties of the lipoproteins. Thromb. Res. 2008, 122, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Dierichs, R.; Miller, F.N.; Dean, W.L. Oxidized low density lipoprotein inhibits platelet plasma membrane Ca(2+)-ATPase. Cell Calcium 1996, 19, 453–458. [Google Scholar] [CrossRef]
- Schmidt, K.; Graier, W.F.; Kostner, G.M.; Mayer, B.; Kukovetz, W.R. Activation of soluble guanylate cyclase by nitrovasodilators is inhibited by oxidized low-density lipoprotein. Biochem. Biophys. Res. Commun. 1990, 172, 614–619. [Google Scholar] [CrossRef]
- Zuliani, V.; Tommasol, R.; Gaino, S.; Degan, M.; Cominacini, L.; Davoli, A.; Lechi, C.; Lechi, A.; Minuz, P. Oxidized low density lipoprotein (LDL) and platelet intracellular calcium: Interaction with nitric oxide. Platelets 1998, 9, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Bruckdorfer, K.R.; Naseem, K.M.; Mohammadi, B.; Chirico, S.; Ettelaie, C.; Gleeson, A.; Young, T.; Adam, J.M.; Wilbourn, B.; Skinner, V.O.; et al. The influence of oxidized lipoproteins, oxidation products and antioxidants on the release of nitric oxide from the endothelium and the response of platelets to nitric oxide. BioFactors 1997, 6, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Minuz, P.; Lechi, C.; Gaino, S.; Bonapace, S.; Fontana, L.; Garbin, U.; Paluani, F.; Cominacini, L.; Zatti, M.; Lechi, A. Oxidized LDL and reduction of the antiaggregating activity of nitric oxide derived from endothelial cells. Thromb. Haemost. 1995, 74, 1175–1179. [Google Scholar] [CrossRef]
- Berger, M.; Raslan, Z.; Aburima, A.; Magwenzi, S.; Wraith, K.S.; Spurgeon, B.E.J.; Hindle, M.S.; Law, R.; Febbraio, M.; Naseem, K.M. Atherogenic lipid stress induces platelet hyperactivity through CD36-mediated hyposensitivity to prostacyclin: The role of phosphodiesterase 3A. Haematologica 2020, 105, 808–819. [Google Scholar] [CrossRef]
- Magwenzi, S.; Woodward, C.; Wraith, K.S.; Aburima, A.; Raslan, Z.; Jones, H.; McNeil, C.; Wheatcroft, S.; Yuldasheva, N.; Febbriao, M.; et al. Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood 2015, 125, 2693–2703. [Google Scholar] [CrossRef]
- Yang, M.; Cooley, B.C.; Li, W.; Chen, Y.; Vasquez-Vivar, J.; Scoggins, N.O.; Cameron, S.J.; Morrell, C.N.; Silverstein, R.L. Platelet CD36 promotes thrombosis by activating redox sensor ERK5 in hyperlipidemic conditions. Blood 2017, 129, 2917–2927. [Google Scholar] [CrossRef]
- Badrnya, S.; Butler, L.M.; Söderberg-Naucler, C.; Volf, I.; Assinger, A. Platelets directly enhance neutrophil transmigration in response to oxidised low-density lipoprotein. Thromb. Haemost. 2012, 108, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Badrnya, S.; Schrottmaier, W.C.; Kral, J.B.; Yaiw, K.C.; Volf, I.; Schabbauer, G.; Soderberg-Naucler, C.; Assinger, A. Platelets mediate oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Lehr, H.A.; Olofsson, A.M.; Carew, T.E.; Vajkoczy, P.; von Andrian, U.H.; Hübner, C.; Berndt, M.C.; Steinberg, D.; Messmer, K.; Arfors, K.E. P-selectin mediates the interaction of circulating leukocytes with platelets and microvascular endothelium in response to oxidized lipoprotein in vivo. Lab. Investig. J. Tech. Methods Pathol. 1994, 71, 380–386. [Google Scholar]
- Korporaal, S.J.; Gorter, G.; van Rijn, H.J.; Akkerman, J.W. Effect of oxidation on the platelet-activating properties of low-density lipoprotein. Arteroscler. Thromb. Vasc. Biol. 2005, 25, 867–872. [Google Scholar] [CrossRef]
- Holm, T.; Damås, J.K.; Holven, K.; Nordøy, I.; Brosstad, F.R.; Ueland, T.; Währe, T.; Kjekshus, J.; Frøland, S.S.; Eiken, H.G.; et al. CXC-chemokines in coronary artery disease: Possible pathogenic role of interactions between oxidized low-density lipoprotein, platelets and peripheral blood mononuclear cells. J. Thromb. Haemost. 2003, 1, 257–262. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.-H.H.; Kong, J.; Yang, M.-Y.Y.; Jiang, G.-H.H.; Wang, X.-P.P.; Zhong, M.; Zhang, Y.; Deng, J.-T.T.; Zhang, W. Oxidized low-density lipoprotein-dependent platelet-derived microvesicles trigger procoagulant effects and amplify oxidative stress. Mol. Med. 2012, 18, 159–166. [Google Scholar] [CrossRef]
- Zieseniss, S.; Zahler, S.; Müller, I.; Hermetter, A.; Engelmann, B. Modified Phosphatidylethanolamine as the Active Component of Oxidized Low Density Lipoprotein Promoting Platelet Prothrombinase Activity. J. Biol. Chem. 2001, 276, 19828–19835. [Google Scholar] [CrossRef]
- Levitan, I.; Volkov, S.; Subbaiah, P.V. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Signal. 2010, 13, 39–75. [Google Scholar] [CrossRef]
- Esterbauer, H.; Dieber-Rotheneder, M.; Waeg, G.; Striegl, G.; Jurgens, G. Biochemical, structural, and functional properties of oxidized low-density lipoprotein. Chem. Res. Toxicol. 1990, 3, 77–92. [Google Scholar] [CrossRef]
- Tang, W.H.; Hazen, S.L. Carbamylated Low-Density Lipoprotein and Thrombotic Risk in Chronic Kidney Disease. J. Am. Coll. Cardiol. 2016, 68, 1677–1679. [Google Scholar] [CrossRef]
- Obama, T.; Kato, R.; Masuda, Y.; Takahashi, K.; Aiuchi, T.; Itabe, H. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics 2007, 7, 2132–2141. [Google Scholar] [CrossRef] [PubMed]
- Itabe, H.; Ueda, M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J. Atheroscler. Thromb. 2007, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berliner, J.A.; Subbanagounder, G.; Leitinger, N.; Watson, A.D.; Vora, D. Evidence for a role of phospholipid oxidation products in atherogenesis. Trends Cardiovasc. Med. 2001, 11, 142–147. [Google Scholar] [CrossRef]
- Samouilidou, E.C.; Karpouza, A.P.; Kostopoulos, V.; Bakirtzi, T.; Pantelias, K.; Petras, D.; Tzanatou-Exarchou, H.; Grapsa, E.J. Lipid abnormalities and oxidized LDL in chronic kidney disease patients on hemodialysis and peritoneal dialysis. Ren. Fail. 2012, 34, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Byfield, F.J.; Tikku, S.; Rothblat, G.H.; Gooch, K.J.; Levitan, I. OxLDL increases endothelial stiffness, force generation, and network formation. J. Lipid Res. 2006, 47, 715–723. [Google Scholar] [CrossRef]
- Kowalsky, G.B.; Byfield, F.J.; Levitan, I. oxLDL facilitates flow-induced realignment of aortic endothelial cells. Am. J. Physiol.-Cell Physiol. 2008, 295, C332–C340. [Google Scholar] [CrossRef]
- Uittenbogaard, A.; Shaul, P.W.; Yuhanna, I.S.; Blair, A.; Smart, E.J. High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae. J. Biol. Chem. 2000, 275, 11278–11283. [Google Scholar] [CrossRef]
- Witztum, J.L.; Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Investig. 1991, 88, 1785–1792. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Ho, Y.; Basu, S.K.; Brown, M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA 1979, 76, 333–337. [Google Scholar] [CrossRef]
- Rosenfeld, M.E.; Palinski, W.; Ylä-Herttuala, S.; Butler, S.; Witztum, J.L. Distribution of oxidation specific lipid-protein adducts and apolipoprotein B in atherosclerotic lesions of varying severity from WHHL rabbits. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1990, 10, 336–349. [Google Scholar] [CrossRef]
- Manning-Tobin, J.J.; Moore, K.J.; Seimon, T.A.; Bell, S.A.; Sharuk, M.; Alvarez-Leite, J.I.; de Winther, M.P.; Tabas, I.; Freeman, M.W. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Mori, C.; Kitazato, K.; Arata, S.; Obama, T.; Mori, M.; Takahashi, K.; Aiuchi, T.; Takano, T.; Itabe, H. Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Virella, G.; Thorpe, S.R.; Alderson, N.L.; Stephan, E.M.; Atchley, D.; Wagner, F.; Lopes-Virella, M.F. Autoimmune response to advanced glycosylation end-products of human LDL. J. Lipid Res. 2003, 44, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, B.; Varì, R.; D’Archivio, M.; Santangelo, C.; Filesi, C.; Giovannini, C.; Masella, R. Oxidized LDL impair adipocyte response to insulin by activating serine/threonine kinases. J. Lipid Res. 2009, 50, 832–845. [Google Scholar] [CrossRef]
- Lopez, D.; Kobayashi, K.; Merrill, J.T.; Matsuura, E.; Lopez, L.R. IgG Autoantibodies against β2-Glycoprotein I Complexed with a Lipid Ligand Derived from Oxidized Low-Density Lipoprotein are Associated with Arterial Thrombosis in Antiphospholipid Syndrome. J. Immunol. Res. 2003, 10, 149426. [Google Scholar]
- Cimen, F.; Yildirmak, S.T.; Ergen, A.; Cakmak, M.; Dogan, S.; Yenice, N.; Sezgin, F. Serum Lipid, Lipoprotein and Oxidatively Modified Low Density Lipoprotein Levels in Active or Inactive Patients with Behcet’s Disease. Indian J. Dermatol. 2012, 57, 97–101. [Google Scholar]
- Nowak, B.; Madej, M.; Luczak, A.; Malecki, R.; Wiland, P. Disease Activity, Oxidized-LDL Fraction and Anti-Oxidized LDL Antibodies Influence Cardiovascular Risk in Rheumatoid Arthritis. Adv. Clin. Exp. Med. 2016, 25, 43–50. [Google Scholar] [CrossRef]
- Volf, I.; Roth, A.; Moeslinger, T.; Cooper, J.; Schmid, W.; Zehetgruber, M.; Koller, E. Stimulating effect of biologically modified low density lipoproteins on ADP-induced aggregation of washed platelets persists in absence of specific binding. Thromb. Res. 2000, 97, 441–449. [Google Scholar] [CrossRef]
- Drake, T.A.; Hannani, K.; Fei, H.H.; Lavi, S.; Berliner, J.A. Minimally oxidized low-density lipoprotein induces tissue factor expression in cultured human endothelial cells. Am. J. Pathol. 1991, 138, 601–607. [Google Scholar]
- Bochkov, V.N.; Mechtcheriakova, D.; Lucerna, M.; Huber, J.; Malli, R.; Graier, W.F.; Hofer, E.; Binder, B.R.; Leitinger, N. Oxidized phospholipids stimulate tissue factor expression in human endothelial cells via activation of ERK/EGR-1 and Ca(++)/NFAT. Blood 2002, 99, 199–206. [Google Scholar] [CrossRef]
- Canton, J.; Neculai, D.; Grinstein, S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 2013, 13, 621–634. [Google Scholar] [CrossRef] [PubMed]
- Mazurov, A.V.; Preobrazhensky, S.N.; Leytin, V.L.; Repin, V.S.; Smirnov, V.N. Study of low density lipoprotein interaction with platelets by flow cytofluorimetry. FEBS Lett. 1982, 137, 319–322. [Google Scholar] [CrossRef]
- Zimman, A.; Podrez, E.A. Regulation of platelet function by class B scavenger receptors in hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2350–2356. [Google Scholar] [CrossRef] [PubMed]
- Neculai, D.; Schwake, M.; Ravichandran, M.; Zunke, F.; Collins, R.F.; Peters, J.; Neculai, M.; Plumb, J.; Loppnau, P.; Pizarro, J.C.; et al. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 2013, 504, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Crombie, R.; Silverstein, R. Lysosomal integral membrane protein II binds thrombospondin-1. Structure-function homology with the cell adhesion molecule CD36 defines a conserved recognition motif. J. Biol. Chem. 1998, 273, 4855–4863. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Murugesan, G.; Chen, K.; Zhang, L.; Wang, Q.; Febbraio, M.; Anselmo, R.M.; Marchant, K.; Barnard, J.; Silverstein, R.L. Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 2011, 117, 6355–6366. [Google Scholar] [CrossRef]
- Burkhart, J.M.; Vaudel, M.; Gambaryan, S.; Radau, S.; Walter, U.; Martens, L.; Geiger, J.; Sickmann, A.; Zahedi, R.P. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012, 120, e73–e82. [Google Scholar] [CrossRef]
- Tandon, N.N.; Lipsky, R.H.; Burgess, W.H.; Jamieson, G.A. Isolation and characterization of platelet glycoprotein IV (CD36). J. Biol. Chem. 1989, 264, 7570–7575. [Google Scholar] [CrossRef]
- Asch, A.S.; Barnwell, J.; Silverstein, R.L.; Nachman, R.L. Isolation of the thrombospondin membrane receptor. J. Clin. Investig. 1987, 79, 1054–1061. [Google Scholar] [CrossRef]
- Endemann, G.; Stanton, L.W.; Madden, K.S.; Bryant, C.M.; White, R.T.; Protter, A.A. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993, 268, 11811–11816. [Google Scholar] [CrossRef]
- Handberg, A.; Levin, K.; Hojlund, K.; Beck-Nielsen, H. Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in plasma: A novel marker of insulin resistance. Circulation 2006, 114, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, V.; van Berkel, T.J. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood 2000, 95, 2157–2163. [Google Scholar] [CrossRef] [PubMed]
- Podrez, E.A.; Poliakov, E.; Shen, Z.; Zhang, R.; Deng, Y.; Sun, M.; Finton, P.J.; Shan, L.; Gugiu, B.; Fox, P.L.; et al. Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J. Biol. Chem. 2002, 277, 38503–38516. [Google Scholar] [CrossRef] [PubMed]
- Kar, N.S.; Ashraf, M.Z.; Valiyaveettil, M.; Podrez, E.A. Mapping and characterization of the binding site for specific oxidized phospholipids and oxidized low density lipoprotein of scavenger receptor CD36. J. Biol. Chem. 2008, 283, 8765–8771. [Google Scholar] [CrossRef]
- Puente Navazo, M.D.; Daviet, L.; Ninio, E.; McGregor, J.L. Identification on human CD36 of a domain (155–183) implicated in binding oxidized low-density lipoproteins (Ox-LDL). Arterioscler. Thromb. Vasc. Biol. 1996, 16, 1033–1039. [Google Scholar] [CrossRef]
- Huang, M.M.; Bolen, J.B.; Barnwell, J.W.; Shattil, S.J.; Brugge, J.S. Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proc. Natl. Acad. Sci. USA 1991, 88, 7844–7848. [Google Scholar] [CrossRef]
- Chen, K.; Li, W.; Major, J.; Rahaman, S.O.; Febbraio, M.; Silverstein, R.L. Vav guanine nucleotide exchange factors link hyperlipidemia and a prothrombotic state. Blood 2011, 117, 5744–5750. [Google Scholar] [CrossRef]
- Karimi, P.; Rashtchizadeh, N. Oxidative Versus Thrombotic Stimulation of Platelets Differentially activates Signalling Pathways. J. Cardiovasc. Thorac. Res. 2013, 5, 61–65. [Google Scholar]
- Yang, M.; Kholmukhamedov, A.; Schulte, M.L.; Cooley, B.C.; Scoggins, N.O.; Wood, J.P.; Cameron, S.J.; Morrell, C.N.; Jobe, S.M.; Silverstein, R.L. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv. 2018, 2, 2848–2861. [Google Scholar] [CrossRef]
- Berger, M.; Wraith, K.; Woodward, C.; Aburima, A.; Raslan, Z.; Hindle, M.S.; Moellmann, J.; Febbraio, M.; Naseem, K.M. Dyslipidemia-associated atherogenic oxidized lipids induce platelet hyperactivity through phospholipase Cgamma2-dependent reactive oxygen species generation. Platelets 2019, 30, 467–472. [Google Scholar] [CrossRef]
- Nieswandt, B.; Watson, S.P. Platelet-collagen interaction: Is GPVI the central receptor? Blood 2003, 102, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Inoue, K.; Wilde, J.I.; Andrews, R.K.; Auger, J.M.; Siraganian, R.P.; Sekiya, F.; Rhee, S.G.; Watson, S.P. Glycoproteins VI and Ib-IX-V stimulate tyrosine phosphorylation of tyrosine kinase Syk and phospholipase Cgamma2 at distinct sites. Biochem. J. 2004, 378 Pt 3, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.P.; Auger, J.M.; McCarty, O.J.; Pearce, A.C. GPVI and integrin alphaIIb beta3 signaling in platelets. J. Thromb. Haemost. 2005, 3, 1752–1762. [Google Scholar] [CrossRef]
- Navarro-Nunez, L.; Langan, S.A.; Nash, G.B.; Watson, S.P. The physiological and pathophysiological roles of platelet CLEC-2. Thromb. Haemost. 2013, 109, 991–998. [Google Scholar] [PubMed]
- Navarese, E.P.; Kolodziejczak, M.; Winter, M.P.; Alimohammadi, A.; Lang, I.M.; Buffon, A.; Lip, G.Y.; Siller-Matula, J.M. Association of PCSK9 with platelet reactivity in patients with acute coronary syndrome treated with prasugrel or ticagrelor: The PCSK9-REACT study. Int. J. Cardiol. 2017, 227, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Sawamura, T.; Furutani, Y.; Matsuoka, R.; Yoshida, M.C.; Fujiwara, H.; Masaki, T. Structure and chromosomal assignment of the human lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) gene. Biochem. J. 1999, 339 Pt 1, 177–184. [Google Scholar] [CrossRef]
- Chen, M.; Kakutani, M.; Naruko, T.; Ueda, M.; Narumiya, S.; Masaki, T.; Sawamura, T. Activation-dependent surface expression of LOX-1 in human platelets. Biochem. Biophys. Res. Commun. 2001, 282, 153–158. [Google Scholar] [CrossRef]
- Moore, K.J.; El Khoury, J.; Medeiros, L.A.; Terada, K.; Geula, C.; Luster, A.D.; Freeman, M.W. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J. Biol. Chem. 2002, 277, 47373–47379. [Google Scholar] [CrossRef]
- Kodama, T.; Freeman, M.; Rohrer, L.; Zabrecky, J.; Matsudaira, P.; Krieger, M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990, 343, 531–535. [Google Scholar] [CrossRef]
- Rowley, J.W.; Oler, A.J.; Tolley, N.D.; Hunter, B.N.; Low, E.N.; Nix, D.A.; Yost, C.C.; Zimmerman, G.A.; Weyrich, A.S. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 2011, 118, e101–e111. [Google Scholar] [CrossRef]
- Motohashi, K.; Shibata, S.; Ozaki, Y.; Yatomi, Y.; Igarashi, Y. Identification of lysophospholipid receptors in human platelets: The relation of two agonists, lysophosphatidic acid and sphingosine 1-phosphate. FEBS Lett. 2000, 468, 189–193. [Google Scholar] [CrossRef]
- Cognasse, F.; Hamzeh, H.; Chavarin, P.; Acquart, S.; Genin, C.; Garraud, O. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell Biol. 2005, 83, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.I.; Choi, S.H.; Wiesner, P.; Bae, Y.S. The SYK side of TLR4: Signalling mechanisms in response to LPS and minimally oxidized LDL. Br. J. Pharmacol. 2012, 167, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Oh, S.; Koester, M.; Abramowicz, S.; Wang, N.; Tall, A.R.; Welch, C.L. Enhanced Megakaryopoiesis and Platelet Activity in Hypercholesterolemic, B6-Ldlr-/-, Cdkn2a-Deficient Mice. Circ. Cardiovasc. Genet. 2016, 9, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.M.; Vasile, E.; Lane, W.S.; Lawler, J. CD36 associates with CD9 and integrins on human blood platelets. Blood 2001, 97, 1689–1696. [Google Scholar] [CrossRef]
- Kautbally, S.; Lepropre, S.; Onselaer, M.B.; Le Rigoleur, A.; Ginion, A.; De Meester de Ravenstein, C.; Ambroise, J.; Boudjeltia, K.Z.; Octave, M.; Wera, O.; et al. Platelet Acetyl-CoA Carboxylase Phosphorylation: A Risk Stratification Marker That Reveals Platelet-Lipid Interplay in Coronary Artery Disease Patients. JACC Basic Transl. Sci. 2019, 4, 596–610. [Google Scholar] [CrossRef]
Environment | Functional Response | Method of Oxidation | Species | Platelet Preparation | Reference | |
---|---|---|---|---|---|---|
Adhesion | In vitro | OxLDL induces increased platelet adhesion to collagen and HUVECs under flow/static conditions | CuSO4 | Human | Whole blood/washed platelets | [34,40,41,42] |
In vitro | OxLDL induces increased platelet adhesion to fibrinogen under flow conditions | Electronegative LDL—fraction L5, isolated from patients | Human | Washed platelets | [33] | |
In vivo | OxLDL injection increases platelet endothelial adhesion after carotid ligation in WT animals | CuSO4 | Mouse | Whole blood | [34] | |
In vivo | OxLDL injection increases platelet endothelial adhesions in cremaster muscle blood vessels | CuSO4 | Hamster | Whole blood | [43] | |
In vitro | OxLDL increases platelet spreading and pseudopodia formation under static conditions | CuSO4/FeSO4 | Human | Washed platelets | [44,45,46,47,48,49,50,51,52] | |
In vitro | OxLDL increases adhesion of platelets to oxLDL co-coated collagen matrix under arterial flow conditions | CuSO4 | Human | Whole blood | [44] | |
In vitro | Mildly/extensively oxidised LDL causes shape changes in platelet suspensions | O2 oxidation/CuSO4/Acyl-LPA | Human | Washed platelets | [46,53,54] | |
In vitro | Increased platelet adhesion to MDA/HOCL modified-oxLDL under static conditions | MDA modified oxLDL/HOCL-LDL | Human | Washed platelets | [55] | |
Degranulation & Secretion | In vitro | OxLDL increases platelet P-selectin expression | CuSO4/LysoPC | Human/cat | Whole blood/washed platelets | [34,56,57,58,59] |
In vitro | Positive correlation of platelet P-selectin, sCD40L and oxLDL levels | MPO-mediated LDL oxidation | Human | Washed platelets | [60] | |
In vitro | OxPCCD36 induces increased platelet P-selectin expression | OxPCCD36 | Human | Washed platelets | [61] | |
In vitro | OxPCCD36 induces P-selectin expression | KODA-PC | Mouse | Washed platelets | [62] | |
In vitro | OxLDL potentiates ADP-induced P-selectin expression in platelets | HOCL-LDL | Human | Washed platelets | [63] | |
In vitro | OxLDL induces platelet serotonin secretion | CuSO4 | Human | Washed platelets | [64,65] | |
In vitro | OxLDL potentiates ADP-induced serotonin secretion in platelets | HOCL–LDL | Human | Washed platelets | [63] | |
In vitro | Binding of oxLDL on dyslipidaemic platelets linked to increased P-selectin expression | oxLDL-associated dyslipidaemia | Human | Washed platelets/whole blood | [34,66,67] | |
In vitro | OxLDL potentiates the effect of thrombin on platelet P-selectin expression | CuSO4 | Human | Washed platelets | [68] | |
In vitro | OxLDL induces platelet CD147 release | CuSO4 | Human | Washed platelets | [69] | |
In vitro | OxLDL induces platelet thromboxane A2 generation | CuSO4 | Human | Washed platelets | [70,71] | |
In vitro | OxLDL induces platelet thromboxane B2 generation | METS-LDL/DMII LDL/glycooxidised LDL | Human | Washed platelets | [28,30] | |
In vitro | OxLDL induces platelet CXCL12 release | CuSO4 | Human | Washed platelets | [72] | |
Aggregation | In vitro | OxLDL induces platelet aggregation | CuSO4/Ac-LDL/HOCL-LDL/SIN-1-LDL/Acyl-LPA/O2 oxidation/Electronegative LDL—Fraction L5/METS-LDL/DMII-LDL/ | Human | Washed platelets/ PRP | [28,46,54,73,74,75,76,77,78] |
In vitro | OxLDL potentiates the effects of ADP on platelet aggregation | CuSO4/HOCL-LDL/Electronegative LDL/oxLDL-associated APOE−/− dyslipidaemia | Human/mouse | Washed plt./PRP/PRP and washed platelet in ratio 1:1 | [33,63,74,79,80,81] | |
In vitro | OxLDL potentiates the effects of thrombin aggregation | CuSO4/HOCL-LDL | Human | Washed platelets | [74,82] | |
In vitro | OxPCCD36 induces increased fibrinogen binding in platelets | OxPCCD36 | Human | Washed platelets | [61] | |
In vitro | OxLDL potentiates the effects of epinephrine and thrombin in aggregation | HOCL-LDL | Human | Washed platelets | [63] | |
In vitro | oxLDL increases active conformation of aIIbß3 | CuSO4 | Human/mouse | Washed platelets | [42,62] | |
Ca2+ mobilisation | In vitro | OxLDL induces intracellular Ca2+ mobilisation | CuSO4/HOCL-LDL | Human | Washed platelets | [63,68,83] |
Disinhibition | In vitro | OxLDL inhibits activation of guanylate cyclase | CuCl2 | Bovine | Washed platelets | |
In vitro | OxLDL decreases platelets sensitivity to NO in thrombin aggregation | CuSO4/O2 Oxidation | Human | Washed platelets | [84,85,86] | |
In vitro | OxLDL reduces the effect of endothelial cell-derived NO on platelets | Not defined | Human | Washed platelets | [87] | |
In vivo/In vitro | oxLDL, oxPCCD36 and oxPCCD36-associated highfat diet induces PDE3A and leads to reduced cAMP signalling | CuSO4/oxPCCD36/High fat diet | Human/mouse | Washed platelet, PRP, whole blood | [88] | |
In vivo/In vitro | oxLDL-induced ROS production inhibits the effects of 8pCPT-cGMP | CuSO4 | Human/mouse | Whole blood | [89] | |
ROS-generation | In vitro | oxLDL induces ROS generation | CuSO4 | Human | Washed platelets | [42,89,90] |
Cell-Cell-interactions | In vitro/In vivo | OxLDL increases platelet-leucocyte interaction and platelet-induced leucocyte transmigration | HOCL/CuSO4 | Human/mouse | PRP/leucocyte enriched PRP | [91,92] |
In vivo | OxLDL increases platelet-leucocyte interactions and P-selectin-dependent leucocyte endothelial interactions | Cu2+ | Hamster | Whole blood | [93] | |
In vitro | OxLDL Increases platelet-monocyte interactions | Acyl-LPA | Human | Whole blood | [54] | |
In vitro | OxLDL treated platelets induce ICAM-1 expression in endothelial cells | HOCL | Human | Washed platelets | [56] | |
Miscellaneous | In vivo | Injection of OxLDL shortens tailbleeding time | Electronegative LDL, fraction L5, isolated from patients | Mouse | Whole blood | [33] |
In vitro | Oxidised LDL attenuates Fibrinogen binding | FeSO4 (>30% assessed by REM) | Human | Washed platelets | [94] | |
In vitro | OxLDL increases CXC5 release in platelets from CAD patients | CuSO4 | Human | PRP | [95] | |
In vitro | OxLDL induces microvesicle release and increases platelet phosphatidylserine exposure | CuSO4 | Human | Washed platelets | [96] | |
In vitro | OxLDL increases platelet prothrombinase activity | CuSO4 + AAPH/MPO oxidised LDL | Human | Washed platelets | [97] | |
In vivo | oxLDL injection increases time to occlusion in a ferric chloride thrombosis model carotid artery | CuSO4 | Mouse | Whole blood | [42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berger, M.; Naseem, K.M. Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int. J. Mol. Sci. 2022, 23, 9199. https://doi.org/10.3390/ijms23169199
Berger M, Naseem KM. Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. International Journal of Molecular Sciences. 2022; 23(16):9199. https://doi.org/10.3390/ijms23169199
Chicago/Turabian StyleBerger, Martin, and Khalid M. Naseem. 2022. "Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms" International Journal of Molecular Sciences 23, no. 16: 9199. https://doi.org/10.3390/ijms23169199
APA StyleBerger, M., & Naseem, K. M. (2022). Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. International Journal of Molecular Sciences, 23(16), 9199. https://doi.org/10.3390/ijms23169199