Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Synthesis
3. Results
3.1. Normal Thoracic Aorta
3.1.1. Age-Related Changes in Glycosaminoglycans in Normal Aorta
Study | Methods | Total GAG | CS | DS | HS | HA | KS | Region | Age Range (Years) | |
---|---|---|---|---|---|---|---|---|---|---|
C4S | C6S | |||||||||
[32] | V,E,C | ↑ | ↓ | 1–84 | ||||||
[29] | E,C | ↑ | ↑ to middle age then ↓ | ↓ | 28 week foetus–97 | |||||
[34] | C | ↑ to 30 then ↓ | ↑ then ↓ | ↑ then ↓ | ↑ to 20 then ↓ | ↓ | Descend | 1–70 total, 2–42 sub-types | ||
[35] | E,C | ↑ | Ascend | 3–78 | ||||||
[28] | E,C | ↑ | ↑ sulphated:non-sulphated ratio | ↓ | 0 to >71 | |||||
[20] | C,H | ↑ to 40 then ↓ | ↑ to 70 then ↓ | ↑ to 40 then ↓ | ↑ to 20 then ↓ | ↓ | Descend | 0–58 | ||
[33] | E,C | ↑ sulphation | Ascend | Young (20 ± 5), Old (80 ± 5) | ||||||
[25] | H | ↑ then ↓ | ↑ | ↓ | Whole | 4 months–96 | ||||
[36] | E,C | ↑ | ↑ | ↓ | Descend | Young (1–5) Old (60+) | ||||
[23] | E | ↑ | Young (4 months–5) Old (16–78) | |||||||
[16] | E,C | ↓ | ↓ | ↓ | ↑ | Whole | 13–76 | |||
↑ | ↓ | ↑ | ↓ | ↑ | ↓ | ↑ | Arch | Young (31–38) Old (69–76) | ||
↓ | ↑ | ↑ | Upper descend | |||||||
↓ | ↓ | ↓ | ↑ | ↓ | ↑ | ↑ | Lower descend | |||
[31] | C | ↑ | ↑ | ↑ | ↑ | ↓ | 28–83 | |||
[27] | E,H | ↑ | Ascend/descend | 35–84 | ||||||
[30] | E,C | ↑ | ↑ | ↑ | 0–82 | |||||
[24] | H | ↑ | Descend | 14 and 69 |
3.1.2. Proteoglycans in Normal Human Aorta
3.2. Thoracic Aortic Aneurysm and Dissection
Proteoglycan Degradation Associated with TAAD
4. Discussion
4.1. Functional Role of Glycosaminoglycans and Proteoglycans in Thoracic Aorta
4.2. Age-Related Changes in Glycosaminoglycans and Proteoglycans
4.3. Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection
4.4. Animal Studies in TAAD
4.5. Why Are We Interested in GAGs/PGs?
4.6. Limitations of Data Available
Study | Normal | TAA | TAD |
---|---|---|---|
[40] | 10 | 10 | |
[48] | 14 (acute) | ||
3 (chronic) | |||
[42] | 3 | 3 | |
[53] | 7 | 8 | |
[52] | 19 | 16 | |
[45] | 30 | 60 | |
[47] | 15 | 21 (acute) | |
8 (chronic) | |||
[27] | 9 | 10 | |
[78] | 58 | ||
[43] | 12 | 13 | 33 |
7 | 14 | ||
6 | 6 | ||
[79] | 27 | 27 | |
[41] | 3 | 3 | |
[51] | 12 | 14 | 16 |
[50] | 8 | 10 | 10 |
[86] | 10 | 9 | |
[46] | 13 | 13 |
5. Conclusions: Is There Enough Evidence to Suggest If GAGs/PGs Have a Role in TAAD?
6. Limitations of the Study
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballinger, M.; Nigro, J.; Frontanilla, K.V.; Dart, A.M.; Little, P.J. Regulation of glycosaminoglycan structure and atherogenesis. Cell. Mol. Life Sci. 2004, 61, 1296–1306. [Google Scholar] [CrossRef] [PubMed]
- Cizmeci-Smith, G.; Langan, E.; Youkey, J.; Showalter, L.J.; Carey, D.J. Syndecan-4 Is a Primary-Response Gene Induced by Basic Fibroblast Growth Factor and Arterial Injury in Vascular Smooth Muscle Cells. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Yasmin; Maskari, R.A.; McEniery, C.M.; Cleary, S.E.; Li, Y.; Siew, K.; Figg, N.L.; Khir, A.W.; Cockcroft, J.R.; Wilkinson, I.B.; et al. The matrix proteins aggrecan and fibulin-1 play a key role in determining aortic stiffness. Sci. Rep. 2018, 8, 8550. [Google Scholar] [CrossRef]
- Didangelos, A.; Yin, X.; Mandal, K.; Baumert, M.; Jahangiri, M.; Mayr, M. Proteomics Characterization of Extracellular Space Components in the Human Aorta. Mol. Cell. Proteom. 2010, 9, 2048–2062. [Google Scholar] [CrossRef] [PubMed]
- Mattson, J.M.; Turcotte, R.; Zhang, Y. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics. Biomech. Model. Mechanobiol. 2017, 16, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Onorati, F.; Marconi, M.; Pasquali, A.; Patuzzo, C.; Malashicheva, A.; Irtyega, O.; Faggian, G.; Pignatti, P.F.; Trabetti, E.; et al. Studies on sporadic non-syndromic thoracic aortic aneurysms: II. Alterations of extra-cellular matrix components and focal adhesion proteins. Eur. J. Prev. Cardiol. 2018, 25 (Suppl. S1), 51–58. [Google Scholar] [CrossRef]
- Wagenseil, J.E.; Mecham, R.P. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 2009, 89, 957–989. [Google Scholar] [CrossRef]
- Dingemans, K.P.; Teeling, P.; Lagendijk, J.H.; Becker, A.E. Extracellular matrix of the human aortic media: An ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 2000, 258, 1–14. [Google Scholar] [CrossRef]
- Humphrey, J.D. Possible mechanical roles of glycosaminoglycans in thoracic aortic dissection and associations with dysregulated transforming growth factor-β. J. Vasc. Res. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Wight, T.N. A role for proteoglycans in vascular disease. Matrix Biol. 2018, 71–72, 396–420. [Google Scholar] [CrossRef]
- Bäck, M.; Gasser, T.C.; Michel, J.-B.; Caligiuri, G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 2013, 99, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W. Accentuating and Opposing Factors Leading to Development of Thoracic Aortic Aneurysms Not Due to Genetic or Inherited Conditions. Front. Cardiovasc. Med. 2015, 2, 21. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Hu, M.; Shen, M.; Kassiri, Z. Extracellular matrix, regional heterogeneity of the aorta, and aortic aneurysm. Exp. Mol. Med. 2019, 51, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Roccabianca, S.; Ateshian, G.A.; Humphrey, J.D. Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech. Model. Mechanobiol. 2014, 13, 13–25. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Rausch, M.K.; Humphrey, J.D. Particle-based computational modelling of arterial disease. J. R. Soc. Interface 2018, 15, 20180616. [Google Scholar] [CrossRef]
- Stuhlsatz, H.W.; Löffler, H.; Mohanaradhakrishnan, V.; Cosma, S.; Greiling, H. Topographic and age-dependent distribution of the glycosaminoglycans in human aorta. J. Clin. Chem. Clin. Biochem. Z. Klin. Chem. Klin. Biochem. 1982, 20, 713–721. [Google Scholar] [CrossRef]
- Cardoso, L.E.; Mourão, P.A. Glycosaminoglycan fractions from human arteries presenting diverse susceptibilities to atherosclerosis have different binding affinities to plasma LDL. Arterioscler. Thromb. A J. Vasc. Biol. 1994, 14, 115–124. [Google Scholar] [CrossRef]
- Heickendorff, L.; Ledet, T.; Rasmussen, L.M. Glycosaminoglycans in the human aorta in diabetes mellitus: A study of tunica media from areas with and without atherosclerotic plaque. Diabetologia 1994, 37, 286–292. [Google Scholar] [CrossRef]
- Wasty, F.; Alavi, M.Z.; Moore, S. Distribution of glycosaminoglycans in the intima of human aortas: Changes in atherosclerosis and diabetes mellitus. Diabetologia 1993, 36, 316–322. [Google Scholar] [CrossRef]
- Schorah, C.J.; Lovell, D.; Curran, R.C. Arterial acid mucopolysaccharide concentrations: Their correlation with age and intimal hyperplasia. Br. J. Exp. Pathol. 1968, 49, 574–585. [Google Scholar]
- Kumar, V.; Berenson, G.S.; Ruiz, H.; Dalferes, E.R.; Strong, J.P. Acid mucopolysaccharides of human aorta: Part 2. Variations with atherosclerotic involvement. J. Atheroscler. Res. 1967, 7, 583–590. [Google Scholar] [CrossRef]
- Klynstra, F.B.; Böttcher, C.J.F.; Van Melsen, J.A.; Van Der Laan, E.J. Distribution and composition of acid mucopolysaccharides in normal and atherosclerotic human aortas. J. Atheroscler. Res. 1967, 7, 301–309. [Google Scholar] [CrossRef]
- Toledo, O.M.S.; Mourão, P.A.S. Sulfated glycosaminoglycans of human aorta: Chondroitin 6-sulfate increase with age. Biochem. Biophys. Res. Commun. 1979, 89, 50–55. [Google Scholar] [CrossRef]
- Jadidi, M.; Razian, S.A.; Habibnezhad, M.; Anttila, E.; Kamenskiy, A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater. 2021, 119, 268–283. [Google Scholar] [CrossRef] [PubMed]
- Okada, R.; Hazato, N.; Nishijo, T.; Sugiua, M. Acid-mucopolysaccharides and sclerosis of the human aorta. Jpn. Circ. J. 1973, 37, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Izuka, K.; Nakazawa, K. Effects of acidic glycosaminoglycans in human aortic inner and outer layers on partial thromboplastin time. Atherosclerosis 1978, 29, 95–104. [Google Scholar] [CrossRef]
- Gutierrez, P.S.; Almeida, I.C.D.; Nader, H.B.; Higuchi, M.D.L.; Stolf, N.; Dietrich, C.P. Decrease in sulphated glycosaminoglycans in aortic dissection—possible role in the pathogenesis. Cardiovasc. Res. 1991, 25, 742–748. [Google Scholar] [CrossRef]
- Bertelsen, S. Chemical studies on the arterial wall in relation to atherosclerosis. Ann. N. Y. Acad. Sci. 1968, 149, 643–654. [Google Scholar] [CrossRef]
- Manley, G. Changes in vascular mucopolysaccharides with age and blood pressure. Br. J. Exp. Pathol. 1965, 46, 125–134. [Google Scholar]
- Tovar, A.M.F.; Cesar, D.C.F.; Leta, G.C.; Mourão, P.A.S. Age-Related Changes in Populations of Aortic Glycosaminoglycans. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 604–614. [Google Scholar] [CrossRef]
- Hollmann, J.; Schmidt, A.; von Bassewitz, D.B.; Buddecke, E. Relationship of sulfated glycosaminoglycans and cholesterol content in normal and arteriosclerotic human aorta. Arterioscler. Off. J. Am. Heart Assoc. Inc. 1989, 9, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, S.; Jensen, C.E. Physio-Chemical Investigations on Acid Mucopolysaccharides in Human Aortic Tissue. Acta Pharmacol. Toxicol. 1960, 16, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Mullinger, R.N.; Lloyd, P.H. Properties of heparan sulphate and chondroitin sulphate from young and old human aortae. Biochem. J. 1969, 114, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Berenson, G.S.; Ruiz, H.; Dalferes, E.R.; Strong, J.P. Acid mucopolysaccharides of human aorta: Part 1. Variations with maturation. J. Atheroscler. Res. 1967, 7, 573–581. [Google Scholar] [CrossRef]
- Nakamura, T.; Tokita, K.; Tateno, S.; Kotoku, T.; Ohba, T. Human aortic acid mucopolysaccharides and glycoproteins. Changes during ageing and in atherosclerosis. J. Atheroscler. Res. 1968, 8, 891–902. [Google Scholar] [CrossRef]
- Krüger, C.; Teller, W.M. The contents of acid glycosaminoglycans in the aortic wall of newborns, small children, and older adults. Z. Kinderheilkd. 1975, 119, 253–259. [Google Scholar] [CrossRef]
- Chang, Y.S.; Zhang, C.L.; Zhao, P.Z.; Deng, Z.L. Human aortic proteoglycans of subjects from districts of high and low prevalence of atherosclerosis in China. Atherosclerosis 1991, 86, 9–15. [Google Scholar]
- Raspanti, M.; Protasoni, M.; Manelli, A.; Guizzardi, S.; Mantovani, V.; Sala, A. The extracellular matrix of the human aortic wall: Ultrastructural observations by FEG-SEM and by tapping-mode AFM. Micron 2006, 37, 81–86. [Google Scholar] [CrossRef]
- Roccabianca, S.; Bellini, C.; Humphrey, J.D. Computational modelling suggests good, bad and ugly roles of glycosaminoglycans in arterial wall mechanics and mechanobiology. J. R. Soc. Interface 2014, 11, 20140397. [Google Scholar] [CrossRef]
- Cattell, M.A.; Hasleton, P.S.; Anderson, J.C. Glycosaminoglycan content is increased in dissecting aneurysms of human thoracic aorta. Clin. Chim. Acta 1994, 226, 29–46. [Google Scholar] [CrossRef]
- Manley, G.; Kent, P.W. Aortic mucopolysaccharodes and metachromasia in dissecting aneurysm. Br. J. Exp. Pathol. 1963, 44, 635–640. [Google Scholar] [PubMed]
- Cikach, F.S.; Koch, C.D.; Mead, T.J.; Galatioto, J.; Willard, B.B.; Emerton, K.B.; Eagleton, M.J.; Blackstone, E.H.; Ramirez, F.; Roselli, E.E.; et al. Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection. JCI Insight 2018, 3, e97167. [Google Scholar] [CrossRef]
- König, K.C.; Lahm, H.; Dreßen, M.; Doppler, S.A.; Eichhorn, S.; Beck, N.; Kraehschuetz, K.; Doll, S.; Holdenrieder, S.; Kastrati, A.; et al. Aggrecan: A new biomarker for acute type A aortic dissection. Sci. Rep. 2021, 11, 10371. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.Y.; Coady, M.A.; Lovoulos, C.; Dardik, A.; Aslan, M.; Elefteriades, J.A.; Tellides, G. Hyperplastic Cellular Remodeling of the Media in Ascending Thoracic Aortic Aneurysms. Circulation 2005, 112, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Cheng, W.; Yao, C.; Yin, J.; Tong, C.; Rao, A.; Yen, L.; Ku, M.; Rao, J. Quantitative proteomics analysis by isobaric tags for relative and absolute quantitation identified Lumican as a potential marker for acute aortic dissection. J. Biomed. Biotechnol. 2011, 2011, 920763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pan, X.; Zheng, J.; Liu, Y.; Sun, L. SIRT1 protects against aortic dissection by regulating AP-1/decorin signaling-mediated PDCD4 activation. Mol. Biol. Rep. 2020, 47, 2149–2159. [Google Scholar] [CrossRef]
- Gutierrez, P.S.; Reis, M.M.; Higuchi, M.L.; Aiello, V.D.; Stolf, N.A.G.; Lopes, E.A. Distribution of Hyaluronan and Dermatan/Chondroitin Sulfate Proteoglycans in Human Aortic Dissection. Connect. Tissue Res. 1998, 37, 151–161. [Google Scholar] [CrossRef]
- Chen, S.-W.; Chou, S.-H.; Tung, Y.-C.; Hsiao, F.-C.; Ho, C.-T.; Chan, Y.-H.; Wu, V.C.-C.; Chou, A.-H.; Hsu, M.-E.; Lin, P.-J.; et al. Expression and role of lumican in acute aortic dissection: A human and mouse study. PLoS ONE 2021, 16, e0255238. [Google Scholar] [CrossRef]
- Kelwick, R.; Desanlis, I.; Wheeler, G.N.; Edwards, D.R. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol. 2015, 16, 113. [Google Scholar] [CrossRef]
- Ren, P.; Hughes, M.; Krishnamoorthy, S.; Zou, S.; Zhang, L.; Wu, D.; Zhang, C.; Curci, J.A.; Coselli, J.S.; Milewicz, D.M.; et al. Critical Role of ADAMTS-4 in the Development of Sporadic Aortic Aneurysm and Dissection in Mice. Sci. Rep. 2017, 7, 12351. [Google Scholar] [CrossRef]
- Ren, P.; Zhang, L.; Xu, G.; Palmero, L.C.; Albini, P.T.; Coselli, J.S.; Shen, Y.H.; LeMaire, S.A. ADAMTS-1 and ADAMTS-4 levels are elevated in thoracic aortic aneurysms and dissections. Ann. Thorac. Surg. 2013, 95, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, W.; Yu, C.; Zhong, F.; Li, G.; Kong, W.; Zheng, J. A disintegrin and metalloproteinase with thrombospondin motif 1 (ADAMTS1) expression increases in acute aortic dissection. Sci. China Life Sci. 2016, 59, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Gacko, M.; Zwierz, K.; Arciuch, L.; Glowinski, S.; Worowska, A.; Omasta, A. Activity of Exoglycosidases in the Aneurysmal Aortic Wall. Vasc. Surg. 1998, 32, 349–352. [Google Scholar] [CrossRef]
- Carey, D.J. Biological functions of proteoglycans: Use of specific inhibitors of proteoglycan synthesis. Mol. Cell. Biochem. 1991, 104, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Poole, A.R. Proteoglycans in health and disease: Structures and functions. Biochem. J. 1986, 236, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, Y.; Minoshima, I. Elastin Content of the Aorta and the Pulmonary Artery in the Japanese. Angiology 1965, 16, 325–332. [Google Scholar] [CrossRef]
- Tsamis, A.; Krawiec, J.T.; Vorp, D.A. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. J. R. Soc. Interface 2013, 10, 20121004. [Google Scholar] [CrossRef]
- Feyzi, E.; Saldeen, T.; Larsson, E.; Lindahl, U.; Salmivirta, M. Age-dependent Modulation of Heparan Sulfate Structure and Function. J. Biol. Chem. 1998, 273, 13395–13398. [Google Scholar] [CrossRef]
- Krettek, A.; Fager, G.; Lindmark, H.; Simonson, C.; Lustig, F. Effect of phenotype on the transcription of the genes for platelet-derived growth factor (PDGF) isoforms in human smooth muscle cells, monocyte-derived macrophages, and endothelial cells in vitro. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 2897–2903. [Google Scholar] [CrossRef]
- Cavalcante, J.L.; Lima, J.A.; Redheuil, A.; Al-Mallah, M.H. Aortic stiffness: Current understanding and future directions. J. Am. Coll. Cardiol. 2011, 57, 1511–1522. [Google Scholar] [CrossRef]
- Gu, X.; Zhao, L.; Zhu, J.; Gu, H.; Li, H.; Wang, L.; Xu, W.; Chen, J. Serum Mimecan Is Associated With Arterial Stiffness in Hypertensive Patients. J. Am. Heart Assoc. 2015, 4, e002010. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Rausch, M.K.; Humphrey, J.D. Modeling lamellar disruption within the aortic wall using a particle-based approach. Sci. Rep. 2019, 9, 15320. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Roth, M.; Karakiulakis, G. Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology 2012, 4, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A.D.; Tsolakis, I.; Hjerpe, A.; Karamanos, N.K. Human abdominal aortic aneurysm is characterized by decreased versican concentration and specific downregulation of versican isoform V0. Atherosclerosis 2001, 154, 367–376. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Tsolakis, I.; Tsegenidis, T.; Karamanos, N.K. Human abdominal aortic aneurysm is closely associated with compositional and specific structural modifications at the glycosaminoglycan level. Atherosclerosis 1999, 145, 359–368. [Google Scholar] [CrossRef]
- Theocharis, A.D.; Tsolakis, I.; Hjerpe, A.; Karamanos, N.K. Versican undergoes specific alterations in the fine molecular structure and organization in human aneurysmal abdominal aortas. Biomed. Chromatogr. 2003, 17, 411–416. [Google Scholar] [CrossRef]
- Wight, T.N.; Kang, I.; Merrilees, M.J. Versican and the control of inflammation. Matrix Biol. 2014, 35, 152–161. [Google Scholar] [CrossRef]
- Ueda, K.; Yoshimura, K.; Yamashita, O.; Harada, T.; Morikage, N.; Hamano, K. Possible dual role of decorin in abdominal aortic aneurysm. PLoS ONE 2015, 10, e0120689. [Google Scholar] [CrossRef]
- Meester, J.A.; Vandeweyer, G.; Pintelon, I.; Lammens, M.; Van Hoorick, L.; De Belder, S.; Waitzman, K.; Young, L.; Markham, L.W.; Vogt, J.; et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet. Med. 2017, 19, 386–395. [Google Scholar] [CrossRef]
- Heegaard, A.M.; Corsi, A.; Danielsen, C.C.; Nielsen, K.L.; Jorgensen, H.L.; Riminucci, M.; Young, M.F.; Bianco, P. Biglycan Deficiency Causes Spontaneous Aortic Dissection and Rupture in Mice. Circulation 2007, 115, 2731–2738. [Google Scholar] [CrossRef]
- Dupuis, L.E.; Nelson, E.L.; Hozik, B.; Porto, S.C.; Rogers-DeCotes, A.; Fosang, A.; Kern, C.B. Adamts5−/− Mice Exhibit Altered Aggrecan Proteolytic Profiles That Correlate With Ascending Aortic Anomalies. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2067–2081. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Barallobre-Barreiro, J.; Mayr, U.; Lu, R.; Didangelos, A.; Baig, F.; Lynch, M.; Catibog, N.; Joshi, A.; Barwari, T.; et al. Role of ADAMTS-5 in Aortic Dilatation and Extracellular Matrix Remodeling. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
- Kern, C.B.; Wessels, A.; McGarity, J.; Dixon, L.J.; Alston, E.; Argraves, W.S.; Geeting, D.; Nelson, C.M.; Menick, D.R.; Apte, S.S. Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol. 2010, 29, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Thompson, J.C.; Wilson, P.G.; Yoder, M.H.; Müeller, J.; Fischer, J.W.; Williams, K.J.; Tannock, L.R. Biglycan deficiency: Increased aortic aneurysm formation and lack of atheroprotection. J. Mol. Cell. Cardiol. 2014, 75, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Schriefl, A.J.; Collins, M.J.; Pierce, D.M.; Holzapfel, G.A.; Niklason, L.E.; Humphrey, J.D. Remodeling of intramural thrombus and collagen in an Ang-II infusion ApoE−/− model of dissecting aortic aneurysms. Thromb. Res. 2012, 130, e139–e146. [Google Scholar] [CrossRef] [PubMed]
- Bellini, C.; Wang, S.; Milewicz, D.M.; Humphrey, J.D. Myh11R247C/R247C mutations increase thoracic aorta vulnerability to intramural damage despite a general biomechanical adaptivity. J. Biomech. 2015, 48, 113–121. [Google Scholar] [CrossRef]
- Nonaka, R.; Iesaki, T.; Kerever, A.; Arikawa-Hirasawa, E. Increased Risk of Aortic Dissection with Perlecan Deficiency. Int. J. Mol. Sci. 2021, 23, 315. [Google Scholar] [CrossRef]
- Hsu, M.-E.; Cheng, Y.-T.; Chang, C.-H.; Chan, Y.; Wu, V.C.-C.; Hung, K.-C.; Lin, C.-P.; Liu, K.-S.; Chu, P.-H.; Chen, S.-W. Level of serum soluble lumican and risks of perioperative complications in patients receiving aortic surgery. PLoS ONE 2021, 16, e0247340. [Google Scholar] [CrossRef]
- Manley, G. Histology of the aortic media in dissecting aneurysms. J. Clin. Pathol. 1964, 17, 220–224. [Google Scholar] [CrossRef]
- Xing, L.; Xue, Y.; Yang, Y.; Wu, P.; Wong, C.C.L.; Wang, H.; Song, Z.; Shi, D.; Tong, C.; Yao, C.; et al. TMT-Based Quantitative Proteomic Analysis Identification of Integrin Alpha 3 and Integrin Alpha 5 as Novel Biomarkers in Pathogenesis of Acute Aortic Dissection. BioMed Res. Int. 2020, 2020, 1068402. [Google Scholar] [CrossRef]
- Zhang, K.; Pan, X.; Zheng, J.; Xu, D.; Zhang, J.; Sun, L. Comparative tissue proteomics analysis of thoracic aortic dissection with hypertension using the iTRAQ technique. Eur. J. Cardiothorac. Surg. 2015, 47, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Serhatli, M.; Baysal, K.; Acilan, C.; Tuncer, E.; Bekpinar, S.; Baykal, A.T. Proteomic study of the microdissected aortic media in human thoracic aortic aneurysms. J. Proteome Res. 2014, 13, 5071–5080. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.-I.; Satoh, K.; Maniwa, T.; Tanaka, T.; Okunishi, H.; Oda, T. Proteomic comparison between abdominal and thoracic aortic aneurysms. Int. J. Mol. Med. 2014, 33, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Black, K.M.; Masuzawa, A.; Hagberg, R.C.; Khabbaz, K.R.; Trovato, M.E.; Rettagliati, V.M.; Bhasin, M.K.; Dillon, S.T.; Libermann, T.A.; Toumpoulis, I.K.; et al. Preliminary biomarkers for identification of human ascending thoracic aortic aneurysm. J. Am. Heart Assoc. 2013, 2, e000138. [Google Scholar] [CrossRef]
- Matsumoto, K.-I.; Maniwa, T.; Tanaka, T.; Satoh, K.; Okunishi, H.; Oda, T. Proteomic analysis of calcified abdominal and thoracic aortic aneurysms. Int. J. Mol. Med. 2012, 30, 417–429. [Google Scholar] [CrossRef]
- Rubin, S.; Bonnier, F.; Sandt, C.; Ventéo, L.; Pluot, M.; Baehrel, B.; Manfait, M.; Sockalingum, G.D. Analysis of structural changes in normal and aneurismal human aortic tissues using FTIR microscopy. Biopolymers 2008, 89, 160–169. [Google Scholar] [CrossRef]
- Nataatmadja, M.; West, J.; West, M. Overexpression of Transforming Growth Factor-b Is Associated With Increased Hyaluronan Content and Impairment of Repair in Marfan Syndrome Aortic Aneurysm. Circulation 2006, 114 (Suppl. S1), I-371–I-377. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Free full text available (articles from journals under the subscription of the University of Liverpool) | Any papers that required payment, conference papers, abstract only, case report studies, commentaries, reviews, chapters and letters |
Studies conducted on human thoracic aorta | Abdominal aorta, animal or cell-only studies |
GAGs/PGs reported in association with normal thoracic aorta or sporadic TAAD | Any other associations of GAGs/PGs, e.g., in diabetes, hyperlipidaemia, etc., studies on mucopolysaccharidosis, syndromic TAAD |
English Language only | Languages other than in English |
Study | Animal Model | PG/GAG Altered | Effect |
---|---|---|---|
[71] | ADAMTS5 deficient | Increased aggrecan/reduced cleavage | Aortic wall defects (elastin degradation, SMC loss) |
[72] | ADAMTS5 deficient and AngII | Increased versican/reduced cleavage Increased ADAMTS1 | Aortic dilatation |
[42] | Marfan’s | Increased aggrecan and versican Reduced ADAMTS5 | Dissection and rupture |
[73] | ADAMTS9 deficient | Increased versican/reduced cleavage | Aortic wall defects |
[50] | ADAMTS4 deficient and AngII | Reduced versican degradation | Reduced aortic wall defects (elastic fibre destruction, inflammation and SMC apoptosis) Reduced aneurysm, dissection and rupture |
[52] | AngII | Increased versican degradation, increased ADAMTS1 expression | Dissection |
[48] | Lumican deficient, AngII and BAPN | Increase in aortic rupture and dissection-associated mortality | |
AngII and BAPN | Increased lumican levels | ||
[74] | Biglycan deficient and BAPN | Increased vascular perlecan | Aneurysm and rupture Aortic wall defects (disrupted collagen and elastin) |
[70] | Biglycan deficient | Dissection and rupture Structural abnormalities and altered tensile strength of collagen | |
[75] | AngII | Remodelling of the aortic wall (SMC synthesis of new collagen colocalised with increased GAG production) | |
[46] | BAPN | Reduced decorin | Aortic wall defects (elastin) |
BAPN with Sirtuin 1 activator | Partial restoration of decorin levels | Protects against BAPN-induced aortic wall defects (elastin) | |
[76] | Contractile protein mutations with hypertension | GAG pools observed in delaminated vessels | Mortality Aortic wall defects (delamination) |
[77] | Perlecan deficient | Dissection Aortic wall defects (thin/torn elastic lamina, immature elastic fibres) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, P.; Robinson, L.; Davies, H.A.; Akhtar, R.; Field, M.; Madine, J. Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9200. https://doi.org/10.3390/ijms23169200
Rai P, Robinson L, Davies HA, Akhtar R, Field M, Madine J. Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review. International Journal of Molecular Sciences. 2022; 23(16):9200. https://doi.org/10.3390/ijms23169200
Chicago/Turabian StyleRai, Pratik, Lucy Robinson, Hannah A. Davies, Riaz Akhtar, Mark Field, and Jillian Madine. 2022. "Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review" International Journal of Molecular Sciences 23, no. 16: 9200. https://doi.org/10.3390/ijms23169200
APA StyleRai, P., Robinson, L., Davies, H. A., Akhtar, R., Field, M., & Madine, J. (2022). Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review. International Journal of Molecular Sciences, 23(16), 9200. https://doi.org/10.3390/ijms23169200