Recent Advances in Molecular Improvement for Potato Tuber Traits
Abstract
:1. Introduction
2. Quantitative Trait Loci (QTL) Mapping
2.1. QTL Mapping for Tuber Quality
2.2. QTL Mapping for Tubers Storage Duration
2.3. QTL Mapping for Tuber Morphology
3. Genome Selection (GS)
4. Transgenic Breeding
- (1)
- Conventional transgenic approaches of potato breeding include incorporation of a transgene via Agrobacterium-mediated transformation or any other vector for stable expression of a gene;
- (2)
- RNA interference (RNAi)-mediated transgenics is made to decrease the expression of undesirable traits by adding sense and antisense of the target gene with an intronic sequence. When this cassette is introduced into the plant genome, the target gene expression is significantly decreased;
- (3)
- Transcription Activator-Like Effector Nucleases (TALENs) mediated genome editing, which is utilized for generating non-GMO gene modification as well;
- (4)
- Clustered Regularly Interspaced Short Palindromic Nucleases (CRISPR)-associated (Cas) system-mediated genome-editing in potato plants. For this approach, a double-strand break is produced in the undesirable gene coding for an undesirable character. After a successful interruption, mutations are produced as required.
4.1. Conventional Potato Transgenics
4.1.1. Transgenics to Improve Tuber Quality and Yield
4.1.2. Transgenics to Improve Tuber Storage Duration
4.1.3. Transgenics to Improve Tuber Morphology
4.2. RNAi for Potato Improvement
4.2.1. RNAi Transgenics to Improve Tuber Quality
4.2.2. RNAi Transgenics to Improve Tuber Storage Duration
4.3. Genome Editing Technologies
4.3.1. TALENs Mediated Potato Modifications
4.3.2. CRISPR-Cas Mediated Potato Modifications
4.4. Production of Non-GMOs Using Advanced Biotechnological Techniques
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Devaux, A.; Goffart, J.-P.; Petsakos, A.; Kromann, P.; Gatto, M.; Okello, J.; Suarez, V.; Hareau, G. Global Food Security, Contributions from Sustainable Potato Agri-Food Systems. In The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–35. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision. 2012. Available online: https://www.fao.org/3/ap106e/ap106e.pdf (accessed on 28 June 2022).
- Hameed, A.; Zaidi, S.S.E.A.; Shakir, S.; Mansoor, S. Applications of new breeding technologies for potato improvement. Front. Plant Sci. 2018, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Rasheed, H.; Ahmad, D.; Bao, J. Genetic diversity and health properties of polyphenols in potato. Antioxidants 2022, 11, 603. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R.; Hammond, J.P.; Ramsay, G.; Subramanian, N.K.; Thompson, J.; Wright, G. Bio-fortification of potato tubers using foliar zinc-fertiliser. J. Hortic. Sci. Biotechnol. 2012, 87, 123–129. [Google Scholar] [CrossRef]
- Ngobese, N.Z.; Workneh, T.S.; Alimi, B.A.; Tesfay, S. Nutrient composition and starch characteristics of eight European potato cultivars cultivated in South Africa. J. Food Compos. Anal. 2017, 55, 1–11. [Google Scholar] [CrossRef]
- Al-Saikhan, M.; Howard, L.; Miller, J., Jr. Antioxidant activity and total phenolics in different genotypes of potato (Solanum tuberosum, L.). J. Food Sci. 1995, 60, 341–343. [Google Scholar] [CrossRef]
- Tiwari, A.; Mishra, A.; Saxena, V.; Saxena, S.; Raghuvanshi, A.P. Association of characters and selection parameters for high tuber yield in Potato (Solanum tuberosum L.). Trop. Plant Res. 2020, 7, 205–208. [Google Scholar] [CrossRef]
- Andrivon, D. Potato facing global challenges: How, how much, how well? Potato Res. 2017, 60, 389–400. [Google Scholar] [CrossRef]
- Ortiz, R.; Mihovilovich, E. Genetics and Cytogenetics of the Potato. In The Potato Crop; Springer: Cham, Switzerland, 2020; pp. 219–247. [Google Scholar] [CrossRef]
- Das Dangol, S.; Barakate, A.; Stephens, J.; Çalıskan, M.E.; Bakhsh, A. Genome editing of potato using CRISPR technologies: Current development and future prospective. Plant Cell Tissue Organ Cult. (PCTOC) 2019, 139, 403–416. [Google Scholar] [CrossRef]
- Thiele, G.; Dufour, D.; Vernier, P.; Mwanga, R.O.M.; Parker, M.L.; Schulte Geldermann, E.; Teeken, B.; Wossen, T.; Gotor, E.; Kikulwe, E.; et al. A review of varietal change in roots, tubers and bananas: Consumer preferences and other drivers of adoption and implications for breeding. Int. J. Food Sci. Technol. 2020, 56, 1076–1092. [Google Scholar] [CrossRef]
- Bethke, P.C.; Halterman, D.A.; Jansky, S.H. Potato germplasm enhancement enters the genomics era. Agronomy 2019, 9, 575. [Google Scholar] [CrossRef]
- Hardigan, M.A.; Bamberg, J.; Buell, C.R.; Douches, D.S. Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. Plant Genome 2015, 8, plantgenome2014.06.0025. [Google Scholar] [CrossRef] [PubMed]
- Werij, J.S.; Furrer, H.; van Eck, H.J.; Visser, R.G.F.; Bachem, C.W.B. A limited set of starch related genes explain several interrelated traits in potato. Euphytica 2012, 186, 501–516. [Google Scholar] [CrossRef]
- Śliwka, J.; Sołtys-Kalina, D.; Szajko, K.; Wasilewicz-Flis, I.; Strzelczyk-Żyta, D.; Zimnoch-Guzowska, E.; Jakuczun, H.; Marczewski, W. Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato. Theor. Appl. Genet. 2016, 129, 131–140. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wen, G.; Li, G.; Li, Z.; Zhang, R.; Ma, S.; Zhou, J.; Xie, C. Mapping QTL underlying tuber starch content and plant maturity in tetraploid potato. Crop J. 2019, 7, 261–272. [Google Scholar] [CrossRef]
- Draffehn, A.M.; Meller, S.; Li, L.; Gebhardt, C. Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol. 2010, 10, 271. [Google Scholar] [CrossRef]
- Li, L.; Paulo, M.-J.; Strahwald, J.; Lübeck, J.; Hofferbert, H.-R.; Tacke, E.; Junghans, H.; Wunder, J.; Draffehn, A.; van Eeuwijk, F.; et al. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor. Appl. Genet. 2008, 116, 1167–1181. [Google Scholar] [CrossRef]
- Xiao, G.; Huang, W.; Cao, H.; Tu, W.; Wang, H.; Zheng, X.; Liu, J.; Song, B.; Xie, C. Genetic loci conferring reducing sugar accumulation and conversion of cold-stored potato tubers revealed by QTL analysis in a diploid population. Front. Plant Sci. 2018, 9, 315. [Google Scholar] [CrossRef]
- Zia, M.A.B.; Demirel, U.; Nadeem, M.A.; Çaliskan, M.E. Genome-wide association study identifies various loci underlying agronomic and morphological traits in diversified potato panel. Physiol. Mol. Biol. Plants 2020, 26, 1003–1020. [Google Scholar] [CrossRef]
- Park, J.; Massa, A.N.; Douches, D.; Coombs, J.; Akdemir, D.; Yencho, G.C.; Whitworth, J.L.; Novy, R.G. Linkage and QTL mapping for tuber shape and specific gravity in a tetraploid mapping population of potato representing the russet market class. BMC Plant Biology 2021, 21, 507. [Google Scholar] [CrossRef] [PubMed]
- Santacruz, S.; Koch, K.; Andersson, R.; Åman, P. Characterization of potato leaf starch. J. Agric. Food Chem. 2004, 52, 1985–1989. [Google Scholar] [CrossRef] [PubMed]
- Buleon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol. 1998, 23, 85–112. [Google Scholar] [CrossRef]
- Schreiber, L.; Nader-Nieto, A.C.; Schönhals, E.M.; Walkemeier, B.; Gebhardt, C. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.). G3 Genes|Genomes|Genet. 2014, 4, 1797–1811. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Zhou, X.; Pang, Y.; Jin, L.; Bao, J. Improving starch-related traits in potato crops: Achievements and future challenges. Starch—Stärke 2018, 70, 1700113. [Google Scholar] [CrossRef]
- Xu, Y.; Ding, J.; Gong, S.; Li, M.; Yang, T.; Zhang, J. Physicochemical properties of potato starch fermented by amylolytic Lactobacillus plantarum. Int. J. Biol. Macromol. 2020, 158, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Slattery, C.J.; Kavakli, I.H.; Okita, T.W. Engineering starch for increased quantity and quality. Trends Plant Sci. 2000, 5, 291–298. [Google Scholar] [CrossRef]
- Van Harsselaar, J.K.; Lorenz, J.; Senning, M.; Sonnewald, U.; Sonnewald, S. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genom. 2017, 18, 37. [Google Scholar] [CrossRef]
- Khlestkin, V.K.; Rozanova, I.V.; Efimov, V.M.; Khlestkina, E.K. Starch phosphorylation associated SNPs found by genome-wide association studies in the potato (Solanum tuberosum L.). BMC Genet. 2019, 20, 45–53. [Google Scholar] [CrossRef]
- Carpenter, M.A.; Joyce, N.I.; Genet, R.A.; Cooper, R.D.; Murray, S.R.; Noble, A.D.; Butler, R.C.; Timmerman-Vaughan, G.M. Starch phosphorylation in potato tubers is influenced by allelic variation in the genes encoding glucan water dikinase, starch branching enzymes I and II, and starch synthase III. Front. Plant Sci. 2015, 6, 143. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tacke, E.; Hofferbert, H.-R.; Lübeck, J.; Strahwald, J.; Draffehn, A.M.; Walkemeier, B.; Gebhardt, C. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theor. Appl. Genet. 2013, 126, 1039–1052. [Google Scholar] [CrossRef]
- Klaassen, M.T.; Bourke, P.M.; Maliepaard, C.; Trindade, L.M. Multi-allelic QTL analysis of protein content in a bi-parental population of cultivated tetraploid potato. Euphytica 2019, 215, 14. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, J.; Liu, J.; Zhang, J.; Song, B.; Xie, C. The roles of starch metabolic pathways in the cold-induced sweetening process in potatoes. Starch—Stärke 2017, 69, 1600194. [Google Scholar] [CrossRef]
- 36 Fischer, M.; Schreiber, L.; Colby, T.; Kuckenberg, M.; Tacke, E.; Hofferbert, H.-R.; Schmidt, J.; Gebhardt, C. Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC Plant Biol. 2013, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Maddison, A.L.; Hedley, P.E.; Meyer, R.C.; Aziz, N.; Davidson, D.; Machray, G.C. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol. Biol. 1999, 41, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Bisognin, D.; Manrique-Carpintero, N.; Douches, D. QTL analysis of tuber dormancy and sprouting in potato. Am. J. Potato Res. 2018, 95, 374–382. [Google Scholar] [CrossRef]
- Hara-Skrzypiec, A.; Śliwka, J.; Jakuczun, H.; Zimnoch-Guzowska, E. QTL for tuber morphology traits in diploid potato. J. Appl. Genet. 2018, 59, 123–132. [Google Scholar] [CrossRef]
- Manrique-Carpintero, N.C.; Coombs, J.J.; Pham, G.M.; Laimbeer, F.P.E.; Braz, G.T.; Jiang, J.; Veilleux, R.E.; Buell, C.R.; Douches, D.S. Genome reduction in tetraploid potato reveals genetic load, haplotype variation, and loci associated with agronomic traits. Front. Plant Sci. 2018, 9, 944. [Google Scholar] [CrossRef]
- Endelman, J.B.; Jansky, S.H. Genetic mapping with an inbred line-derived F2 population in potato. Theor. Appl. Genet. 2016, 129, 935–943. [Google Scholar] [CrossRef]
- Bradshaw, J.; Mackay, G. Breeding strategies for clonally propagated potatoes. In Potato Genetics; Bradshaw, J.E., Mackay, G.R., Eds.; CAB International: Wallingford, UK, 1994; pp. 467–497. [Google Scholar]
- Bradshaw, J.E. Potato-breeding strategy. In Potato Biology and Biotechnology; Elsevier: Amsterdam, The Netherlands, 2007; pp. 157–177. [Google Scholar]
- Jansky, S.H.; Jin, L.P.; Xie, K.Y.; Xie, C.H.; Spooner, D.M. Potato production and breeding in China. Potato Res. 2009, 52, 57–65. [Google Scholar] [CrossRef]
- Gebhardt, C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet. 2013, 29, 248–256. [Google Scholar] [CrossRef]
- Slater, A.T.; Cogan, N.O.I.; Hayes, B.J.; Schultz, L.; Dale, M.F.B.; Bryan, G.J.; Forster, J.W. Improving breeding efficiency in potato using molecular and quantitative genetics. Theor. Appl. Genet. 2014, 127, 2279–2292. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Jonas, E.; de Koning, D.-J. Does genomic selection have a future in plant breeding? Trends Biotechnol. 2013, 31, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; De Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y. Genomic selection in plant breeding: Methods, models, and perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Sverrisdóttir, E.; Byrne, S.; Sundmark, E.H.R.; Johnsen, H.Ø.; Kirk, H.G.; Asp, T.; Janss, L.; Nielsen, K.L. Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theor. Appl. Genet. 2017, 130, 2091–2108. [Google Scholar] [CrossRef]
- Stich, B.; Van Inghelandt, D. Prospects and potential uses of genomic prediction of key performance traits in tetraploid potato. Front. Plant Sci. 2018, 9, 159. [Google Scholar] [CrossRef] [PubMed]
- Endelman, J.B.; Carley, C.A.S.; Bethke, P.C.; Coombs, J.J.; Clough, M.E.; da Silva, W.L.; De Jong, W.S.; Douches, D.S.; Frederick, C.M.; Haynes, K.G.; et al. Genetic variance partitioning and genome-wide prediction with allele dosage information in autotetraploid potato. Genetics 2018, 209, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Sverrisdóttir, E.; Sundmark, E.H.R.; Johnsen, H.Ø.; Kirk, H.G.; Asp, T.; Janss, L.; Bryan, G.; Nielsen, K.L. The value of expanding the training population to improve genomic selection models in tetraploid potato. Front. Plant Sci. 2018, 9, 1118. [Google Scholar] [CrossRef]
- Habyarimana, E.; Parisi, B.; Mandolino, G.; Wehling, P. Genomic prediction for yields, processing and nutritional quality traits in cultivated potato (Solanum tuberosum L.). Plant Breed. 2017, 136, 245–252. [Google Scholar] [CrossRef]
- Sallam, A.H.; Endelman, J.B.; Jannink, J.-L.; Smith, K.P. Assessing genomic selection prediction accuracy in a dynamic barley breeding Population. Plant Genome 2015, 8, plantgenome2014-05. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Tang, D.; Zhu, Y.; Wang, P.; Li, D.; Zhu, G.; Xiong, X.; Shang, Y.; Li, C.; et al. Genome design of hybrid potato. Cell 2021, 184, 3873–3883. [Google Scholar] [CrossRef]
- Tang, D.; Jia, Y.; Zhang, J.; Li, H.; Cheng, L.; Wang, P.; Bao, Z.; Liu, Z.; Feng, S.; Zhu, X.; et al. Genome evolution and diversity of wild and cultivated potatoes. Nature 2022, 606, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Demirel, U.; Yousaf, M.F.; Caliskan, S.; Caliskan, M.E. Overview on domestication, breeding, genetic gain and improvement of tuber quality traits of potato using fast forwarding technique (GWAS): A review. Plant Breed. 2021, 140, 519–542. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Fichtner, F.; Urrea Castellanos, R.; Ülker, B. Precision genetic modifications: A new era in molecular biology and crop improvement. Planta 2014, 239, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Cermak, T.; Doyle, E.L.; Schmidt, C.; Zhang, F.; Hummel, A.; Bogdanove, A.J.; Voytas, D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010, 186, 757–761. [Google Scholar] [CrossRef]
- Zhu, X.; Richael, C.; Chamberlain, P.; Busse, J.S.; Bussan, A.J.; Jiang, J.; Bethke, P.C. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects. PLoS ONE 2014, 9, e93381. [Google Scholar] [CrossRef]
- Jonik, C.; Sonnewald, U.; Hajirezaei, M.-R.; Flügge, U.-I.; Ludewig, F. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol. J. 2012, 10, 1088–1098. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, F.; Fettke, J.; Schöttler, M.A.; Ramsden, L.; Fernie, A.R.; Lim, B.L. Heterologous expression of AtPAP2 in transgenic potato influences carbon metabolism and tuber development. FEBS Lett. 2014, 588, 3726–3731. [Google Scholar] [CrossRef] [Green Version]
- Ishimaru, K.; Hirotsu, N.; Kashiwagi, T.; Madoka, Y.; Nagasuga, K.; Ono, K.; Ohsugi, R. Overexpression of a maize SPS gene improves yield characters of potato under field conditions. Plant Prod. Sci. 2008, 11, 104–107. [Google Scholar] [CrossRef]
- Kolachevskaya, O.O.; Alekseeva, V.V.; Sergeeva, L.I.; Rukavtsova, E.B.; Getman, I.A.; Vreugdenhil, D.; Buryanov, Y.I.; Romanov, G.A. Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro. J. Integr. Plant Biol. 2015, 57, 734–744. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chakraborty, N.; Datta, A. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Natl. Acad. Sci. USA 2000, 97, 3724–3729. [Google Scholar] [CrossRef]
- Stiller, I.; Dancs, G.; Hesse, H.; Hoefgen, R.; Banfalvi, Z. Improving the nutritive value of tubers: Elevation of cysteine and glutathione contents in the potato cultivar White Lady by marker-free transformation. J. Biotechnol. 2007, 128, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.B.; Van Eck, J.; Conlin, B.J.; Paolillo, D.J.; O’Neill, J.; Li, L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J. Exp. Bot. 2008, 59, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Gerjets, T.; Sandmann, G. Ketocarotenoid formation in transgenic potato. J. Exp. Bot. 2006, 57, 3639–3645. [Google Scholar] [CrossRef]
- Campbell, R.; Morris, W.L.; Mortimer, C.L.; Misawa, N.; Ducreux, L.J.M.; Morris, J.A.; Hedley, P.E.; Fraser, P.D.; Taylor, M.A. Optimising ketocarotenoid production in potato tubers: Effect of genetic background, transgene combinations and environment. Plant Sci. 2015, 234, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.L.; Ducreux, L.J.; Fraser, P.D.; Millam, S.; Taylor, M.A. Engineering ketocarotenoid biosynthesis in potato tubers. Metab. Eng. 2006, 8, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-Y.; Zhu, W.-J.; Tang, R.-M.; Cai, J.-H.; Chen, M.; Yang, Q. Over-expression of StLCYb increases β-carotene accumulation in potato tubers. Plant Biotechnol. Rep. 2016, 10, 95–104. [Google Scholar] [CrossRef]
- Qin, A.; Shi, Q.; Yu, X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol. Biol. Rep. 2010, 38, 1557–1566. [Google Scholar] [CrossRef]
- Crowell, E.F.; McGrath, J.M.; Douches, D.S. Accumulation of vitamin E in potato (Solanum tuberosum) tubers. Transgenic Res. 2007, 17, 205–217. [Google Scholar] [CrossRef]
- Bagri, D.S.; Upadhyaya, D.C.; Kumar, A.; Upadhyaya, C.P. Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses. Plant Sci. 2018, 272, 267–275. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Liu, J.; Ou, Y.; Lin, Y.; Li, M.; Song, B.; Xie, C. A novel RING finger gene, SbRFP1, increases resistance to cold-induced sweetening of potato tubers. FEBS Lett. 2013, 587, 749–755. [Google Scholar] [CrossRef]
- Liu, X.; Lin, Y.; Liu, J.; Song, B.; Ou, Y.; Zhang, H.; Li, M.; Xie, C. StInvInh2 as an inhibitor of Stvac INV 1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnol. J. 2013, 11, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cheng, S.; Liu, J.; Ou, Y.; Song, B.; Zhang, C.; Lin, Y.; Li, X.-Q.; Xie, C. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity. Postharvest Biol. Technol. 2013, 86, 265–271. [Google Scholar] [CrossRef]
- Navrátil, O.; Fischer, L.; Čmejlová, J.; Linhart, M.; Vacek, J. Decreased amount of reducing sugars in transgenic potato tubers and its influence on yield characteristics. Biol. Plant. 2007, 51, 56–60. [Google Scholar] [CrossRef]
- Du, H.-H.; Yang, T.; Ma, C.-Y.; Feng, D.; Zhang, N.; Si, H.-J.; Wang, D. Effects of RNAi silencing of SSIII gene on phosphorus content and characteristics of starch in potato tubers. J. Integr. Agric. 2012, 11, 1985–1992. [Google Scholar] [CrossRef]
- Visser, R.G.F.; Somhorst, I.; Kuipers, G.J.; Ruys, N.J.; Feenstra, W.J.; Jacobsen, E. Inhibition of the expression of the gene for granulebound starch synthase in potato by antisense constructs. Mol. Gen. Genet. 1991, 225, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Hameed, A.; Bilal, R.; Latif, F.; Van Eck, J.; Jander, G.; Mansoor, S. RNAi-mediated silencing of endogenous Vlnv gene confers stable reduction of cold-induced sweetening in potato (Solanum tuberosum L. cv. Désirée). Plant Biotechnol. Rep. 2018, 12, 175–185. [Google Scholar] [CrossRef]
- Wu, L.; Bhaskar, P.B.; Busse, J.S.; Zhang, R.; Bethke, P.C.; Jiang, J. Developing Cold-Chipping Potato Varieties by Silencing the Vacuolar Invertase Gene. Crop Sci. 2011, 51, 981–990. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, P.B.; Wu, L.; Busse, J.S.; Whitty, B.R.; Hamernik, A.J.; Jansky, S.H.; Buell, C.R.; Bethke, P.C.; Jiang, J. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol. 2010, 154, 939–948. [Google Scholar] [CrossRef]
- Chen, S.; Hajirezaei, M.R.; Zanor, M.I.; Hornyik, C.; Debast, S.; Lacomme, C.; Fernie, A.R.; Sonnewald, U.; Boernke, F. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ. 2008, 31, 165–176. [Google Scholar] [CrossRef]
- Kusano, H.; Onodera, H.; Kihira, M.; Aoki, H.; Matsuzaki, H.; Shimada, H. A simple Gateway-assisted construction system of TALEN genes for plant genome editing. Sci. Rep. 2016, 6, 30234. [Google Scholar] [CrossRef]
- Ma, J.; Xiang, H.; Donnelly, D.J.; Meng, F.-R.; Xu, H.; Durnford, D.; Li, X.-Q. Genome editing in potato plants by agrobacterium-mediated transient expression of transcription activator-like effector nucleases. Plant Biotechnol. Rep. 2017, 11, 249–258. [Google Scholar] [CrossRef]
- Clasen, B.M.; Stoddard, T.J.; Luo, S.; Demorest, Z.L.; Li, J.; Cedrone, F.; Tibebu, R.; Davison, S.; Ray, E.E.; Daulhac, A. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol. J. 2016, 14, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Turesson, H.; Nicolia, A.; Fält, A.-S.; Samuelsson, M.; Hofvander, P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2017, 36, 117–128. [Google Scholar] [CrossRef] [PubMed]
- González, M.N.; Massa, G.A.; Andersson, M.; Turesson, H.; Olsson, N.; Fält, A.-S.; Storani, L.; Décima Oneto, C.A.; Hofvander, P.; Feingold, S.E. Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. Front. Plant Sci. 2020, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, M.; Akiyama, R.; Lee, H.J.; Osakabe, K.; Osakabe, Y.; Watanabe, B.; Sugimoto, Y.; Umemoto, N.; Saito, K.; Muranaka, T.; et al. Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 2018, 131, 70–77. [Google Scholar] [CrossRef]
- Sohn, H.B.; Lee, H.Y.; Seo, J.S.; Jung, C.; Jeon, J.H.; Kim, J.-H.; Lee, Y.W.; Lee, J.S.; Cheong, J.-J.; Choi, Y.D. Overexpression of jasmonic acid carboxyl methyltransferase increases tuber yield and size in transgenic potato. Plant Biotechnol. Rep. 2010, 5, 27–34. [Google Scholar] [CrossRef]
- Roessner-Tunali, U.; Urbanczyk-Wochniak, E.; Czechowski, T.; Kolbe, A.; Willmitzer, L.; Fernie, A.R. De Novo amino acid biosynthesis in potato tubers is regulated by sucrose levels. Plant Physiol. 2003, 133, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Dancs, G.; Kondrák, M.; Bánfalvi, Z. The effects of enhanced methionine synthesis on amino acid and anthocyanin content of potato tubers. BMC Plant Biol. 2008, 8, 65. [Google Scholar] [CrossRef]
- Nikiforova, V.; Kempa, S.; Zeh, M.; Maimann, S.; Kreft, O.; Casazza, A.P.; Riedel, K.; Tauberger, E.; Hoefgen, R.; Hesse, H. Engineering of cysteine and methionine biosynthesis in potato. Amino Acids 2002, 22, 259–278. [Google Scholar] [CrossRef]
- Goo, Y.-M.; Kim, T.-W.; Lee, M.-K.; Lee, S.-W. Accumulation of PrLeg, a perilla legumin protein in potato tuber results in enhanced level of sulphur-containing amino acids. Comptes Rendus Biol. 2013, 336, 433–439. [Google Scholar] [CrossRef]
- Chong, D.K.X.; Chong, D.K.X.; Langridge, W.H.R. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 2000, 9, 71–78. [Google Scholar] [CrossRef]
- Huang, T.; Joshi, V.; Jander, G. The catabolic enzyme methionine gamma-lyase limits methionine accumulation in potato tubers. Plant Biotechnol. J. 2014, 12, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Jube, S.; Borthakur, D. Recent Advances in Food Biotechnology Research. In Food Biochemistry and Food Processing; Hui, Y.H., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2006; pp. 35–70. [Google Scholar] [CrossRef]
- Fernandez-Orozco, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Carotenoid profiling in tubers of different potato (Solanum sp.) cultivars: Accumulation of carotenoids mediated by xanthophyll esterification. Food Chem. 2013, 141, 2864–2872. [Google Scholar] [CrossRef]
- Pasare, S.; Wright, K.; Campbell, R.; Morris, W.; Ducreux, L.; Chapman, S.; Bramley, P.; Fraser, P.; Roberts, A.; Taylor, M. The sub-cellular localisation of the potato (Solanum tuberosum L.) carotenoid biosynthetic enzymes, CrtRb2 and PSY2. Protoplasma 2013, 250, 1381–1392. [Google Scholar] [CrossRef]
- Mortimer, C.L.; Dugdale, B.; Dale, J.L. Updates in inducible transgene expression using viral vectors: From transient to stable expression. Curr. Opin. Biotechnol. 2015, 32, 85–92. [Google Scholar] [CrossRef]
- Ducreux, L.J.M. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of beta-carotene and lutein. J. Exp. Bot. 2004, 56, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Wang, Q.-Y.; Feng, Z.-H.; Wang, B.; Zhang, Y.-F.; Yang, Q. Increased accumulation of anthocyanins in transgenic potato tubers by overexpressing the 3GT gene. Plant Biotechnol. Rep. 2011, 6, 69–75. [Google Scholar] [CrossRef]
- Jung, C.S.; Griffiths, H.M.; De Jong, D.M.; Cheng, S.; Bodis, M.; Kim, T.S.; De Jong, W.S. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. Theor. Appl. Genet. 2009, 120, 45–57. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef]
- Chi, Z.; Cong-Hua, X.; Bo-Tao, S.; Xun, L.; Jun, L. RNAi effects on regulation of endogenous acid invertase activity in potato (Solanum tuberosum L.) tubers. Chin. J. Agric. Biotechnol. 2008, 5, 107–112. [Google Scholar] [CrossRef]
- Chen, K.; Gao, C. TALENs: Customizable molecular DNA scissors for genome engineering of plants. J. Genet. Genom. 2013, 40, 271–279. [Google Scholar] [CrossRef]
- Nicolia, A.; Proux-Wéra, E.; Åhman, I.; Onkokesung, N.; Andersson, M.; Andreasson, E.; Zhu, L.-H. Targeted gene mutation in tetraploid potato through transient TALEN expression in protoplasts. J. Biotechnol. 2015, 204, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, A.; Weeks, T.; Richael, C.; Duan, H. Transcription activator-like effector nucleases (TALEN)-mediated targeted DNA insertion in potato plants. Front. Plant Sci. 2016, 7, 1572. [Google Scholar] [CrossRef]
- Khromov, A.V.; Gushchin, V.A.; Timerbaev, V.I.; Kalinina, N.O.; Taliansky, M.E.; Makarov, V.V. Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing. Dokl. Biochem. Biophys. 2018, 479, 90–94. [Google Scholar] [CrossRef]
- Johansen, I.E.; Liu, Y.; Jørgensen, B.; Bennett, E.P.; Andreasson, E.; Nielsen, K.L.; Blennow, A.; Petersen, B.L. High efficacy full allelic CRISPR/Cas9 gene editing in tetraploid potato. Sci. Rep. 2019, 9, 17715. [Google Scholar] [CrossRef]
- Zheng, Z.; Ye, G.; Zhou, Y.; Pu, X.; Su, W.; Wang, J. Editing sterol side chain reductase 2 gene (StSSR2) via CRISPR/Cas9 reduces the total steroidal glycoalkaloids in potato. All Life 2021, 14, 401–413. [Google Scholar] [CrossRef]
- Ricroch, A.; Clairand, P.; Harwood, W. Use of CRISPR systems in plant genome editing: Toward new opportunities in agriculture. Emerg. Top. Life Sci. 2017, 1, 169–182. [Google Scholar] [CrossRef] [Green Version]
Trait | QTL | Chromosome Number | References |
Starch granule size | SGS02-8 and SGS03-8 | VIII | [16] |
Starch contents | pPt-535988–pPt-538127, toPt-440651 | I | [17] |
pPt-539763 | II | ||
toPt-437014–pPt-538033 | III | ||
toPt-438845 | VIII | ||
pPt-533878 | X | ||
pPt-471789 | XI | ||
pPt-656237 | XII | ||
STM1049-1, STWIN12G, STM1049-3 | I | [18] | |
EAAT_MCGA_381 | III | ||
EACG_MCAA_191 DS, STM1002-1, STM1002-2 | IV | ||
EACG_MCAT_925, StI022-3, StI022-5 | VIII | ||
EATC_MCCG_182 | X | ||
EACG_MCAA_191 DS, StI017-2DS | XI | ||
EACC_MCGA_114, EACG_MCAA_119 DS | XII | ||
PCT_MACT_86, StI022-2 DS, EACG_MCAA_119 DS | Unlinked | ||
Pain1-A 718 (C 552) 2, Pain1- A 1544 and Pain1-T 741, Pain1-8c | III | [19] | |
InvGE-A 85 (A 86), InvGE-G 95 (G 106) | IX | ||
InvCD141_T 543 (A 280, T 288, T 339, A 630, C 1030, G 1031, T 1096), InvCD141-G 765 | X | ||
Stp23-8b | III | [20] | |
CIS | REC_B_05-1 | V | [21] |
CIS_E_07-1 | VII | ||
Tuber shape | Solcap_snp_c2_34875 | IV | [22] |
Solcap_snp_c2_25485, Solcap_snp_c2_25510 | X | ||
Solcap_snp_c1_1847 | I | [23] | |
Solcap_snp_c2_54790 | IV | ||
Solcap_snp_c2_26012, | VII | ||
Solcap_snp_c1_15594, Solcap_snp_c1_11535 | X | ||
Tuber skin color | Solcap_snp_c2_31852, Solcap_snp_c2_25759, Solcap_snp_c2_21178 | I | [22] |
solcap_snp_c1_12440 | V | ||
solcap_snp_c2_4342, solcap_snp_c2_45215 | VII | ||
solcap_snp_c2_50702, solcap_snp_c2_53902, solcap_snp_c2_15803 | VIII | ||
solcap_snp_c2_22697 | X | ||
solcap_snp_c2_39889 | XI | ||
and solcap_snp_c2_5385 | XII |
Transgenics | Trait Introduced/Modified | Gene Added/Silenced | References |
Conventional | Starch yield | PsGPT | [63] |
Tuber yield | AtPAP2 | [64] | |
SPS | [65] | ||
tms1 | [66] | ||
Amino acid (methionine) | AmA1 | [67] | |
Amino acid (cysteine) | cysE | [68] | |
Astaxanthin | Or | [69] | |
Ketocarotenoids | crtO | [70] | |
Carotenoids | crtZ, | [71] | |
bkt1 | [72] | ||
StLCYb | [73] | ||
Ascorbic acid | DHAR | [74] | |
Vitamin-E | At-HPPD & At-HPT | [75] | |
Vitamin B6 | PDXII | [76] | |
CIS | SbRFP1 | [77] | |
NtInvInh2, StInvInh2A and StInvInh2B | [78,79] | ||
LbPFK | [80] | ||
RNAi | Starch quality | SSIII | [81] |
GBSS | [82] | ||
CIS | VInv, | [83,84,85] | |
SPP | [86] | ||
TALENS | Starch quality | GBSS | [87] |
CIS | StvacINV2 | [88] | |
VInv | [89] | ||
CRISPR | Starch quality | GBSS | [90] |
Anti-browning | StPPO2 | [91] | |
Reducing steroidal alkaloids | St16DOX | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, D.; Zhang, Z.; Rasheed, H.; Xu, X.; Bao, J. Recent Advances in Molecular Improvement for Potato Tuber Traits. Int. J. Mol. Sci. 2022, 23, 9982. https://doi.org/10.3390/ijms23179982
Ahmad D, Zhang Z, Rasheed H, Xu X, Bao J. Recent Advances in Molecular Improvement for Potato Tuber Traits. International Journal of Molecular Sciences. 2022; 23(17):9982. https://doi.org/10.3390/ijms23179982
Chicago/Turabian StyleAhmad, Daraz, Zhongwei Zhang, Haroon Rasheed, Xiaoyong Xu, and Jinsong Bao. 2022. "Recent Advances in Molecular Improvement for Potato Tuber Traits" International Journal of Molecular Sciences 23, no. 17: 9982. https://doi.org/10.3390/ijms23179982
APA StyleAhmad, D., Zhang, Z., Rasheed, H., Xu, X., & Bao, J. (2022). Recent Advances in Molecular Improvement for Potato Tuber Traits. International Journal of Molecular Sciences, 23(17), 9982. https://doi.org/10.3390/ijms23179982