Knockdown of p-Coumaroyl Shikimate/Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots
Abstract
:1. Introduction
2. Results
2.1. MeC3′H Shows High Homology with C3′H Members in Euphorbiaceae
2.2. The Expression of MeC3′H Is Induced during PPD
2.3. MeC3′H-RNAi Transgenic Cassava Plants Develop Normally
2.4. Reduced MeC3′H Expression Delays PPD Symptom Occurrence
2.5. MeC3′H Expression Affects the Scopolin and Scopoletin Contents
2.6. MeC3′H-Knockdown Cassava Shows a Reduction in Lignin Content
3. Discussion
4. Materials and Methods
4.1. Sequence Alignment and Phylogenetic Analysis
4.2. Plasmid Construction and Establishment and Growth of Transgenic Cassava
4.3. Molecular Verification of Transgenic Plants
4.4. Visual PPD Evaluation
4.5. Determination of Scopoletin and Scopolin Contents
4.6. Lignin Content Measurement
Coefficient (mg−1·mL·cm−1): Arabidopsis = 15.69.
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cock, J.H. Cassava: New Potential for a Neglected Crop; Westview Press: Boulder, CO, USA, 1985; 179p. [Google Scholar]
- Beeching, J.R.; Han, Y.; Gómez-Vásquez, R.; Day, R.C.; Cooper, R.M. Wound and Defense Responses in Cassava as Related to Post-harvest Physiological Deterioration. In Phytochemical Signals and Plant-Microbe Interactions. Recent Advances in Phytochemistry; Romeo, J.T., Downum, K.R., Verpoorte, R., Eds.; Springer: Boston, MA, USA, 1998; Volume 32, pp. 231–248. [Google Scholar]
- Booth, R.H. Storage of Fresh Cassava (Manihot esculenta). I. Post-harvest Deterioration and its Control. Exp. Agric. 1976, 12, 103–111. [Google Scholar] [CrossRef]
- Uarrota, V.G.; Nunes, E.D.C.; Peruch, L.A.M.; Neubert, E.D.O.; Coelho, B.; Moresco, R.; Domínguez, M.G.; Sánchez, T.; Meléndez, J.L.L.; Dufour, D.; et al. Toward Better Understanding of Postharvest Deterioration: Biochemical Changes in Stored Cassava (Manihot esculenta Crantz) Roots. Food Sci. Nutr. 2016, 4, 409–422. [Google Scholar] [CrossRef]
- Zainuddin, I.M.; Fathoni, A.; Sudarmonowati, E.; Beeching, J.R.; Gruissem, W.; Vanderschuren, H. Cassava Post-harvest Physiological Deterioration: From Triggers to Symptoms. Postharvest Biol. Technol. 2018, 142, 115–123. [Google Scholar] [CrossRef]
- Buschmann, H.; Rodriguez, M.X.; Tohme, J.; Beeching, J.R. Accumulation of Hydroxycoumarins during Post-harvest Deterioration of Tuberous Roots of Cassava (Manihot esculenta Crantz). Ann. Bot. 2000, 86, 1153–1160. [Google Scholar] [CrossRef]
- Wheatley, C.C.; Schwabe, W.W. Scopoletin Involvement in Post-harvest Physiological Deterioration of Cassava Root (Manihot esculenta Crantz). J. Exp. Bot. 1985, 36, 783–791. [Google Scholar] [CrossRef]
- Reilly, K.; Bernal, D.; Cortés, D.F.; Gómez-Vásquez, R.; Tohme, J.; Beeching, J.R. Towards Identifying the Full Set of Genes Expressed During Cassava Post-harvest Physiological Deterioration. Plant Mol. Biol. 2007, 64, 187–203. [Google Scholar] [CrossRef]
- Edwards, R.; Stones, S.M.; Gutiérrez-Mellado, M.C.; Jorrin, J. Characterization and Inducibility of a Scopoletin-degrading Enzyme from Sunflower. Phytochemistry 1997, 45, 1109–1114. [Google Scholar] [CrossRef]
- Reilly, K.; Gómez-Vásquez, R.; Buschmann, H.; Tohme, J.; Beeching, J.R. Oxidative Stress Responses During Cassava Post-harvest Physiological Deterioration. Plant Mol. Biol. 2003, 53, 669–685. [Google Scholar] [CrossRef]
- Tanaka, Y.; Data, E.S.; Hirose, S.; Taniguchi, T.; Uritani, I. Biochemical Changes in Secondary Metabolites in Wounded and Deteriorated Cassava Roots. Agric. Biol. Chem. 1983, 47, 693–700. [Google Scholar]
- Taranto, F.; Pasqualone, A.; Mangini, G.; Tripodi, P.; Miazzi, M.M.; Pavan, S.; Montemurro, C. Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. Int. J. Mol. Sci. 2017, 18, 377. [Google Scholar] [CrossRef]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends. Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Buschmann, H.; Reilly, K.; Rodriguez, M.X.; Tohme, J.; Beeching, J.R. Hydrogen Peroxide and Flavan-3-ols in Storage Roots of Cassava (Manihot esculenta Crantz) During Postharvest Deterioration. J. Agric. Food Chem. 2000, 48, 5522–5529. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, S.A.L.; Rowan, M.G.; Beeching, J.R.; Blagbrough, I.S. Constituents and Secondary Metabolite Natural Products in Fresh and Deteriorated Cassava Roots. Phytochemistry 2010, 71, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Kai, K.; Shimizu, B.; Mizutani, M.; Watanabe, K.; Sakata, K. Accumulation of Coumarins in Arabidopsis thaliana. Phytochemistry 2006, 67, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, S.A.L.; Rowan, M.G.; Beeching, J.R.; Blagbrough, I.S. Investigation of Biosynthetic Pathways to Hydroxycoumarins During Post-harvest Physiological Deterioration in Cassava Roots by Using Stable Isotope Labelling. ChemBioChem 2008, 9, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Schoch, G.A.; Morant, M.; Abdulrazzak, N.; Asnaghi, C.; Goepfert, S.; Petersen, M.; Ullmann, P.; Werck-Reichhart, D. The meta-hydroxylation Step in the Phenylpropanoid Pathway: A New Level of Complexity in the Pathway and Its Regulation. Environ. Chem. Lett. 2006, 4, 127–136. [Google Scholar] [CrossRef]
- Schoch, G.; Goepfert, S.; Morant, M.; Hehn, A.; Meyer, D.; Ullmann, P.; Werck-Reichhart, D. CYP98A3 from Arabidopsis thaliana Is a 3’-Hydroxylase of Phenolic Esters, a Missing Link in the Phenylpropanoid Pathway. J. Biol. Chem. 2001, 276, 36566–36574. [Google Scholar] [CrossRef]
- Gang, D.R.; Beuerle, T.; Ullmann, P.; Pichersky, W.R. Differential Production of meta Hydroxylated Phenylpropanoids in Sweet Basil Peltate Glandular Trichomes and Leaves Is Controlled by the Activities of Specific Aacyltransferases and Hydroxylases. Plant Physiol. 2002, 130, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
- Morant, M.; Schoch, G.A.; Ullmann, P.; Ertunc, T.; Little, D.; Olsen, C.E.; Petersen, M.; Negrel, J.; Werck-Reichhart, D. Catalytic Activity, Duplication and Evolution of the CYP98 Cytochrome P450 Family in Wheat. Plant Mol. Biol. 2007, 63, 1–19. [Google Scholar] [CrossRef]
- Sullivan, M.L.; Zarnowski, R. Red clover Coumarate 3’-hydroxylase (CYP98A44) is Capable of Hyfroxylating P-coumaroyl-shikimate but P-coumaroyl-malate: Implications for the Biosynthesis of Phaselic Acid. Plants 2010, 231, 319–328. [Google Scholar] [CrossRef]
- Matsuno, M.; Nagatsu, A.; Ogihara, Y.; Ellis, B.E.; Mizukami, H. CYP98A6 from Lithospermum erythrorhizon Encodes 4-coumaroyl-4′-hydroxyphenyllactic Acid 3-hydroxylase Involved in Rosmarinic Acid Biosynthesis. FEBS Lett. 2002, 514, 219–224. [Google Scholar] [CrossRef]
- Mahesh, V.; Million-Rousseau, R.; Ullmann, P.; Chabrillange, N.; Bustamante, J.; Mondolot, L.; Morant, M.; Noirot, M.; Hamon, S.; De Kochko, A.; et al. Functional Characterization of Two p-coumaroyl Ester 3′-hydroxylase Genes from Coffee Tree: Evidence of a Candidate for Chlorogenic Acid Biosynthesis. Plant Mol. Biol. 2007, 64, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Franke, R.; Hemm, M.R.; Denault, J.W.; Ruegger, M.O.; Humphreys, J.M.; Chapple, C. Changes in Secondary Metabolism and Deposition of an Unusual Lignin in the ref8 Mutant of Arabidopsis. Plant J. 2002, 30, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Abdulrazzak, N.; Pollet, B.; Ehlting, J.; Larsen, K.; Asnaghi, C.; Ronseauet, S.; Proux, C.; Erhardt, M.; Seltzer, V.; Renou, J.P.; et al. A coumaroyl-ester-3-hydroxylase Insertion Mutant Reveals the Existence of Nonredundant meta-Hydroxylation Pathways and Essential Roles for Phenolic Precursors in Cell Expansion and Plant Growth. Plant Physiol. 2006, 140, 30–48. [Google Scholar] [CrossRef] [PubMed]
- Knollenberg, B.J.; Liu, J.; Yu, S.; Lin, H.; Tian, L. Cloning and Functional Characterization of a p-coumaroyl quinate/shikimate 3′-hydroxylase from Potato (Solanum tuberosum). Biochem. Bioph. Res. Con. 2018, 496, 462–467. [Google Scholar] [CrossRef]
- Xu, J.; Duan, X.; Yang, J.; Beeching, J.R.; Zhang, P. Enhanced Reactive Oxygen Species Scavenging by Overproduction of Superoxide Dismutase and Catalase Delays Postharvest Physiological Deterioration of Cassava Storage Roots. Plant Physiol. 2013, 161, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- Zidenga, T.; Leyva-Guerrero, E.; Moon, H.; Siritunga, D.; Sayre, R. Extending Cassava Root Shelf Life via Reduction of Reactive Oxygen Species Production. Plant Physiol. 2012, 159, 1396–1407. [Google Scholar] [CrossRef]
- Liu, S.; Zainuddin, I.M.; Vanderschuren, H.; Doughty, J.; Beeching, J.R. RNAi Inhibition of Feruloyl CoA 6′-hydroxylase Reduces Scopoletin Biosynthesis and Post-harvest Physiological Deterioration in Cassava (Manihot esculenta Crantz) Storage Roots. Plant Mol. Biol. 2017, 94, 185–195. [Google Scholar] [CrossRef]
- Wu, X.; Xu, J.; Ma, Q.; Ahmed, S.; Lu, X.; Ling, E.; Zhang, P. Lysozyme Inhibits Postharvest Physiological Deterioration of Cassava. J. Integr. Plant Biol. 2022, 64, 621–624. [Google Scholar] [CrossRef]
- Venturini, M.T.; Santos, L.R.; Vildoso, C.I.A.; Santos, V.S.; Oliveira, E.J. Variation in Cassava Germplasm for Tolerance to Post-harvest Physiological Deterioration. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Karamat, F.; Olry, A.; Doerper, S.; Vialart, G.; Ullmann, P.; Werck-Reichhart, D.; Bourgaud, F.; Hehn, A. CYP98A22, a Phenolic Ester 3′-hydroxylase Specialized in the Synthesis of Chlorogenic Acid, as a New Tool for Enhancing the Furanocoumarin Concentration in Ruta graveolens. BMC Plant Biol. 2012, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, B.I.; Miyagawa, H.; Ueno, T.; Sakata, K.; Watanabe, K.; Ogawa, K. Morning Glory Systemically Accumulates Scopoletin and Scopolin after Interaction with Fusarium oxysporum. Z. Naturforsch. 2005, 60c, 83–90. [Google Scholar] [CrossRef]
- Kai, K.; Mizutani, M.; Kawamura, N.; Yamamoto, R.; Tamai, M.; Yamaguchi, H.; Sakata, K.; Shimizu, B.I. Scopoletin Is Biosynthesized via ortho-hydroxylation of Feruloyl CoA by a 2-oxoglutarate-dependent Dioxygenase in Arabidopsis thaliana. Plant J. 2008, 55, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Baltz, R.; Schmitt, C.; Beffa, R.; Fritig, B.; Saindrenan, P. Downregulation of a Pathogen-Responsive Tobacco UDP-Glc: Phenylpropaniod Glucosyltransferase Reduces Scopoletin Glucoside Accumulation, Enhances Oxidative Stress, and Weakens Virus Resistance. Plant Cell 2002, 14, 1093–1107. [Google Scholar] [CrossRef] [PubMed]
- Franke, R.; Humphreys, J.M.; Hemm, M.R.; Denault, J.W.; Ruegger, M.O.; Cusumano, J.C.; Chapple, C. The Arabidopsis REF8 Gene Encodes the 3-hydroxylase of Phenylpropanoid Metabolism. Plant J. 2002, 30, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Anterola, A.M.; van Rensburg, H.; van Heerden, P.S.; Davin, L.B.; Lewis, N.G. Multi-Site Modulation of Flux during Monolignol Formation in Loblolly Pine (Pinus taeda). Biochem. Biophys. Res. Commun. 1999, 261, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Anterola, A.M.; Jeon, J.-H.; Davin, L.B.; Lewis, N.G. Transcriptional Control of Monolignol Biosynthesis in Pinus taeda. J. Biol. Chem. 2002, 277, 18272–18280. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Elkan, C. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Biopolymers. In Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology—ISMB-94, Stanford, CA, USA, 14–17 August 1994; AAAI Press: Menlo Park, CA, USA, 1994; pp. 28–36. [Google Scholar]
- Zhang, P.; Potrykus, I.; Puonti-Kaerlas, J. Efficient Production of Transgenic Cassava Using Negative and Positive Selection. Transgenic Res. 2000, 9, 405–415. [Google Scholar] [CrossRef]
- Zhao, S.S.; Dufour, D.; Sanchez, T.; Ceballos, H.; Zhang, P. Development of Waxy Cassava with Different Biological and Physico-Chemical Characteristics of Starches for Industrial Applications. Biotechnol. Bioeng. 2011, 108, 1925–1935. [Google Scholar] [CrossRef]
- Ma, Q.; Zhou, W.; Zhang, P. Transition from Somatic Embryo to Friable Embryogenic Callus in Cassava: Dynamic Changes in Cellular Structure, Physiological Status, and Ggene Expression Profiles. Front. Plant Sci. 2015, 6, 824. [Google Scholar] [CrossRef]
- Morante, N.; Sánchez, T.; Ceballos, H.; Calle, F.; Pérez, J.C.; Egesi, C.; Cuambe, C.E.; Escobar, A.F.; Ortiz, D.; Chávez, A.L.; et al. Tolerance to Postharvest Physiological Deterioration in Cassava Roots. Crop. Sci. 2010, 50, 1333–1338. [Google Scholar] [CrossRef]
- Lin, S.Y.; Dence, C.W. Methods in Lignin Chemistry; Springer: Berlin, Germany, 1992; pp. 33–61. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Q.; Xu, J.; Feng, Y.; Wu, X.; Lu, X.; Zhang, P. Knockdown of p-Coumaroyl Shikimate/Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots. Int. J. Mol. Sci. 2022, 23, 9231. https://doi.org/10.3390/ijms23169231
Ma Q, Xu J, Feng Y, Wu X, Lu X, Zhang P. Knockdown of p-Coumaroyl Shikimate/Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots. International Journal of Molecular Sciences. 2022; 23(16):9231. https://doi.org/10.3390/ijms23169231
Chicago/Turabian StyleMa, Qiuxiang, Jia Xu, Yancai Feng, Xiaoyun Wu, Xinlu Lu, and Peng Zhang. 2022. "Knockdown of p-Coumaroyl Shikimate/Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots" International Journal of Molecular Sciences 23, no. 16: 9231. https://doi.org/10.3390/ijms23169231
APA StyleMa, Q., Xu, J., Feng, Y., Wu, X., Lu, X., & Zhang, P. (2022). Knockdown of p-Coumaroyl Shikimate/Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots. International Journal of Molecular Sciences, 23(16), 9231. https://doi.org/10.3390/ijms23169231