Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L.
Abstract
:1. Introduction
2. Genomics
2.1. Pangenome to Identify Novel Resistance Gene Analogs (RGAs)
2.2. Resistance Sources, Genetics of Resistance and Identification of QTLs for Clubroot Resistance in B. oleracea
Species | Mapping Population | Pathotype/Race/Isolate | Gene Locus/QTL | Chr/LG | Reference |
---|---|---|---|---|---|
B. oleracea | F2 | Race 2 | CR2a | LG6 | [80] |
CR2b | LG1 | ||||
B. oleracea var. italica | F2 | Race 7 | 14a | 1C | [81] |
48 | 4C | ||||
177b | 9C | ||||
B. oleracea var. capitata | DH | Isolate CD 16/3/30 | pb-3 | LG3 | [82] |
pb-4 | LG1 | ||||
B. oleracea var. acephala | F2 | Races 1 and 3 | 1 QTL | LG3 | [89] |
B. oleracea (Kale) | F2:3 | Pathotypes P1, P2, P4, and P7 | Pb-Bo1 | LG1 | [75] |
Pb-Bo2 | LG2 | ||||
Pb-Bo3 | LG3 | ||||
Pb-Bo4 | LG4 | ||||
Pb-Bo5a | LG5 | ||||
Pb-Bo5b | LG5 | ||||
Pb-Bo8 | LG8 | ||||
Pb-Bo9a | LG9 | ||||
Pb-Bo9b | LG9 | ||||
B. oleracea | F2 | Isolate Kamogawa (races 1 and 3), Anno and Yuki | QTL1 | LG1 | [78] |
QTL3 | LG3 | ||||
QTL9 | LG9 | ||||
B. oleracea var. capitata | F2:3 | Race 4 | PbBo(Anju)1 | O2 | [90] |
PbBo(Anju)2 | O2 | ||||
PbBo(Anju)3 | O3 | ||||
PbBo(Anju)4 | O7 | ||||
PbBo(GC)1 | O5 | ||||
B. oleracea var. capitata | F2:3 | Field isolates—No. 5, No. 14, Ano-01, T-1, I-1, and M-1 | Anju1 | O2 | [76] |
Anju2, | O2 | ||||
Anju3, | O3 | ||||
Anju4 | O7 | ||||
GC1 | O5 | ||||
B. oleracea | F2 | Race 4 | 23 QTLs | C1, C2, C3, C4, C6, C7, C8 | [77] |
B. oleracea | B. oleracea accessions | Pathotypes 3A and 5X LG-2 | PbC4.1 | C4 | [62] |
PbC6 | C6 | ||||
PbC7.1 | C7 | ||||
PbC7.2 | C7 | ||||
PbC8 | C8 | ||||
PbC9.1 | C9 | ||||
PbC3 | C3 | ||||
PbC4.2 | C4 | ||||
PbC7.3 | C7 | ||||
PbC9.2 | C9 | ||||
B. oleracea var. capitata | F2:3 | Races 2 and 9 | CRQTL-GN_1 | C2 | [86] |
CRQTL-GN_2 | C3 | ||||
CRQTL-YC | C3 |
2.3. Fine Mapping and Identification of NBS-LRR Encoding R Genes for Clubroot Resistance
Species | Mapping Population | Pathotype/Race/Isolate | R Gene | Chr/LG | Fine Mapped Region/Interval | Reference |
---|---|---|---|---|---|---|
B. oleracea | BC1 | Pathotype 3 and 5X | Rcr7 | C7 | 41–44 Mb | [106] |
B. oleracea | F2 | Race 4 | qCRc7-1 | C7 | 38.33–44.14 Mb | [110] |
qCRc4-1 | C4 | 16.92–18.79 Mb | ||||
qCRc7-2 | C7 | 38.96–39.54 Mb | ||||
qCRc7-3 | C7 | 41.38–42.52 Mb | ||||
qCRc7-4 | C7 | 43.56–44.15 Mb | ||||
B. rapa | F1 | Field isolate (PbZj, PbXm, PbXm+) | CRA8.1a | A8 | 765 kb segment | [102] |
CRA8.1b | A8 | 395 kb segment | ||||
B. rapa | BC1 | Pathotype 3 | Rcr2 | A3 | 0.4 cM (~250 kb) segment | [105] |
B. rapa | F2 | Pathotype 3 | Rcr5 | A3 | 23–31Mb segment | [108] |
B. rapa | BC3F2 | Pathotype 4 | PbBa8.1 | A8 | 2.9 Mb segment | [101] |
B. rapa | F2 | Race 2 | CRa | A3 | [121] | |
B. rapa | F2 | Isolate Ano-01 (Pathotype 4) | Crr1a | A8 | 8 kb segment | [120] |
B. rapa | F2 | Pathotype 3 | CRbkato | A3 | 24.2–24.342 Mb | [96] |
B. rapa | F2 | Pathotype 4 | CRb | A3 | 0.14 cM segment | [98] |
B. rapa ssp. chinensis | BC1 | Pathotype 3 | Rcr1 | A3 | 24.26–24.50 Mb | [99] |
B. rapa | F2:3 | Isolate Ano-01 | Crr3 | A3 | 0.35 cM segment | [95] |
B. rapa | F2 | Pathotypes 2, 5 and 6 | Rcr1 | A3 | [104] | |
B. rapa | BC1 | Pathotypes 3H and 5X | Rcr3 | A8 | 10.00–10.23 Mb | [109] |
Rcr9wa | A8 | 10.85–11.17 Mb | ||||
B. nigra | F2 | Pathotype 3 | Rcr6 | B3 | 6.1–6.6 Mb | [107] |
B. rapa | F2, BC | Pathotype 3 | Rcr6 | A8 | 14.8–15.4 Mb | [107] |
B. rapa | BC1 | Pathotypes 2, 3, 5, 6, 8 | Rcr4 | A3 | 2.96 Mb segment | [111] |
Pathotype 5x | Rcr8 | A2 | 3.59 Mb segment | |||
Rcr9 | A8 | 6.48 Mb segment | ||||
B. rapa | DH | Pathotype “Banglim” | PbBrA08Banglim | A8 | ~1 Mb segment | [114] |
B. rapa | F2 | Pathotype 4 | CRs | A8 | 0.8 Mb segment | [113] |
B. rapa ssp. Pekinensis | F2 | Race 4 | CRd | A3 | 60 Kb segment | [112] |
B. napus | DH | Field isolate (Lower Silesian Province, Poland) | Crr3Tsc | A3 | 0.4 cM segment | [116] |
B. napus | DH | Pathotypes 3A, 3D, 3H | Rcr10ECD01 | A3 | 3.7 Mb segment | [117] |
Pathotypes 3A, 3D, 3H, and 5X | Rcr9ECD01 | A8 | 2.2 Mb segment |
2.4. Pyramiding of Resistance Genes
2.5. Comparative Mapping Studies
3. Epigenomics
4. Transcriptomics
4.1. Hormone Signal Transduction during Brassica-P. brassicae Interaction
Species | Pathotype/Race/Isolate | Target Tissue | Time Point (Tissue Collection) | Inference | Reference |
---|---|---|---|---|---|
B. oleracea var. italica and B. macrocarpa | Pathotype 4 | Roots | 0, 7, and 14 dai | Genes related to NBS-LRR proteins, SA signal transduction, cell wall and phytoalexins biosynthesis, chitinase, Ca2+ signaling and RBOH were up-regulated in the resistant genotype | [183] |
B. oleracea var. capitata | - | Roots | 7 and 28 dai | Six BoSWEET genes were up-regulated in the susceptible cultivar | [229] |
B. oleracea var. capitata | - | Roots | 7 and 28 dai | 22 BoSTP genes harbouring the conserved sugar transporter domain were identified. BoSTP4b and BoSTP12 were involved in monosaccharide unloading and carbon partitioning associated with P. brassicae colonization | [230] |
B. oleracea var. capitata | 16/4/0 (ECD) | Roots | 3 dai | Clubroot resistance genes were involved in pathogen recognition, cell wall modification, plant hormone signaling, generation of ROS, transcriptional regulation | [184] |
B.oleracea var. gongylodes | Field isolate (Ranggen, Austria) | Roots | - | Genes involved in host cell wall synthesis and reinforcement, cytokinin metabolism and signaling, SA- mediated defence response were up-regulated and jasmonic acid synthesis was down-regulated in symptomless roots | [189] |
B. oleracea var. capitata | Pathotype 4 | Roots | 7 and 28 dai | Genes associated with cell-wall modification, PRRs, disease resistance proteins, SA signal transduction, calcium influx, RBOH, MAPK cascades, transcription factors and chitinase were up-regulated in the clubroot-resistant line | [198] |
B. oleracea var. capitata | Pathotype 4 | Roots | 28 dai | Most of the JAZs (Jasmonate ZIM) were activated in the resistant line | [227] |
B. oleracea var. capitata | Race 4 | Roots and leaves | 0, 7, 14, 21, 35, 42, 52 and 60 dai | MES genes are important to control clubroot disease. SA biosynthesis is suppressed in resistant plants | [231] |
B. oleracea | Race 4 | Roots | 7 and 28 dai | 36 CKX genes were identified and three genes were down- and up-regulated significantly in the susceptible and resistant materials, respectively | [202] |
B. oleracea | Isolate yeoncheon | Leaves and roots | 0, 3, 6, 12, 24, 72 hai and 15 and 40 dai | Two BolMyro and 12 BolMBP genes were highly expressed in the susceptible line, whereas only one BolMyro and five BolMBP genes were highly induced in the resistant line | [232] |
B. rapa ssp. pekinensis | Pathotype 4 | Total root tissue | 0, 2, 5, 8, 13, and 22 dai | Genes associated with auxin, PR, disease resistance proteins, oxidative stress, and WRKY and MYB transcription factors were involved regulating clubroot resistance | [233] |
B. rapa | Pathotype 4 | Roots | 10 dai | Brassica-specific genes (BSGs), which are expressed in various tissues can be induced by P. brassicae | [234] |
B. rapa | Pathotype 3 | Total root tissue | 15 dpi | In the resistant plant carrying Rcr1, genes related to jasmonate and ethylene metabolism, signaling and biosynthesis of callose and indole-containing compounds were up-regulated | [99] |
B. rapa | Pathotype 4 | Roots | 0, 12, 72, and 96 hai | Genes associated with effector receptors and PR genes involved in SA signaling pathway were induced in clubroot-resistant NIL conferring CRb-mediated clubroot resistance | [185] |
B. rapa ssp. pekinesis | Pathotype 4 | Roots | 30 dpi | DEGs related to metabolic process, biological regulation, calcium ion influx, glucosinolate biosynthesis, response to stimulus, plant-pathogen interaction, plant hormone signal transduction, cell wall thickening, SA homeostasis, chitin metabolism, pathogenesis-related pathways showed significant upregulation in the resistant line | [188] |
B. rapa | Pathotype 4 | Roots | 0 h and 4 and 8 dpi | Resistant line carrying the CRd gene revealed that plant hormone signal transduction (SA, JA, ET, and BR) played key roles in the late stages of P. brassicae infection | [228] |
B. rapa var. pekinensis | Pathotype 4 | Roots and leaves | 1, 3, 14, 28, and 35 dai | BrGH3.3 and BrNIT1 (auxin signaling), BrPIN1 (auxin transporter), BrDCK1 (auxin receptor) and BrLAX1 (root hair development) were involved in auxin signaling | [235] |
B. rapa ssp. chinensis | Pathotype 3 | Roots | 15 dpi | Increased biosynthesis of lignin and phenolics play a major role in defence responses | [236] |
B. rapa var. pekinensis | Pathotype 4 | Roots and leaves | 1, 3, 14, 28 and 35 dai | cytokinin related genes (BrIPT1, BrRR1, BrRR3 and 4) up-regulated during gall enlargement | [201] |
B. rapa ssp. pekinensis | Isolate Ibaraki-1 | Roots | 10, 20, 25, 30, 35 and 40 dpi | Expression analysis of nitrilase genes (BrNIT2) suggested that 1.1 kb transcripts might be involved in auxin overproduction during clubroot development | [237] |
B. rapa ssp. Pekinensis | Isolate Ibaraki-1 | Roots | 10, 15, 20, 30, 35 and 40 dpi | Expression of AO gene, BrAO1 increased with clubroot development | [238] |
B. rapa ssp. pekinensis | Isolate Ibaraki-1 | Roots | 10, 15, 20, 23, 27, 30, 35, 40 and 60 dpi | P. Brassicae infection transiently stimulates the transcription of BrIPT1, 3, 5, and 7 (cytokinin synthase genes) before club formation | [239] |
B. rapa | Race 4 | Roots | 0, 3, 9 and 20 dai | Plant hormone signal transduction, plant-pathogen interaction, and fifteen hub genes (RIN4 and IAA16) were involved in immune response | [240] |
B. napus | Pathotype 4 | Total root tissue | 20 dai | The pyramided line (618R) strongly triggers multiple resistance pathways | [241] |
B. napus subsp. rapifera Metzg | Pathotype 3A | Total root tissue | 7, 14, and 21 dai | In the resistant cultivar, genes related to calcium signaling and genes encoding LRR receptor kinases, RBOH, WRKYs, erfs, and basic leucine zippers were up-regulated | [242] |
B. napus | Pathotype 4 | Roots | 12, 24, 60, and 96 hpi | Genes associated with plant hormone signal transduction, fatty acid metabolism, and glucosinolate biosynthesis were involved in regulation of clubroot resistance | [243] |
B. napus | Pathotype 3 | Roots | 10 dai | The gene CRF4, a component of cytokinin signaling pathway play a fundamental role in clubroot resistance. | [203] |
B. napus | Field isolates (Fuling, China) and pathotype 4 | Total root tissue | 0, 3, 6, 9, and 12 dai | Host intercellular G proteins got activated together with the enhanced Ca2+ signaling, promoted ROS production and PCD in the host plant. | [191] |
B. napus | Field isolate (Kunming, China) | Roots | 20 dai | High clubroot resistance was due to the induced expression of broad-spectrum and clubroot specific (Crr1 and Cra) resistance genes | [244] |
B. napus | Pathotype 5X | Roots | 7, 14 and 21 (dai) | Immune related genes are associated with SA-mediated responses. JA-mediated responses were inhibited in the resistant genotype. | [245] |
B. napus | Pathotypes 5I (P5I) and 5X (P5X) | Total root tissue | 7, 14, and 21 dai | 13 genes encoded high cysteine content proteins and three genes encoded proteins with an RXLR motif | [246] |
B. napus | Pathotype 3 | Roots and leaves | 5, 7, 10, 14 dpi | Up-regulation of phenylpropanoid pathway genes were involved in lignin and flavonoid biosynthesis | [247] |
B. napus | Pathotype 4 | Roots and leaves | 3, 7, and 10 dai | BnAAO4 might be directly responsible for overproduction of IAA during early infection | [192] |
B. napus subs. napus | Pathotype 6 | Roots, leaves, galls | 2, 5, 7, 10, 15, 22, 35, 42, and 49 dai | In the resistant roots, higher basal level of SA was stimulated via ICS1 expression earlier than the susceptible cultivar | [181] |
B. napus | Pathotype 4 | Roots | 3, 7, 14, and 28 dai | Expression of BnMYB28.1 was significantly enhanced following treatment with exogenous JA | [223] |
B. napus | 17/31/31 (ECD) | Roots | - | 21 genes and 82 candidate genes potentially involved in clubroot resistance were identified | [248] |
B. juncea var. tumida Tsen | Field isolate (Chongqing, China) | Total root tissue | 15dai | Resistance related genes were involved in PRRs, PTI and ETI signaling pathways, calcium influx, salicylic acid pathway, reactive oxygen intermediates, MAPK-cascades, and cell wall modification | [249] |
B. juncea var. tumida Tsen | Field isolate (Fuling, China) | Roots | 10, 15, 20, 25, 30 and 40 dpi | Six resistance-related genes encoding ethylene responsive TF, abscisic acid receptor, CDPK-5, quinone reductase gene, MYB family TF and a heat shock TF were up-regulated | [250] |
B. campestris ssp. chinensis Makino | Race 7 | Roots and leaves | 40 DAG | Expression levels of genes encoding SOD, APX, CAT, and GR were enhanced | [251] |
4.2. Cell Wall Modification and Lignification
4.3. Role of Sugars and SWEET Genes in Clubroot Disease Response
5. ncRNAomics
Species | Target Tissue | Pathotype /Race/Isolate | Time Point (Tissue Collection) | Inference | Reference |
---|---|---|---|---|---|
B. napus | Total roots | Pathotype 4/Pb1 | 20 dpi | Six antagonistic miRNA-target pairs associated with root development, hypersensitive cell death, and chloroplast metabolic synthesis were identified in the clubroot resistant line | [297] |
B. rapa ssp. pekinensis | Roots | Race 4 | 15 dai | The putative target genes of the miRNAs were involved in seleno compound metabolism and plant hormone signal transduction | [294] |
B. napus | Roots | Pathotype SACAN03-1 | 10 and 20 dpi | Several target genes TF, hormone-related genes, genes associated with cytokinin, auxin/ethylene response elements were identified | [293] |
B. rapa | Leaves and roots | Race 4, Uiryeong, and Banglim | 1.5, 3, 6, 12, 24, 48, 72, 96 hpi, and 15 dpi | Cleavage of Bra019412 by Bra-miR1885b suggested that miR1885a negatively regulate the TIR-NBS gene expression during clubroot infection in B. rapa | [296] |
B. napus | Roots | Pathotype 3 | 6, 10, 14, 18 and 22 dpi | 24 DE lncRNAs were identified on chromosome A8 known to carrying QTLs conferring resistance against five pathotypes of P. brassicae | [302] |
B. napus | Roots | Pathotype 3 | 0 hpi and 10, 14, and 22 dpi | Target genes regulated by DE lncRNAs belong to plant-pathogen interaction, hormone signalling and primary and secondary metabolic pathways | [304] |
Brassica campestris ssp. chinensis Makino | Roots | Race 7 | 6 wpi | 15 mRNAs involved in lncRNA-mRNA co-expression network belong to defense response proteins, protein phosphorylation, root-hair cell differentiation, SA biosynthetic regulation process | [301] |
6. Proteomics
Species | Target Tissue | Pathotype/Race/Isolate | Time Point (Tissue Collection) | Methodology | Inference | Reference |
---|---|---|---|---|---|---|
B. oleracea | Leaves | Field isolate (Gangneung, Korea) | 5 dai | 2-DGE, MALDI-TOF/TOF MS | The resistant plants showed an increased abundance of ABA-responsive protein, fructose-bisphosphate aldolase and glucose sensor interaction protein, mediating basal defence against P. brassicae | [318] |
B. oleracea | Roots | - | 4 wai | 2-DE | cytokinin may not cause the tumorous growth and the protist was inhibiting host gene expression causing host protein degradation leading to gall formation | [319] |
B. rapa ssp. pekinensis | Roots | Race 4 | 70 dai | 2-DE, MALDI-TOF | 10 DEPs responded to stimulation of which two were involved in SA signaling pathway. | [320] |
B. rapa | Roots | Pathotype 3 | 15 dpi | UHPLC-MS/MS | Functional annotation of 527 DAPs suggested a novel signaling pathway acting in a calcium-independent manner through an unique MAPK cascade | [317] |
B. rapa ssp. Pekinensis | Roots | Field isolate (SAU, China) | 5 dai | 2-DE, MALDI-TOF/TOF MS | Proteins related to SA-mediated SAR and JA/ET-mediated ISR were identified showing some degree of cross-talk | [213] |
B. rapa | Roots | Race 4 | 3 dai | 2-DE, LC/MS/MS | Resistant line produced more ATP-binding protein for the ABC transporter whereas the susceptible line exhibited increased levels of PR1 production | [321] |
B. rapa | Roots | Field isolate (Songming, Kunming, China) | 14, 21, 28, 35, and 42 dai | iTRAQ, HPLC-MS/MS | DEPs were associated with the glutathione transferase activity pathway and significantly enriched cytokinin signaling or arginine biosynthesis pathways, both of which were related to stimuli and plant defense reaction | [316] |
B. rapa subsp. pekinensis | Roots | Isolate Pb2 | 0, 10 and 20 dai | 2-DE, iTRAQ, LC-ESI-MS/MS | Proteins involved in brassinosteroids metabolism (CAS1, CYP51G1) were up-regulated after inoculation | [315] |
B. napus | Roots | Pathotype 3 | 12, 24, 48, and 72 hai | 2-DE, LC/MS/MS | Reduction of adenosine kinase indicated the role of cytokinin in clubroot infection and decreased intensity of CCoAOMT abundance suggested a reduction in host lignin biosynthesis upon pathogen attack | [199] |
B. napus | Roots | Pathotype 3 | 7, 14, and 21-DPI | LC-MS/MS | 73 putative proteins orthologous to clubroot-resistant proteins and QTL associated with eight CR loci in different chromosomes including A3 and A8 were identified | [322] |
7. Metabolomics
Species | Target Tissue | Pathotype/Race/Isolate | Time Point (Tissue Collection) | Methodology | Inference | Reference |
---|---|---|---|---|---|---|
B. oleracea | Leaves and roots | Isolate yeoncheon | 0, 3, 6, 12, 24, 72 hai and 15 and 40 dai | HPLC | Plants with higher levels of neoglucobrassicin, glucobrassicin and methoxyglucobrassicin exhibited disease symptoms with gall formation | [232] |
B. napus | Roots | Pathotype 1 | 14, 21, 28, 35, and 42 dpi | UPLC-MS/MS, GC-MS | Clubroot susceptibility was positively correlated with clubroot-induced amino acids accumulation | [330] |
B. napus | Leaves and roots | Pathotype 4 | 3, 7, and 10 dai | RP-HPLC/ESI–MS/MS | IAA acts as a signalling molecule to induce root hair infection during early stage of infection whereas NPA treatment reduced the disease index | [192] |
B. napus subs. napus | Leaves, roots, galls | Pathotype 6 | 2, 5, 7, 10, 15, 22, 35, 42, and 49 dai | HPLC | JA promoted gall formation in both the cultivars, whereas SA suppressed gall formation in the resistant cultivar | [181] |
B. napus | Roots | Pathotype 4 | 3, 7, 14, and 28 dai | HPLC | JA-induced aromatic GSLs were involved in defence response and JA-induced aliphatic GSLs may be involved in clubroot disease development | [223] |
B. napus | Leaves and roots | Isolate P1 and P1 (+) (pathotype 1) | 35 dpi | LC-MS | Single and total aliphatic and indolic GSL contents were significantly lower in the leaves and roots of susceptible cultivars compared to the resistant ones | [351] |
Brassica napus cv. Westar | Roots | Pathotype 3 | 3, 4, 5 and 6 wpi | HPLC-DAD, HPLC-ESI-MS | Plants produced a complex blend of phytoalexins and other antimicrobial metabolites as a defence response | [352] |
B. campestris ssp. chinensis Makino | Leaves and Roots | Race 7 | 40 DAG | - | Clubroot incidence rate and disease index were decreased after treatment with 0.6 mM exogenous SA | [251] |
B. campestris ssp. pekinensis | Roots | - | 5, 10, 14, 20, 24, 28, 32 and 40 dai | HPLC | Indole and aliphatic was higher in the roots of susceptible varieties whereas aromatic glucosinolates was higher in the roots of resistant varieties | [224] |
Brassica campestris L. ssp. pekinensis cv. Granat | Leaves and Roots | - | 14, 21, 28, 35, 42 dai | HPLC | JA level was enhanced during club development and may be involved in the up-regulation of three enzymes required for IAA synthesis | [225] |
B. campestris | Roots | - | 5, 10, 12, 13 and 14 dai | GC-MS | Mean of IAA content in the infected plant was 66.5% higher than the non-infected plants | [332] |
B. rapa ssp. pekinensis | Roots | Field isolate (Songming, Kunming, Yunnan, China) | 14, 21, 28, 35, 42 dpi | LC-ESI-MS/MS, | Metabolites related to amino-acid biosynthesis, fatty-acid biosynthesis and elongation, glutathione and glucosinolate metabolism were highly accumulated in the resistant genotype | [331] |
B, rapa | Roots | Race 4 | 0, 3, 9, and 20 dai | UHPLC-MS | Inhibition of IAA, cytokinin, JA, and SA contents may play important roles in regulation of clubroot resistance | [240] |
8. Multi-Omics Opened Up New Avenues for Crop Improvement
9. Concluding Remarks and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cartea, M.E.; Lema, M.; Francisco, M.; Velasco, P. Basic information on vegetable Brassica crops. In Genetics, Genomics and Breeding of Vegetable Brassicas, 1st ed.; Sadowsky, J., Kole, C., Eds.; Science Publishers: Enfield, NH, USA, 2011; pp. 1–34. [Google Scholar]
- Gupta, U.S. Brassica Vegetables, What’s New About Crop Plants, 1st ed.; Science Publishers: Enfield, NH, USA, 2011; pp. 378–402. [Google Scholar]
- Kapusta-Duch, J.; Kopeć, A.; Piatkowska, E.; Borczak, B.; Leszczyńska, T. The beneficial effects of Brassica vegetables on human health. Rocz. Panstw. Zakl. Hig. 2012, 63, 389–395. [Google Scholar] [PubMed]
- Dixon, G.R. The Occurrence and Economic Impact of Plasmodiophora brassicae and Clubroot Disease. J. Plant Growth Regul. 2009, 28, 194–202. [Google Scholar] [CrossRef]
- Tewari, J.P.; Strelkov, S.E.; Orchard, D.; Hartman, M.; Lange, R.M.; Turkington, T.K. Identification of clubroot of crucifers on canola (Brassica napus) in Alberta. Can. J. Plant Pathol. 2005, 27, 143–144. [Google Scholar] [CrossRef]
- Pageau, D.; Lajeunesse, J.; Lafond, J. Impact de l’hernie des crucifères [Plasmodiophora brassicae] sur la productivité et la qualité du canola. Can. J. Plant Pathol. 2006, 28, 137–143. [Google Scholar] [CrossRef]
- Wallenhammar, A.-C. Prevalence of Plasmodiophora brassicae in a spring oilseed rape growing area in Central Sweden and factors influencing soil infestation levels. Plant Pathol. 1996, 45, 710–719. [Google Scholar] [CrossRef]
- Hwang, S.F.; Howard, R.J.; Strelkov, S.E.; Gossen, B.D.; Peng, G. Management of clubroot (Plasmodiophora brassicae) on canola (Brassica napus) in western Canada. Can. J. Plant Pathol. 2014, 36, 49–65. [Google Scholar] [CrossRef]
- Hwang, S.F.; Ahmed, H.U.; Zhou, Q.; Turnbull, G.D.; Strelkov, S.E.; Gossen, B.D.; Peng, G. Effect of host and non-host crops on Plasmodiophora brassicae resting spore concentrations and clubroot of canola. Plant Pathol. 2015, 64, 1198–1206. [Google Scholar] [CrossRef]
- Peng, G.; Lahlali, R.; Hwang, S.F.; Pageau, D.; Hynes, R.K.; McDonald, M.R.; Gossen, B.D.; Strelkov, S.E. Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola. Can. J. Plant Pathol. 2014, 36, 99–112. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.-F.; Howard, R.J.; Hartman, M.; Turkington, T.K. Progress towards the sustainable risk management of clubroot (Plasmodiophora brassicae) of canola on the Canadian prairies. Prairie Soils Crops J. 2011, 4, 114–121. [Google Scholar]
- Wallenhammar, A.C.; Johnsson, L.; Gerhardson, B. Clubroot Resistance and Yield Loss in Spring Oilseed Turnip Rape and Spring Oilseed Rape. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999. [Google Scholar]
- Hwang, S.F. Seedling age and inoculum density affect clubroot severity and seed yield in canola. Can. J. Plant Sci. 2011, 91, 183–190. [Google Scholar] [CrossRef]
- Peng, G.; Falk, K.C.; Gugel, R.K.; Franke, C.; Yu, F.; James, B.; Strelkov, S.E.; Hwang, S.-F.; McGregor, L. Sources of resistance to Plasmodiophora brassicae (clubroot) pathotypes virulent on canola. Can. J. Plant Pathol. 2014, 36, 89–99. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, A.; Liang, F.; Yao, X.; Wang, Y.; Liu, X.; Zhang, Y.; Dalelhan, J.; Zhang, B.; Qin, M. Screening of clubroot-resistant varieties and transfer of clubroot resistance genes to Brassica napus using distant hybridization. Breed. Sci. 2018, 68, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Donald, C.; Porter, I. Integrated Control of Clubroot. J. Plant Growth Regul. 2009, 28, 289. [Google Scholar] [CrossRef]
- Peng, G.; Pageau, D.; Strelkov, S.; Gossen, B.; Hwang, S.; Lahlali, R. A >2-year crop rotation reduces resting spores of Plasmodiophora brassicae in soil and the impact of clubroot on canola. Eur. J. Agron 2015, 70, 78–84. [Google Scholar] [CrossRef]
- Faggian, R.; Strelkov, S.E. Detection and Measurement of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 282–288. [Google Scholar] [CrossRef]
- Hwang, S.-F.; Ahmed, H.U.; Zhou, Q.; Fu, H.; Turnbull, G.D.; Fredua-Agyeman, R.; Fredua-Agyeman, R.; Strelkov, S.E.; Gossen, B.D.; Peng, G. Influence of resistant cultivars and crop intervals on clubroot of canola. Can. J. Plant Sci. 2019, 99, 862–872. [Google Scholar] [CrossRef]
- Francisco, M.; Soengas, P.; Velasco, P.; Bhadauria, V.; Cartea, M.E.; Rodríguez, V.M. Omics approach to identify factors involved in Brassica disease resistance. Curr. Issues Mol. Biol. 2016, 19, 31–42. [Google Scholar]
- Barr, D.J.S. Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 1992, 84, 1–11. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Prinsen, E.; Rolfe, S.A.; Scholes, J.D. Metabolism and plant hormone action during clubroot disease. J. Plant Growth Regul. 2009, 28, 229–244. [Google Scholar] [CrossRef]
- Kageyama, K.; Asano, T. Life Cycle of Plasmodiophora brassicae. J. Plant Growth Regul. 2009, 28, 203–211. [Google Scholar] [CrossRef]
- Howard, R.J.; Strelkov, S.E.; Harding, M.W. Clubroot of cruciferous crops—New perspectives on an old disease. Can. J. Plant Pathol. 2010, 32, 43–57. [Google Scholar] [CrossRef]
- Voorrips, R.E. Plasmodiophora brassicae: Aspects of pathogenesis and resistance in Brassica oleracea. Euphytica 1995, 83, 139–146. [Google Scholar] [CrossRef]
- Friberg, H.; Lagerlöf, J.; Rämert, B. Germination of Plasmodiophora brassicae resting spores stimulated by a non-host plant. Eur. J. Plant Pathol. 2005, 113, 275–281. [Google Scholar] [CrossRef]
- Rashid, A.; Ahmed, H.U.; Xiao, Q.; Hwang, S.F.; Strelkov, S.E. Effects of root exudates and pH on Plasmodiophora brassicae resting spore germination and infection of canola (Brassica napus L.) root hairs. Crop Protect. 2013, 48, 16–23. [Google Scholar] [CrossRef]
- Ingram, D.S.; Tommerup, I.C. The life history of Plasmodiophora brassicae Woron. Proc. R. Soc. London. Ser. B. Biol. Sci. 1972, 180, 103–112. [Google Scholar]
- Rolfe, S.A.; Strelkov, S.E.; Links, M.G.; Clarke, W.E.; Robinson, S.J.; Djavaheri, M.; Malinowski, R.; Haddadi, P.; Kagale, S.; Parkin, I.A.P.; et al. The compact genome of the plant pathogen Plasmodiophora brassicae is adapted to intracellular interactions with host Brassica spp. BMC Genom. 2016, 17, 272. [Google Scholar] [CrossRef]
- Hwang, S.F.; Strelkov, S.E.; Feng, J.; Gossen, B.D.; Howard, R.J. Plasmodiophora brassicae: A review of an emerging pathogen of the Canadian canola (Brassica napus) crop. Mol. Plant Pathol. 2012, 13, 105–113. [Google Scholar] [CrossRef]
- Honig, F. Der Kohlkropferreger (Plasmodiophora brassicae Wor.): Eine Monographie; Verlag nicht ermittelbar: Leipzig, Germany, 1931. [Google Scholar]
- Pang, W.; Liang, Y.; Zhan, Z.; Li, X.; Piao, Z. Development of a Sinitic clubroot differential set for the pathotype classification of Plasmodiophora brassicae. Front. Plant Sci. 2020, 11, 568771. [Google Scholar] [CrossRef]
- Williams, P.H. A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 1966, 56, 624–626. [Google Scholar]
- Buczacki, S.T.; Toxopeus, H.; Mattusch, P.; Johnston, T.D.; Dixon, G.R.; Hobolth, L.A. Study of physiologic specialization in Plasmodiophora brassicae: Proposals for attempted rationalization through an international approach. Trans. Br. Mycol. Soc. 1975, 65, 295–303. [Google Scholar] [CrossRef]
- Somé, A.; Manzanares, M.J.; Laurens, F.; Baron, F.; Thomas, G.; Rouxel, F. Variation for virulence on Brassica napus L. amongst Plasmodiophora brassicae collections from France and derived single-spore isolates. Plant Pathol. 1996, 45, 432–439. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Hwang, S.-F.; Manolii, V.P.; Cao, T.; Fredua-Agyeman, R.; Harding, M.W.; Peng, G.; Gossen, B.D.; Mcdonald, M.R.; Feindel, D. Virulence and pathotype classification of Plasmodiophora brassicae populations collected from clubroot resistant canola (Brassica napus) in Canada. Can. J. Plant Pathol. 2018, 40, 284–298. [Google Scholar] [CrossRef]
- Strelkov, S.; Hwang, S.; Manolii, V.; Cao, T.; Feindel, D. Emergence of new virulence phenotypes of Plasmodiophora brassicae on canola (Brassica napus) in Alberta, Canada. Eur. J. Plant Pathol. 2016, 145, 517–529. [Google Scholar] [CrossRef]
- Strelkov, S.E.; Manolii, V.P.; Harding, M.W.; Daniels, G.C.; Nuffer, P.; Aigu, Y.; Hwang, S.F. The Occurrence and Spread of Clubroot on Canola in Alberta in 2019. Canadian Plant Disease Survey 2020 Vol. 100: Disease Highlights 2019. Can. J. Plant Pathol. 2020, 42, 117–120. [Google Scholar] [CrossRef]
- Hulbert, S.; Pumphrey, M. A time for more booms and fewer busts? Unraveling cereal-rust interactions. Mol. Plant Microbe. Interact. 2014, 27, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Mellor, K.E.; Hoffman, A.M.; Timko, M.P. Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods 2012, 8, 22. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Y.; Yang, X.; Tong, C.; Edwards, D.; Parkin, I.A.P.; Zhao, M.; Ma, J.; Yu, J.; Huang, S.; et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat. Commun. 2014, 5, 3930. [Google Scholar] [CrossRef]
- Parkin, I.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; E Clarke, W.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L.; et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol. 2014, 15, R77. [Google Scholar] [CrossRef]
- Belser, C.; Istace, B.; Denis, E.; Dubarry, M.; Baurens, F.-C.; Falentin, C.; Genete, M.; Berrabah, W.; Chèvre, A.-M.; Delourme, R.; et al. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat. Plants 2018, 4, 879–887. [Google Scholar] [CrossRef]
- Sun, D.; Wang, C.; Zhang, X.; Zhang, W.; Jiang, H.; Yao, X.; Liu, L.; Wen, Z.; Niu, G.; Shan, X. Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Hortic. Res. 2019, 6, 82. [Google Scholar] [CrossRef]
- Guo, N.; Wang, S.; Gao, L.; Liu, Y.; Wang, X.; Lai, E.; Duan, M.; Wang, G.; Li, J.; Yang, M.; et al. Genome sequencing sheds light on the contribution of structural variants to Brassica oleracea diversification. BMC Biol. 2021, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Bayer, P.E.; Golicz, A.A.; Scheben, A.; Batley, J.; Edwards, D. Plant pan-genomes are the new reference. Nat. Plants 2020, 6, 914–920. [Google Scholar] [CrossRef]
- Golicz, A.A.; Bayer, P.E.; Barker, G.C.; Edger, P.P.; Kim, H.; Martinez, P.A.; Chan, C.K.K.; Severn-Ellis, A.; McCombie, W.R.; Parkin, I.A.P.; et al. The pangenome of an agronomically important crop plant Brassica oleracea. Nat. Commun. 2016, 7, 13390. [Google Scholar] [CrossRef] [PubMed]
- Amsbury, S. Sensing Attack: The role of wall-associated kinases in plant pathogen responses. Plant Physiol. 2020, 183, 1420–1421. [Google Scholar] [CrossRef]
- Tirnaz, S.; Bayer, P.; Inturrisi, F.; Neik, T.; Yang, H.; Dolatabadian, A.; Zhang, F.; Severn-Ellis, A.; Patel, D.; Pradhan, A.; et al. Resistance gene analogs in the Brassicaceae: Identification, Characterization, Distribution, and Evolution. Plant Physiol. 2020, 184, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Bayer, P.E.; Golicz, A.A.; Tirnaz, S.; Chan, C.K.; Edwards, D.; Batley, J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol. J. 2019, 17, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Crisp, P.; Crute, I.R.; Sutherland, R.A.; Angell, S.M.; Bloor, K.; Burgess, H.; Gordon, P.L. The exploitation of genetic resources of Brassica oleracea in breeding for resistance to clubroot (Plasmodiophora brassicae). Euphytica 1989, 42, 215–226. [Google Scholar] [CrossRef]
- Manzanares-Dauleux, M.J.; Divaret, I.; Baron, F.; Thomas, G. Evaluation of French Brassica oleracea landraces for resistance to Plasmodiophora brassicae. Euphytica 2000, 113, 211–218. [Google Scholar] [CrossRef]
- KoPecKý, P.; Doležalová, I.; Duchoslav, M.; DušeK, K. Variability in resistance to clubroot in European cauliflower cultivars. Plant Prot. Sci. 2012, 48, 156–161. [Google Scholar] [CrossRef]
- Heinrich, A.; Kawai, S.; Myers, J. Screening Brassica cultivars for resistance to western Oregon clubroot pathotypes. Hort Technol. 2017, 27, 510–516. [Google Scholar] [CrossRef]
- Voorrips, R.E.; Visser, D.L. Examination of resistance to clubroot in accessions of Brassica oleracea using a glasshouse seedling test. Neth. J. Plant Pathol. 1993, 99, 269–276. [Google Scholar] [CrossRef]
- Dias, J.S.; Ferreira, M.E.; Williams, P.H. Screening of Portuguese cole landraces (Brassica oleracea L.) with Peronospora parasitica and Plasmodiophora brassicae. Euphytica 1993, 67, 135–141. [Google Scholar] [CrossRef]
- Carlsson, M.; Bothmer, R.V.; Merker, A. Screening and evaluation of resistance to downy mildew (Peronospora parasitica) and clubroot (Plasmodiophora brassicae) in genetic resources of Brassica oleracea. Hereditas 2004, 141, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Jakir Hasan, M.; Strelkov, S.E.; Howard, R.J.; Rahman, H. Screening of Brassica germplasm for resistance to Plasmodiophora brassicae pathotypes prevalent in Canada for broadening diversity in clubroot resistance. Can. J. Plant Sci. 2012, 92, 501–515. [Google Scholar] [CrossRef]
- Nieuwhof, M.; Wiering, D. Clubroot resistance in Brassica oleracea L. Euphytica 1962, 11, 233–239. [Google Scholar] [CrossRef]
- Ramzi, N.; Kaczmarek, J.; Jędryczka, M. Identification of clubroot resistance sources from world gene bank accessions. In Proceedings of the IOBC-WPRS Bulletin, Integrated Control in Oilseed Crops, Zagreb, Croatia, 18–20 September 2018; Volume 136, pp. 144–147. [Google Scholar]
- Fredua-Agyeman, R.; Hwang, S.-F.; Strelkov, S.E.; Zhou, Q.; Manolii, V.P.; Feindel, D. Identification of Brassica accessions resistant to ‘old’and ‘new’pathotypes of Plasmodiophora brassicae from Canada. Plant Pathol. 2019, 68, 708–718. [Google Scholar] [CrossRef]
- Farid, M.; Yang, R.-C.; Kebede, B.; Rahman, H. Evaluation of Brassica oleracea accessions for resistance to Plasmodiophora brassicae and identification of genomic regions associated with resistance. Genome 2020, 63, 91–101. [Google Scholar] [CrossRef]
- Walker, J.C.; Larson, R.H. Progress in the development of clubroot-resistant cabbage. Phytopathology 1951, 41, 37. [Google Scholar]
- Chiang, M.S.; Crête, R. Inheritance of clubroot resistance in cabbage (Brassica oleracea L. var. capitata L.). Can. J. Genet. Cytol. 1970, 12, 253–256. [Google Scholar] [CrossRef]
- Vriesenga, J.D.; Honma, S. Inheritance of seedling resistance to clubroot in Brassica oleracea L. HortScience 1971, 6, 395–396. [Google Scholar]
- Chiang, M.S.; Crête, R. Diallel analysis of the inheritance of resistance to race 6 of Plasmodiophora brassicae in cabbage. Can. J. Plant Sci. 1976, 56, 865–868. [Google Scholar] [CrossRef]
- Yoshikawa, H. Breeding for clubroot resistance of crucifer crops in Japan. JARQ 1983, 17, 6–11. [Google Scholar]
- Crute, I.R.; Pink, D.A.C. The characteristics and inheritance of resistance to clubroot in Brassica oleracea. Aspects Appl. Biol. 1989, 23, 57–60. [Google Scholar]
- Hansen, M. Genetic variation and inheritance of tolerance to clubroot (Plasmodiophora brassicae Wor.) and other quantitative characters in cabbage (Brassica oleracea L.). Hereditas 1989, 110, 13–22. [Google Scholar] [CrossRef]
- Laurens, F.; Thomas, G. Inheritance of resistance to clubroot (Plasmodiophora brassicae Wor.) in kale (Brassica oleracea ssp. acephala). Hereditas 1993, 119, 253–262. [Google Scholar] [CrossRef]
- Grandclement, C.; Laurens, F.; Thomas, G. Genetic analysis of resistance to clubroot (Plasmodiophora brassicae Woron) in two Brassica oleracea groups (ssp. acephala and ssp. botrytis) through diallel analysis. Plant Breed. 1996, 115, 152–156. [Google Scholar] [CrossRef]
- Voorrips, R.E.; Kanne, H.J. Genetic analysis of resistance to clubroot (Plasmodiophora brassicae) in Brassica oleracea. I. Analysis of symptom grades. Euphytica 1997, 93, 31–39. [Google Scholar] [CrossRef]
- Voorrips, R.E.; Kanne, H.J. Genetic analysis of resistance to clubroot (Plasmodiophora brassicae) in Brassica oleracea. II. Quantitative analysis of root symptom measurements. Euphytica 1997, 93, 41–48. [Google Scholar] [CrossRef]
- Diederichsen, E.; Frauen, M.; Linders, E.G.A.; Hatakeyama, K.; Hirai, M. Status and perspectives of clubroot resistance breeding in Crucifer crops. J. Plant Growth Regul. 2009, 28, 265–281. [Google Scholar] [CrossRef]
- Rocherieux, J.; Glory, P.; Giboulot, A.; Boury, S.; Barbeyron, G.; Thomas, G.; Manzanares-Dauleux, M.J. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor. Appl. Genet. 2004, 108, 1555–1563. [Google Scholar] [CrossRef]
- Tomita, H.; Shimizu, M.; Asad-ud Doullah, M.; Fujimoto, R.; Okazaki, K. Accumulation of quantitative trait loci conferring broad-spectrum clubroot resistance in Brassica oleracea. Mol. Breed. 2013, 32, 889–900. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, L.; Li, Q.; Wei, D.; Ren, X.; Song, H.; Mei, J.; Si, J.; Qian, W. Identification of quantitative trait loci for clubroot resistance in Brassica oleracea with the use of Brassica SNP microarray. Front. Plant Sci. 2018, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Minegishi, Y.; Kimizuka-Takagi, C.; Fujioka, T.; Moriguchi, K.; Shishido, R.; Ikehashi, H. Evaluation of F2 and F3 plants introgressed with QTLs for clubroot resistance in cabbage developed by using SCAR markers. Plant Breed. 2005, 124, 371–375. [Google Scholar] [CrossRef]
- Michelmore, R.W. Isolation of disease resistance genes from crop plants. Curr. Opin. Biotechnol. 1995, 6, 145–152. [Google Scholar] [CrossRef]
- Landry, B.S.; Hubert, N.; Crete, R.; Chang, M.S.; Lincoln, S.E.; Etoh, T. A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 1992, 35, 409–420. [Google Scholar] [CrossRef]
- Figdore, S.S.; Ferreira, M.E.; Slocum, M.K.; Williams, P.H. Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea L. Euphytica 1993, 69, 33–44. [Google Scholar] [CrossRef]
- Voorrips, R.E.; Jongerius, M.C.; Kanne, H.J. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor. Appl. Genet. 1997, 94, 75–82. [Google Scholar] [CrossRef]
- Malmberg, M.M.; Shi, F.; Spangenberg, G.C.; Daetwyler, H.D.; Cogan, N.O.I. Diversity and genome analysis of Australian and global oilseed Brassica napus L. germplasm using transcriptomics and whole genome re-sequencing. Front. Plant Sci. 2018, 9, 508. [Google Scholar] [CrossRef]
- Qu, C.; Jia, L.; Fu, F.; Zhao, H.; Lu, K.; Wei, L.; Xu, X.; Liang, Y.; Li, S.; Wang, R.; et al. Genome-wide association mapping and identification of candidate genes for fatty acid composition in Brassica napus L. using SNP markers. BMC Genom. 2017, 18, 232. [Google Scholar] [CrossRef]
- Clarke, W.E.; Higgins, E.E.; Plieske, J.; Wieseke, R.; Sidebottom, C.; Khedikar, Y.; Batley, J.; Edwards, D.; Meng, J.; Li, R.; et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor. Appl. Genet. 2016, 129, 1887–1899. [Google Scholar] [CrossRef]
- Lee, J.; Izzah, N.K.; Choi, B.-S.; Joh, H.J.; Lee, S.-C.; Perumal, S.; Seo, J.; Ahn, K.; Jo, E.J.; Choi, G.J.; et al. Genotyping-by-sequencing map permits identification of clubroot resistance QTLs and revision of the reference genome assembly in cabbage (Brassica oleracea L.). DNA Res. 2016, 23, 29–41. [Google Scholar] [CrossRef]
- Mammadov, J.; Aggarwal, R.; Buyyarapu, R.; Kumpatla, S. SNP markers and their impact on plant breeding. Int. J. Plant Genom. 2012, 2012, 728398. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.; Alghamdi, S.S.; Rahman, M.H.U.; Ahmad, A.; Farooq, T.; Alam, M.; Khan, I.A.; Ullah, H.; Nasim, W.; Fahad, S. Current status and future possibilities of molecular genetics techniques in Brassica napus. Biotechnol. Lett. 2018, 40, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, K.; Kimizuka-Takagi, C.; Ishii, K.; Nomura, K. A Genetic map based on RAPD, RFLP, isozyme, morphological markers and QTL analysis for clubroot resistance in Brassica oleracea. Breed. Sci. 1999, 49, 257–265. [Google Scholar] [CrossRef]
- Nagaoka, T.; Doullah, M.A.; Matsumoto, S.; Kawasaki, S.; Ishikawa, T.; Hori, H.; Okazaki, K. Identification of QTLs that control clubroot resistance in Brassica oleracea and comparative analysis of clubroot resistance genes between B. rapa and B. oleracea. Theor. Appl. Genet. 2010, 120, 1335–1346. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef]
- McHale, L.; Tan, X.; Koehl, P.; Michelmore, R.W. Plant NBS-LRR proteins: Adaptable guards. Genome Biol. 2006, 7, 212. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Bent, A.F.; Mackey, D. Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 2007, 45, 399–436. [Google Scholar] [CrossRef]
- Saito, M.; Kubo, N.; Matsumoto, S.; Suwabe, K.; Tsukada, M.; Hirai, M. Fine mapping of the clubroot resistance gene, Crr3, in Brassica rapa. Theor. Appl. Genet. 2006, 114, 81–91. [Google Scholar] [CrossRef]
- Kato, T.; Hatakeyama, K.; Fukino, N.; Matsumoto, S. Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci. 2013, 63, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Piao, Z.Y.; Deng, Y.Q.; Choi, S.R.; Park, Y.J.; Lim, Y.P. SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor. Appl. Genet. 2004, 108, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, Z.; Zhang, C.; Pang, W.; Choi, S.R.; Lim, Y.P.; Piao, Z. Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa. Mol. Breed. 2014, 34, 1173–1183. [Google Scholar] [CrossRef]
- Chu, M.; Song, T.; Falk, K.C.; Zhang, X.; Liu, X.; Chang, A.; Lahlali, R.; McGregor, L.; Gossen, B.D.; Yu, F.; et al. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genom. 2014, 15, 1166. [Google Scholar] [CrossRef]
- Gao, F.; Hirani, A.H.; Liu, J.; Liu, Z.; Fu, G.; Wu, C.; McVetty, P.B.E.; Li, G. Fine mapping a clubroot resistance locus in Chinese cabbage. J. Am. Soc. Hort. Sci. 2014, 139, 247–252. [Google Scholar] [CrossRef]
- Zhan, Z.; Jiang, Y.; Shah, N.; Hou, Z.; Zhou, Y.; Dun, B.; Li, S.; Zhu, L.; Li, Z.; Piao, Z.; et al. Association of clubroot resistance locus PbBa8.1 with a linkage drag of high erucic acid content in the seed of the European turnip. Front. Plant Sci. 2020, 11, 810. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, X.; Huang, F.; Yu, W.; Zhou, X.; Li, B.; Zhang, Y.; Chen, P.; Zhang, C. Fine mapping of clubroot resistance loci CRA8.1 and candidate gene analysis in Chinese cabbage (Brassica rapa L.). Front. Plant Sci. 2022, 13, 898108. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, Y.; Gong, J.; Li, Q.; Dun, B.; Liu, D.; Yin, F.; Yuan, L.; Zhou, X.; Wang, H.; et al. R gene triplication confers European fodder turnip with improved clubroot resistance. Plant Biotechnol. J. 2022, 20, 1502–1517. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, X.; Huang, Z.; Chu, M.; Song, T.; Falk, K.C.; Deora, A.; Chen, Q.; Zhang, Y.; McGregor, L.; et al. Identification of genome-wide variants and discovery of variants associated with Brassica rapa clubroot resistance gene Rcr1 through bulked segregant RNA sequencing. PLoS ONE 2016, 11, e0153218. [Google Scholar] [CrossRef]
- Huang, Z.; Peng, G.; Liu, X.; Deora, A.; Falk, K.C.; Gossen, B.D.; McDonald, M.R.; Yu, F. Fine mapping of a clubroot resistance gene in Chinese cabbage using SNP markers identified from bulked segregant RNA sequencing. Front. Plant Sci. 2017, 8, 1448. [Google Scholar] [CrossRef]
- Dakouri, A.; Zhang, X.; Peng, G.; Falk, K.C.; Gossen, B.D.; Strelkov, S.E.; Yu, F. Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Sci. Rep. 2018, 8, 17657. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Lamara, M.; Wei, Y.; Hu, H.; Parkin, I.A.P.; Gossen, B.D.; Peng, G.; Yu, F. Clubroot resistance gene Rcr6 in Brassica nigra resides in a genomic region homologous to chromosome A08 in B. rapa. BMC Plant Biol. 2019, 19, 224. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Peng, G.; Gossen, B.D.; Yu, F. Fine mapping of a clubroot resistance gene from turnip using SNP markers identified from bulked segregant RNA-Seq. Mol. Breed. 2019, 39, 131. [Google Scholar] [CrossRef]
- Karim, M.M.; Dakouri, A.; Zhang, Y.; Chen, Q.; Peng, G.; Strelkov, S.E.; Gossen, B.D.; Yu, F. Two clubroot-resistance genes, Rcr3 and Rcr9(wa), mapped in Brassica rapa using bulk segregant RNA sequencing. Int. J. Mol. Sci. 2020, 21, 5033. [Google Scholar] [CrossRef]
- Ce, F.; Mei, J.; He, H.; Zhao, Y.; Hu, W.; Yu, F.; Li, Q.; Ren, X.; Si, J.; Song, H.; et al. Identification of candidate genes for clubroot-resistance in Brassica oleracea using quantitative trait loci-sequencing. Front. Plant Sci. 2021, 12, 703520. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, X.; Peng, G.; Falk, K.C.; Strelkov, S.E.; Gossen, B.D. Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Sci. Rep. 2017, 7, 4516. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Fu, P.; Li, X.; Zhan, Z.; Yu, S.; Piao, Z. Identification and mapping of the clubroot resistance gene CRd in Chinese cabbage (Brassica rapa ssp. pekinensis). Front. Plant Sci. 2018, 9, 653. [Google Scholar] [CrossRef]
- Laila, R.; Park, J.-I.; Robin, A.H.K.; Natarajan, S.; Vijayakumar, H.; Shirasawa, K.; Isobe, S.; Kim, H.-T.; Nou, I.-S. Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.). BMC Plant Biol. 2019, 19, 13. [Google Scholar] [CrossRef]
- Choi, S.R.; Oh, S.H.; Chhapekar, S.S.; Dhandapani, V.; Lee, C.Y.; Rameneni, J.J.; Ma, Y.; Choi, G.J.; Lee, S.-S.; Lim, Y.P. Quantitative trait locus mapping of clubroot resistance and Plasmodiophora brassicae pathotype Banglim-specific marker development in Brassica rapa. Int. J. Mol. Sci. 2020, 21, 4157. [Google Scholar] [CrossRef]
- Hasan, M.J.; Shaikh, R.; Basu, U.; Rahman, H. Mapping clubroot resistance of Brassica rapa introgressed into Brassica napus and development of molecular markers for the resistance. Crop Sci. 2021, 61, 4112–4127. [Google Scholar] [CrossRef]
- Kopec, P.M.; Mikolajczyk, K.; Jajor, E.; Perek, A.; Nowakowska, J.; Obermeier, C.; Chawla, H.S.; Korbas, M.; Bartkowiak-Broda, I.; Karlowski, W.M. Local duplication of TIR-NBS-LRR gene marks clubroot resistance in Brassica napus cv. Tosca. Front. Plant Sci. 2021, 12, 639631. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhang, Y.; Wang, J.; Chen, Q.; Karim, M.M.; Gossen, B.D.; Peng, G. Identification of two major QTLs in Brassica napus lines with introgressed clubroot resistance from turnip cultivar ECD01. Front. Plant Sci. 2022, 12, 785989. [Google Scholar] [CrossRef] [PubMed]
- Collier, S.M.; Moffett, P. NB-LRRs work a "bait and switch" on pathogens. Trends Plant Sci. 2009, 14, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Swiderski, M.R.; Birker, D.; Jones, J.D. The TIR domain of TIR-NB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol. Plant Microbe. Interact. 2009, 22, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, K.; Suwabe, K.; Tomita, R.N.; Kato, T.; Nunome, T.; Fukuoka, H.; Matsumoto, S. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE 2013, 8, e54745. [Google Scholar] [CrossRef]
- Ueno, H.; Matsumoto, E.; Aruga, D.; Kitagawa, S.; Matsumura, H.; Hayashida, N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol. Biol. 2012, 80, 621–629. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Niwa, T.; Kato, T.; Ohara, T.; Kakizaki, T.; Matsumoto, S. The tandem repeated organization of NB-LRR genes in the clubroot-resistant CRb locus in Brassica rapa L. Mol. Genet. Genom. 2017, 292, 397–405. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Yuzawa, S.; Tonosaki, K.; Takahata, Y.; Matsumoto, S. Allelic variation of a clubroot resistance gene (Crr1a) in Japanese cultivars of Chinese cabbage (Brassica rapa L.). Breed. Sci. 2022, 72, 115–123. [Google Scholar] [CrossRef]
- Piao, Z.; Ramchiary, N.; Lim, Y.P. Genetics of clubroot resistance in Brassica Species. J. Plant Growth Regul. 2009, 28, 252–264. [Google Scholar] [CrossRef]
- Mundt, C. Probability of mutation to multiple virulence and durability of resistance gene pyramids. Phytopathology 1990, 80, 221–223. [Google Scholar] [CrossRef]
- Pilet-Nayel, M.L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.C.; Fournet, S.; Durel, C.E.; Delourme, R. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front. Plant Sci. 2017, 8, 1838. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, E.; Ueno, H.; Aruga, D.; Sakamoto, K.; Hayashida, N. Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage (Brassica rapa ssp. pekinensis). J. Jpn. Soc. Hortic. Sci. 2012, 81, 184–190. [Google Scholar] [CrossRef]
- Shah, N.; Sun, J.; Yu, S.; Yang, Z.; Wang, Z.; Huang, F.; Dun, B.; Gong, J.; Liu, Y.; Li, Y.; et al. Genetic variation analysis of field isolates of clubroot and their responses to Brassica napus lines containing resistant genes CRb and PbBa8.1 and their combination in homozygous and heterozygous state. Mol. Breed. 2019, 39, 153. [Google Scholar] [CrossRef]
- Diederichsen, E.; Frauen, M.; Ludwig-Müller, J. Clubroot disease management challenges from a German perspective. Can. J. Plant Pathol. 2014, 36, 85–98. [Google Scholar] [CrossRef]
- LeBoldus, J.M.; Manolii, V.P.; Turkington, T.K.; Strelkov, S.E. Adaptation to Brassica host genotypes by a single-spore isolate and population of Plasmodiophora brassicae (clubroot). Plant Dis. 2012, 96, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Lagercrantz, U.; Lydiate, D.J. Comparative genome mapping in Brassica. Genetics 1996, 144, 1903–1910. [Google Scholar] [CrossRef]
- Lysak, M.A.; Koch, M.A.; Pecinka, A.; Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15, 516–525. [Google Scholar] [CrossRef]
- Lysak, M.A.; Cheung, K.; Kitschke, M.; Bures, P. Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol. 2007, 145, 402–410. [Google Scholar] [CrossRef]
- Cheng, F.; Mandáková, T.; Wu, J.; Xie, Q.; Lysak, M.A.; Wang, X. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. Plant Cell 2013, 25, 1541–1554. [Google Scholar] [CrossRef]
- Blanc, G.; Barakat, A.; Guyot, R.; Cooke, R.; Delseny, M. Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 2000, 12, 1093–1101. [Google Scholar] [CrossRef]
- Vision Todd, J.; Brown Daniel, G.; Tanksley Steven, D. The Origins of genomic duplications in Arabidopsis. Science 2000, 290, 2114–2117. [Google Scholar] [CrossRef] [PubMed]
- Cavell, A.C.; Lydiate, D.J.; Parkin, I.A.P.; Dean, C.; Trick, M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 1998, 41, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Lagercrantz, U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 1998, 150, 1217–1228. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.M.; Bancroft, I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 2000, 23, 233–243. [Google Scholar] [CrossRef]
- Ryder, C.D.; Smith, L.B.; Teakle, G.R.; King, G.J. Contrasting genome organisation: Two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome 2001, 44, 808–817. [Google Scholar] [CrossRef]
- Rana, D.; Boogaart, T.V.D.; O’Neill, C.M.; Hynes, L.; Bent, E.; Macpherson, L.; Park, J.Y.; Lim, Y.P.; Bancroft, I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 2004, 40, 725–733. [Google Scholar] [CrossRef]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.P.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef]
- Schranz, M.E.; Lysak, M.A.; Mitchell-Olds, T. The ABC’s of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends Plant Sci. 2006, 11, 535–542. [Google Scholar] [CrossRef]
- Matsumoto, E.; Yasui, C.; Ohi, M.; Tsukada, M. Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 1998, 104, 79–86. [Google Scholar] [CrossRef]
- Suwabe, K.; Tsukazaki, H.; Iketani, H.; Hatakeyama, K.; Fujimura, M.; Nunome, T.; Fukuoka, H.; Matsumoto, S.; Hirai, M. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor. Appl. Genet. 2003, 107, 997–1002. [Google Scholar] [CrossRef]
- Suwabe, K.; Tsukazaki, H.; Iketani, H.; Hatakeyama, K.; Kondo, M.; Fujimura, M.; Nunome, T.; Fukuoka, H.; Hirai, M.; Matsumoto, S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics 2006, 173, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Saito, A.; Hayashida, N.; Taguchi, G.; Matsumoto, E. Matsumoto, E. Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor. Appl. Genet. 2008, 117, 759–767. [Google Scholar] [CrossRef] [PubMed]
- The Brassica rapa Genome Sequencing Project Consortium; Wang, X.; Wang, H.; Wang, J.; Sun, R.; Wu, J.; Liu, S.; Bai, Y.; Mun, J.-H.; Bancroft, I.; et al. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 2011, 43, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Suwabe, K.; Suzuki, G.; Nunome, T.; Hatakeyama, K.; Mukai, Y.; Fukuoka, H.; Matsumoto, S. Microstructure of a Brassica rapa genome segment homoeologous to the resistance gene cluster on Arabidopsis chromosome 4. Breed Sci. 2012, 62, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Fredua-Agyeman, R.; Jiang, J.; Hwang, S.-F.; Strelkov, S.E. QTL Mapping and inheritance of clubroot resistance genes derived from Brassica rapa subsp. rapifera (ECD 02) reveals resistance loci and distorted segregation ratios in two F2 populations of different crosses. Front. Plant Sci. 2020, 11, 899. [Google Scholar] [CrossRef]
- Werner, S.; Diederichsen, E.; Frauen, M.; Schondelmaier, J.; Jung, C. Genetic mapping of clubroot resistance genes in oilseed rape. Theor. Appl. Genet. 2008, 116, 363–372. [Google Scholar] [CrossRef]
- Rahman, H.; Shakir, A.; Jakir Hasan, M. Breeding for clubroot resistant spring canola (Brassica napus L.) for the Canadian prairies: Can the European winter canola cv. Mendel be used as a source of resistance? Can. J. Plant Sci. 2011, 91, 447–458. [Google Scholar] [CrossRef]
- Rahman, H.; Franke, C. Association of fusarium wilt susceptibility with clubroot resistance derived from winter Brassica napus L. ‘Mendel’. Can. J. Plant Pathol. 2019, 41, 60–64. [Google Scholar] [CrossRef]
- Rodriguez-Moreno, L.; Song, Y.; Thomma, B.P. Transfer and engineering of immune receptors to improve recognition capacities in crops. Curr. Opin. Plant Biol. 2017, 38, 42–49. [Google Scholar] [CrossRef]
- Gallusci, P.; Dai, Z.; Génard, M.; Gauffretau, A.; Leblanc-Fournier, N.; Richard-Molard, C.; Vile, D.; Brunel-Muguet, S. Epigenetics for plant improvement: Current knowledge and modeling avenues. Trends Plant Sci. 2017, 22, 610–623. [Google Scholar] [CrossRef]
- Tirnaz, S.; Batley, J. Epigenetics: Potentials and challenges in crop breeding. Mol. Plant 2019, 12, 1309–1311. [Google Scholar] [CrossRef] [PubMed]
- Varotto, S.; Tani, E.; Abraham, E.; Krugman, T.; Kapazoglou, A.; Melzer, R.; Radanović, A.; Miladinović, D. Epigenetics: Possible applications in climate-smart crop breeding. J. Exp. Bot. 2020, 71, 5223–5236. [Google Scholar] [CrossRef] [PubMed]
- Zhi, P.; Chang, C. Exploiting epigenetic variations for crop disease resistance improvement. Front. Plant Sci. 2021, 12, 692328. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Prado, J.S.; Abulfaraj, A.A.; Rayapuram, N.; Benhamed, M.; Hirt, H. Plant immunity: From signaling to epigenetic control of defense. Trends Plant Sci. 2018, 23, 833–844. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Xu, W.; Zou, J.; Qiu, Y.; Kong, J.; Yang, Y.; Zhang, B.; Zhu, S. Epigenetic changes in the regulation of Nicotiana tabacum response to cucumber mosaic virus infection and symptom recovery through single-base resolution methylomes. Viruses 2018, 10, 402. [Google Scholar] [CrossRef]
- Alonso, C.; Ramos-Cruz, D.; Becker, C. The role of plant epigenetics in biotic interactions. New Phytol. 2019, 221, 731–737. [Google Scholar] [CrossRef]
- Henderson, I.R.; Jacobsen, S.E. Epigenetic inheritance in plants. Nature 2007, 447, 418–424. [Google Scholar] [CrossRef]
- Tirnaz, S.; Batley, J. DNA methylation: Toward crop disease resistance improvement. Trends Plant Sci. 2019, 24, 1137–1150. [Google Scholar] [CrossRef]
- Cokus, S.J.; Feng, S.; Zhang, X.; Chen, Z.; Merriman, B.; Haudenschild, C.D.; Pradhan, S.; Nelson, S.F.; Pellegrini, M.; Jacobsen, S.E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452, 215–219. [Google Scholar] [CrossRef]
- Guevara, M.; de María, N.; Sáez-Laguna, E.; Vélez, M.D.; Cervera, M.T.; Cabezas, J.A. Analysis of DNA cytosine methylation patterns using methylation-sensitive amplification polymorphism (MSAP). Methods Mol. Biol. 2017, 1456, 99–112. [Google Scholar] [CrossRef]
- Li, Q.; Hermanson, P.J.; Springer, N.M. Detection of DNA methylation by whole-genome bisulfite sequencing. Methods Mol. Biol. 2018, 1676, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.K.; Weng, Y.I.; Hsu, P.Y.; Huang, T.H.; Huang, Y.W. Detection of DNA methylation by MeDIP and MBDCap assays: An overview of techniques. Methods Mol. Biol. 2020, 2102, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Salmon, A.; Clotault, J.; Jenczewski, E.; Chable, V.; Manzanares-Dauleux, M.J. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci. 2008, 174, 61–70. [Google Scholar] [CrossRef]
- Yu, A.; Lepère, G.; Jay, F.; Wang, J.; Bapaume, L.; Wang, Y.; Abraham, A.L.; Penterman, J.; Fischer, R.L.; Voinnet, O.; et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. USA 2013, 110, 2389–2394. [Google Scholar] [CrossRef]
- Tirnaz, S.; Merce, C.; Bayer, P.E.; Severn-Ellis, A.A.; Edwards, D.; Batley, J. Effect of Leptosphaeria maculans infection on promoter DNA methylation of defence genes in Brassica napus. Agronomy 2020, 10, 1072. [Google Scholar] [CrossRef]
- Tirnaz, S.; Miyaji, N.; Takuno, S.; Bayer, P.E.; Shimizu, M.; Akter, M.A.; Edwards, D.; Batley, J.; Fujimoto, R. Whole-genome DNA methylation analysis in Brassica rapa subsp. perviridis in response to Albugo candida infection. Front. Plant Sci. 2022, 13, 849358. [Google Scholar] [CrossRef]
- Liégard, B.; Baillet, V.; Etcheverry, M.; Joseph, E.; Lariagon, C.; Lemoine, J.; Evrard, A.; Colot, V.; Gravot, A.; Manzanares-Dauleux, M.J.; et al. Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis. New Phytol. 2019, 222, 468–479. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Zou, J.; Yang, Y.; Li, Z.; Zhu, S. Epigenetics in the plant-virus interaction. Plant Cell Rep. 2019, 38, 1031–1038. [Google Scholar] [CrossRef]
- Li, B.; Carey, M.; Workman, J.L. The role of chromatin during transcription. Cell 2007, 128, 707–719. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Zhao, X.; Jiang, L.; Xu, S.; Peng, J.; Zheng, H.; Lin, L.; Wu, Y.; MacFarlane, S.; et al. Downregulation of nuclear protein H2B induces salicylic acid mediated defense against PVX infection in Nicotiana benthamiana. Front. Microbiol. 2019, 10, 1000. [Google Scholar] [CrossRef]
- Mozgová, I.; Wildhaber, T.; Liu, Q.; Abou-Mansour, E.; L’Haridon, F.; Métraux, J.P.; Gruissem, W.; Hofius, D.; Hennig, L. Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nat. Plants 2015, 1, 15127. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Viana, R.; Wildhaber, T.; Trejo-Arellano, M.S.; Mozgová, I.; Hennig, L. Arabidopsis chromatin assembly factor 1 is required for occupancy and position of a subset of nucleosomes. Plant J. 2017, 92, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Xia, W.; Li, R.; Wang, J.; Shao, M.; Feng, J.; King, G.J.; Meng, J. Epigenetic QTL mapping in Brassica napus. Genetics 2011, 189, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Siemens, J.; Keller, I.; Sarx, J.; Kunz, S.; Schuller, A.; Nagel, W.; Schmülling, T.; Parniske, M.; Ludwig-Müller, J. Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol. Plant Microbe. Interact. 2006, 19, 480–494. [Google Scholar] [CrossRef]
- Malinowski, R.; Novák, O.; Borhan, M.H.; Spíchal, L.; Strnad, M.; Rolfe, S.A. The role of cytokinins in clubroot disease. Eur. J. Plant Pathol. 2016, 145, 543–557. [Google Scholar] [CrossRef]
- Prerostova, S.; Dobrev, P.I.; Konradyova, V.; Knirsch, V.; Gaudinova, A.; Kramna, B.; Kazda, J.; Ludwig-Müller, J.; Vankova, R. Hormonal responses to Plasmodiophora brassicae infection in Brassica napus cultivars differing in their pathogen resistance. Int. J. Mol. Sci. 2018, 19, 4024. [Google Scholar] [CrossRef]
- Jubault, M.; Hamon, C.; Gravot, A.; Lariagon, C.; Delourme, R.; Bouchereau, A.; Manzanares-Dauleux, M.J. Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes. Plant Physiol. 2008, 146, 2008–2019. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Fang, Z.; Li, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Comparative transcriptome analysis between Broccoli (Brassica oleracea var. italica) and wild cabbage (Brassica macrocarpa Guss.) in response to Plasmodiophora brassicae during different infection stages. Front. Plant Sci. 2016, 7, 1929. [Google Scholar] [CrossRef]
- Wang, S.; Yu, F.; Zhang, W.; Tang, J.; Li, J.; Yu, L.; Wang, H.; Jiang, J. Comparative transcriptomic analysis reveals gene expression changes during early stages of Plasmodiophora brassicae infection in cabbage (Brassica oleracea var. capitata L.). Can. J. Plant Pathol. 2019, 41, 188–199. [Google Scholar] [CrossRef]
- Chen, J.; Pang, W.; Chen, B.; Zhang, C.; Piao, Z. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection. Front. Plant Sci. 2016, 6, 1183. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Schuller, A. What can we learn from clubroots: Alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur. J. Plant Pathol. 2008, 121, 291–302. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Auer, S.; Jülke, S.; Marschollek, S. Manipulation of Auxin and Cytokinin Balance During the Plasmodiophora brassicae–Arabidopsis thaliana Interaction. In Auxins and Cytokinins in Plant Biology; Dandekar, T., Naseem, M., Eds.; Humana Press: New York, NY, USA, 2017; Volume 1569, pp. 41–60. [Google Scholar] [CrossRef]
- Jia, H.; Wei, X.; Yang, Y.; Yuan, Y.; Wei, F.; Zhao, Y.; Yang, S.; Yao, Q.; Wang, Z.; Tian, B.; et al. Root RNA-seq analysis reveals a distinct transcriptome landscape between clubroot-susceptible and clubroot-resistant Chinese cabbage lines after Plasmodiophora brassicae infection. Plant Soil 2017, 421, 1–13. [Google Scholar] [CrossRef]
- Ciaghi, S.; Schwelm, A.; Neuhauser, S. Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. BMC Plant Biol. 2019, 19, 288. [Google Scholar] [CrossRef]
- Schuller, A.; Kehr, J.; Ludwig-Müller, J. Laser Microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for Brassinosteroids in clubroot formation. Plant Cell Physiol. 2014, 55, 392–411. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Guo, Z.; Wang, J.; Feng, Y.; Ma, G.; Zhang, C.; Qian, W.; Chen, G. Understanding the resistance mechanism in Brassica napus to clubroot caused by Plasmodiophora brassicae. Phytopathology 2019, 109, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ren, L.; Chen, K.; Liu, F.; Fang, X. Putative role of IAA during the early response of Brassica napus L. to Plasmodiophora brassicae. Eur. J. Plant Pathol. 2016, 145, 601–613. [Google Scholar] [CrossRef]
- Neuhaus, K.; Grsic-Rausch, S.; Sauerteig, S.; Ludwig-Müller, J. Arabidopsis plants transformed with nitrilase 1 or 2 in antisense direction are delayed in clubroot development. J. Plant Physiol. 2000, 156, 756–761. [Google Scholar] [CrossRef]
- Grsic-Rausch, S.; Kobelt, P.; Siemens, J.M.; Bischoff, M.; Ludwig-Müller, J. Expression and localization of nitrilase during symptom development of the clubroot disease in Arabidopsis. Plant Physiol. 2000, 122, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Bi, K.; Gao, Z.; Chen, T.; Liu, H.; Xie, J.; Cheng, J.; Fu, Y.; Jiang, D. Transcriptome analysis of Arabidopsis thaliana in response to Plasmodiophora brassicae during early infection. Front. Microbiol. 2017, 8, 673. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Auxin homeostasis, signaling, and interaction with other growth hormones during the clubroot disease of Brassicaceae. Plant Signal. Behav. 2014, 9, e28593. [Google Scholar] [CrossRef]
- Kant, S.; Bi, Y.M.; Zhu, T.; Rothstein, S.J. SAUR39, a small auxin-up RNA gene, acts as a negative regulator of auxin synthesis and transport in rice. Plant Physiol. 2009, 151, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Wang, Y.; Fang, Z.; Zhuang, M.; Zhang, Y.; Lv, H.; Liu, Y.; Li, Z.; Yang, L. Comparative transcriptome analysis of cabbage (Brassica oleracea var. capitata) infected by Plasmodiophora brassicae reveals drastic defense response at secondary infection stage. Plant Soil 2019, 443, 167–183. [Google Scholar] [CrossRef]
- Cao, T.; Srivastava, S.; Rahman, M.H.; Kav, N.N.V.; Hotte, N.; Deyholos, M.K.; Strelkov, S.E. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection. Plant Sci. 2008, 174, 97–115. [Google Scholar] [CrossRef]
- Devos, S.; Laukens, K.; Deckers, P.; Van Der Straeten, D.; Beeckman, T.; Inzé, D.; Van Onckelen, H.; Witters, E.; Prinsen, E. A hormone and proteome approach to picturing the initial metabolic events during Plasmodiophora brassicae infection on Arabidopsis. Mol. Plant Microbe. Interact. 2006, 19, 1431–1443. [Google Scholar] [CrossRef]
- Laila, R.; Robin, A.H.K.; Park, J.I.; Saha, G.; Kim, H.T.; Kayum, M.A.; Nou, I.S. Expression and role of response regulating, biosynthetic and degrading genes for cytokinin signaling during clubroot disease development. Int. J. Mol. Sci. 2020, 21, 3896. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Y.; Lu, S.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Fang, Z.; Hou, X. Genome-wide identification and analysis of cytokinin dehydrogenase/oxidase (CKX) family genes in Brassica oleracea L. reveals their involvement in response to Plasmodiophora brassicae infections. Hortic. Plant J. 2022, 8, 68–80. [Google Scholar] [CrossRef]
- Summanwar, A.; Farid, M.; Basu, U.; Kav, N.; Rahman, H. Comparative transcriptome analysis of canola carrying clubroot resistance from ’Mendel’ or Rutabaga and the development of molecular markers. Physiol. Mol. Plant Pathol. 2021, 114, 101640. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Howe, G.A.; Jander, G. Plant Immunity to Insect Herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef]
- Wielkopolan, B.; Obrępalska-Stęplowska, A. Three-way interaction among plants, bacteria, and coleopteran insects. Planta 2016, 244, 313–332. [Google Scholar] [CrossRef]
- Ryals, J.A.; Neuenschwander, U.H.; Willits, M.G.; Molina, A.; Steiner, H.Y.; Hunt, M.D. Systemic acquired resistance. Plant Cell 1996, 8, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Nie, P.; Li, X.; Wang, S.; Guo, J.; Zhao, H.; Niu, D. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 2017, 8, 238. [Google Scholar] [CrossRef] [PubMed]
- Tortosa, M.; Cartea, M.E.; Velasco, P.; Soengas, P.; Rodriguez, V.M. Calcium-signaling proteins mediate the plant transcriptomic response during a well-established Xanthomonas campestris pv. campestris infection. Hortic. Res. 2019, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Robert-Seilaniantz, A.; Grant, M.; Jones, J.D. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 2011, 49, 317–343. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell. Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef]
- Thaler, J.S.; Humphrey, P.T.; Whiteman, N.K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17, 260–270. [Google Scholar] [CrossRef]
- Ji, R.; Wang, Y.; Wang, X.; Liu, Y.; Shen, X.; Feng, H. Proteomic analysis of the interaction between Plasmodiophora brassicae and Chinese cabbage (Brassica rapa L. ssp. Pekinensis) at the initial infection stage. Sci. Hortic. 2018, 233, 386–393. [Google Scholar] [CrossRef]
- Lovelock, D.A.; Donald, C.E.; Conlan, X.A.; Cahill, D.M. Salicylic acid suppression of clubroot in broccoli (Brassicae oleracea var. italica) caused by the obligate biotroph Plasmodiophora brassicae. Australas. Plant Pathol. 2013, 42, 141–153. [Google Scholar] [CrossRef]
- Lemarié, S.; Robert-Seilaniantz, A.; Lariagon, C.; Lemoine, J.; Marnet, N.; Jubault, M.; Manzanares-Dauleux, M.J.; Gravot, A. Both the jasmonic acid and the salicylic acid pathways contribute to resistance to the biotrophic clubroot agent Plasmodiophora brassicae in Arabidopsis. Plant Cell Physiol. 2015, 56, 2158–2168. [Google Scholar] [CrossRef]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Chen, T.; Bi, K.; He, Z.; Gao, Z.; Zhao, Y.; Fu, Y.; Cheng, J.; Xie, J.; Jiang, D. Arabidopsis mutant bik1 exhibits strong resistance to Plasmodiophora brassicae. Front. Physiol 2016, 7, 402. [Google Scholar] [CrossRef]
- Lovelock, D.A.; Šola, I.; Marschollek, S.; Donald, C.E.; Rusak, G.; van Pée, K.H.; Ludwig-Müller, J.; Cahill, D.M. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. Mol. Plant Pathol. 2016, 17, 1237–1251. [Google Scholar] [CrossRef] [PubMed]
- Bulman, S.; Richter, F.; Marschollek, S.; Benade, F.; Jülke, S.; Ludwig-Müller, J. Arabidopsis thaliana expressing PbBSMT, a gene encoding a SABATH-type methyltransferase from the plant pathogenic protist Plasmodiophora brassicae, show leaf chlorosis and altered host susceptibility. Plant Biol. 2019, 21 (Suppl. 1), 120–130. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Müller, J.; Jülke, S.; Geiß, K.; Richter, F.; Mithöfer, A.; Šola, I.; Rusak, G.; Keenan, S.; Bulman, S. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid. Mol. Plant Pathol. 2015, 16, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.; He, Z.; Gao, Z.; Zhao, Y.; Fu, Y.; Cheng, J.; Xie, J.; Jiang, D.; Chen, T. Integrated omics study of lipid droplets from Plasmodiophora brassicae. Sci. Rep. 2016, 6, 36965. [Google Scholar] [CrossRef]
- Gravot, A.; Deleu, C.; Wagner, G.; Lariagon, C.; Lugan, R.; Todd, C.; Wendehenne, D.; Delourme, R.; Bouchereau, A.; Manzanares-Dauleux, M.J. Arginase induction represses gall development during clubroot infection in Arabidopsis. Plant Cell Physiol. 2012, 53, 901–911. [Google Scholar] [CrossRef]
- Xu, L.; Yang, H.; Ren, L.; Chen, W.; Liu, L.; Liu, F.; Zeng, L.; Yan, R.; Chen, K.; Fang, X. Jasmonic acid-mediated aliphatic glucosinolate metabolism is involved in clubroot disease development in Brassica napus L. Front. Plant Sci. 2018, 9, 750. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Schubert, B.; Pieper, K.; Ihmig, S.; Hilgenberg, W. Glucosinolate content in susceptible and resistant Chinese cabbage varieties during development of clubroot disease. Phytochemistry 1997, 44, 407–414. [Google Scholar] [CrossRef]
- Grsic, S.; Kirchheim, B.; Pieper, K.; Fritsch, M.; Hilgenberg, W.; Ludwig-Müller, J. Auxin biosynthesis in clubroot diseased Chinese cabbage plants and induction by jasmonic acid. Physiol. Plant 1999, 105, 521–531. [Google Scholar] [CrossRef]
- Kazan, K.; Manners, J.M. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci. 2012, 17, 22–31. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Yang, L.; Zhang, Y.; Wang, Y.; Fang, Z.; Lv, H. Genome-wide identification, expression profile of the TIFY gene family in Brassica oleracea var. capitata, and their divergent response to various pathogen infections and phytohormone treatments. Genes 2020, 11, 127. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Piao, Y.; Zhan, Z.; Zhao, Y.; Pang, W.; Li, X.; Piao, Z. Transcriptome arofile of Brassica rapa L. reveals the involvement of jasmonic acid, ethylene, and brassinosteroid signaling pathways in clubroot resistance. Agronomy 2019, 9, 589. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Yu, F.; Tang, J.; Shan, X.; Bao, K.; Yu, L.; Wang, H.; Fei, Z.; Li, J. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genom. 2019, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, S.; Yu, F.; Tang, J.; Yu, L.; Wang, H.; Li, J. Genome-wide identification and expression profiling of sugar transporter protein (STP) family genes in cabbage (Brassica oleracea var. capitata L.) reveals their involvement in clubroot disease responses. Genes 2019, 10, 71. [Google Scholar] [CrossRef]
- Manoharan, R.K.; Shanmugam, A.; Hwang, I.; Park, J.-I.; Nou, I.-S. Expression of salicylic acid-related genes in Brassica oleracea var. capitata during Plasmodiophora brassicae infection. Genome 2016, 59, 379–391. [Google Scholar] [CrossRef]
- Kayum, M.A.; Nath, U.K.; Park, J.-I.; Hossain, M.R.; Kim, H.-T.; Kim, H.-R.; Nou, I.-S. Glucosinolate profile and Myrosinase gene expression are modulated upon Plasmodiophora brassicae infection in cabbage. Funct. Plant Biol. 2020, 48, 103–118. [Google Scholar] [CrossRef]
- Yuan, Y.; Qin, L.; Su, H.; Yang, S.; Wei, X.; Wang, Z.; Zhao, Y.; Li, L.; Liu, H.; Tian, B.; et al. Transcriptome and coexpression network analyses reveal Hub genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis) during different Stages of Plasmodiophora brassicae infection. Front. Plant Sci. 2021, 12, 650252. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, X.; Lang, H.; Pang, W.; Zhan, Z.; Li, X.; Piao, Z. Mining of Brassica-specific genes (BSGs) and their induction in different developmental stages and under Plasmodiophora brassicae stress in Brassica rapa. Int. J. Mol. Sci. 2018, 19, 2064. [Google Scholar] [CrossRef]
- Robin, A.H.K.; Saha, G.; Laila, R.; Park, J.-I.; Kim, H.-T.; Nou, I.-S. Expression and role of biosynthetic, transporter, receptor, and responsive genes for auxin signaling during clubroot disease development. Int. J. Mol. Sci. 2020, 21, 5554. [Google Scholar] [CrossRef]
- Lahlali, R.; Song, T.; Chu, M.; Yu, F.; Kumar, S.; Karunakaran, C.; Peng, G. Evaluating changes in cell-wall components associated with Clubroot resistance using Fourier Transform Infrared spectroscopy and RT-PCR. Int. J. Mol. Sci. 2017, 18, 2058. [Google Scholar] [CrossRef]
- Ando, S.; Tsushima, S.; Kamachi, S.; Konagaya, K.-i.; Tabei, Y. Alternative transcription initiation of the nitrilase gene (BrNIT2) caused by infection with Plasmodiophora brassicae Woron. in Chinese cabbage (Brassica rapa L.). Plant Mol. Biol. 2008, 68, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Tsushima, S.; Tagiri, A.; Kamachi, S.; Konagaya, K.I.; Hagio, T.; Tabei, Y. Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). Mol. Plant Pathol. 2006, 7, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Asano, T.; Tsushima, S.; Kamachi, S.; Hagio, T.; Tabei, Y. Changes in gene expression of putative isopentenyltransferase during clubroot development in Chinese cabbage (Brassica rapa L.). Physiol. Mol. Plant Pathol. 2005, 67, 59–67. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Y.; Zhao, Y.; Xie, Z.; Hossain, M.R.; Yang, S.; Shi, G.; Lv, Y.; Wang, Z.; Tian, B.; et al. Root transcriptome and metabolome profiling reveal key phytohormone-related genes and pathways involved clubroot resistance in Brassica rapa L. Front. Plant Sci. 2021, 12, 759623. [Google Scholar] [CrossRef]
- Shah, N.; Li, Q.; Xu, Q.; Liu, J.; Huang, F.; Zhan, Z.; Qin, P.; Zhou, X.; Yu, W.; Zhu, L.; et al. CRb and PbBa8.1 synergically increases resistant genes expression upon infection of Plasmodiophora brassicae in Brassica napus. Genes 2020, 11, 202. [Google Scholar] [CrossRef]
- Zhou, Q.; Galindo-González, L.; Manolii, V.; Hwang, S.-F.; Strelkov, S.E. Comparative transcriptome analysis of Rutabaga (Brassica napus) cultivars indicates activation of salicylic acid and ethylene-mediated defenses in response to Plasmodiophora brassicae. Int. J. Mol. Sci. 2020, 21, 8381. [Google Scholar] [CrossRef]
- Li, L.; Long, Y.; Li, H.; Wu, X. Comparative transcriptome analysis reveals key pathways and Hub genes in rapeseed during the early stage of Plasmodiophora brassicae infection. Front. Genet. 2020, 10, 1275. [Google Scholar] [CrossRef]
- Chen, S.W.; Liu, T.; Gao, Y.; Zhang, C.; Peng, S.D.; Bai, M.B.; Li, S.J.; Xu, L.; Zhou, X.Y.; Lin, L.B. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing. Genet. Mol. Res. 2016, 15, gmr8243. [Google Scholar] [CrossRef]
- Galindo Gonzalez, L.; Manolii, V.; Hwang, S.; Strelkov, S. Response of Brassica napus to Plasmodiophora brassicae involves salicylic acid-mediated immunity: An RNA-Seq-Based Study. Front. Plant Sci. 2020, 11, 1025. [Google Scholar] [CrossRef]
- Jiang, J.; Fredua-Agyeman, R.; Hwang, S.F.; Strelkov, S.E. Differentially expressed genes in canola (Brassica napus) during infection by virulent and avirulent Plasmodiophora brassicae pathotypes. Plant Pathol. 2021, 70, 50–60. [Google Scholar] [CrossRef]
- Irani, S.; Todd, C.D.; Wei, Y.; Bonham-Smith, P.C. Changes in phenylpropanoid pathway gene expression in roots and leaves of susceptible and resistant Brassica napus lines in response to Plasmodiophora brassicae inoculation. Physiol. Mol. Plant Pathol. 2019, 106, 196–203. [Google Scholar] [CrossRef]
- Hejna, O.; Havlickova, L.; He, Z.; Bancroft, I.; Curn, V. Analysing the genetic architecture of clubroot resistance variation in Brassica napus by associative transcriptomics. Mol. Breed. 2019, 39, 112. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Dong, D.; Su, Y.; Wang, X.; Peng, Y.; Peng, J.; Zhou, C. Transcriptome analysis of Brassica juncea var. tumida Tsen responses to Plasmodiophora brassicae primed by the biocontrol strain Zhihengliuella aestuarii. Funct. Integr. 2018, 18, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Yin, Y.; Liu, Y.; Pei, X.; Wang, Z.; Fan, Y.; Wang, X.; Leng, R. Identification of differentially expressed genes in Brassica juncea var. tumida Tsen following infection by Plasmodiophora brassicae. Eur. J. Plant Pathol. 2013, 137, 43–53. [Google Scholar] [CrossRef]
- Xi, D.; Li, X.; Gao, L.; Zhang, Z.; Zhu, Y.; Zhu, H. Application of exogenous salicylic acid reduces disease severity of Plasmodiophora brassicae in pakchoi (Brassica campestris ssp. chinensis Makino). PLoS ONE 2021, 16, e0248648. [Google Scholar] [CrossRef] [PubMed]
- Underwood, W. The plant cell wall: A dynamic barrier against pathogen invasion. Front. Plant Sci. 2012, 3, 85. [Google Scholar] [CrossRef]
- Ferrari, S.; Savatin, D.V.; Sicilia, F.; Gramegna, G.; Cervone, F.; Lorenzo, G.D. Oligogalacturonides: Plant damage-associated molecular patterns and regulators of growth and development. Front. Plant Sci. 2013, 4, 49. [Google Scholar] [CrossRef]
- Badstöber, J.; Ciaghi, S.; Neuhauser, S. Dynamic cell wall modifications in brassicas during clubroot disease. bioRxiv 2020. [Google Scholar] [CrossRef]
- Marín-Rodríguez, M.C.; Orchard, J.; Seymour, G.B. Pectate lyases, cell wall degradation and fruit softening. J. Exp. Bot. 2002, 53, 2115–2119. [Google Scholar] [CrossRef]
- Kämper, J.; Kahmann, R.; Bölker, M.; Ma, L.-J.; Brefort, T.; Saville, B.J.; Banuett, F.; Kronstad, J.W.; Gold, S.E.; Müller, O.; et al. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 2006, 444, 97–101. [Google Scholar] [CrossRef]
- Sterling, J.D.; Quigley, H.F.; Orellana, A.; Mohnen, D. The catalytic site of the pectin biosynthetic enzyme alpha-1,4-galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol. 2001, 127, 360–371. [Google Scholar] [CrossRef]
- Mitchell, H.J.; Hall, S.A.; Stratford, R.; Hall, J.L.; Barber, M.S. Differential induction of cinnamyl alcohol dehydrogenase during defensive lignification in wheat (Triticum aestivum L.): Characterisation of the major inducible form. Planta 1999, 208, 31–37. [Google Scholar] [CrossRef]
- Agarwal, A.; Kaul, V.; Faggian, R.; Rookes, J.E.; Ludwig, M.L.J.; Cahill, D.M. Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana-Plasmodiophora brassicae interaction. Funct. Plant Biol. 2011, 38, 462–478. [Google Scholar] [CrossRef] [PubMed]
- Jubault, M.; Lariagon, C.; Taconnat, L.; Renou, J.-P.; Gravot, A.; Delourme, R.; Manzanares-Dauleux, M.J. Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Funct. Integr. 2013, 13, 191–205. [Google Scholar] [CrossRef]
- Cozzolino, D. Use of infrared spectroscopy for in-field measurement and phenotyping of plant properties: Instrumentation, data Analysis, and examples. Appl. Spectrosc. Rev. 2014, 49, 564–584. [Google Scholar] [CrossRef]
- Obst, J.R. Guaiacyl and syringyl lignin composition in hardwood cell components. Holzforschung 1982, 36, 143–152. [Google Scholar] [CrossRef]
- Hasan, J.; Megha, S.; Rahman, H. Clubroot in Brassica: Recent advances in genomics, breeding, and disease management. Genome 2021, 64, 735–760. [Google Scholar] [CrossRef]
- Reinders, A.; Sivitz, A.B.; Starker, C.G.; Gantt, J.S.; Ward, J.M. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Plant Mol. Biol. 2008, 68, 289–299. [Google Scholar] [CrossRef]
- Reinders, A.; Sivitz, A.B.; Ward, J.M. Evolution of plant sucrose uptake transporters. Front. Plant Sci. 2012, 3, 22. [Google Scholar] [CrossRef]
- Toyofuku, K.; Kasahara, M.; Yamaguchi, J. Characterization and expression of monosaccharide transporters (osMSTs) in rice. Plant Cell Physiol. 2000, 41, 940–947. [Google Scholar] [CrossRef]
- Chen, L.Q.; Qu, X.Q.; Hou, B.H.; Sosso, D.; Osorio, S.; Fernie, A.R.; Frommer, W.B. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Manck-Götzenberger, J.; Requena, N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Front. Plant Sci. 2016, 7, 487. [Google Scholar] [CrossRef] [PubMed]
- Roman-Reyna, V.; Rathjen, J.P. Apoplastic sugar extraction and quantification from wheat leaves infected with biotrophic fungi. Methods Mol. Biol. 2017, 1659, 125–134. [Google Scholar] [CrossRef]
- Guo, X.H. Biological Characteristics and Pathogenesis of Plasmodiophora brassicae. Master’s Thesis, Southwest Agriculture University, Chongqing, China, 2001. [Google Scholar]
- Williams, P.H. Metabolic synthesis and degradation during clubroot development in cabbage hypocotyls. Phytopathology 1968, 58, 921–928. [Google Scholar]
- Keen, N.T.; Williams, P.H. Translocation of sugars into infected cabbage tissues during clubroot development. Plant Physiol. 1969, 44, 748–754. [Google Scholar] [CrossRef]
- Evans, J.L.; Scholes, J.D. How does clubroot alter the regulation of carbon metabolism in its host? Asp. Appl. Biol. 1995, 42, 125–132. [Google Scholar]
- Brodmann, A.; Schuller, A.; Ludwig-Müller, J.; Aeschbacher, R.A.; Wiemken, A.; Boller, T.; Wingler, A. Induction of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol. Plant Microbe. Interact. 2002, 15, 693–700. [Google Scholar] [CrossRef]
- Malinowski, R.; Smith, J.A.; Fleming, A.J.; Scholes, J.D.; Rolfe, S.A. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Plant J. 2012, 71, 226–238. [Google Scholar] [CrossRef]
- Ludewig, F.; Flügge, U.I. Role of metabolite transporters in source-sink carbon allocation. Front. Plant Sci. 2013, 4, 231. [Google Scholar] [CrossRef]
- Sherson, S.M.; Alford, H.L.; Forbes, S.M.; Wallace, G.; Smith, S.M. Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J. Exp. Bot. 2003, 54, 525–531. [Google Scholar] [CrossRef]
- Irani, S.; Trost, B.; Waldner, M.; Nayidu, N.; Tu, J.; Kusalik, A.J.; Todd, C.D.; Wei, Y.; Bonham-Smith, P.C. Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genom. 2018, 19, 23. [Google Scholar] [CrossRef] [PubMed]
- Walerowski, P.; Gündel, A.; Yahaya, N.; Truman, W.; Sobczak, M.; Olszak, M.; Rolfe, S.; Borisjuk, L.; Malinowski, R. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls. Plant Cell 2018, 30, 3058–3073. [Google Scholar] [CrossRef] [PubMed]
- Doidy, J.; Grace, E.; Kühn, C.; Simon-Plas, F.; Casieri, L.; Wipf, D. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012, 17, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, R.; La Camera, S.; Atanassova, R.; Dédaldéchamp, F.; Allario, T.; Pourtau, N.; Bonnemain, J.L.; Laloi, M.; Coutos-Thévenot, P.; Maurousset, L.; et al. Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013, 4, 272. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Xuan, Y.; Jiang, J.; Wei, Y.; Piao, Z. Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophora brassicae-induced formation of clubroot in Brassica rapa. Front. Plant Sci. 2018, 9, 207. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Gautam, T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. Mol. Plant Pathol. 2021, 22, 1014–1026. [Google Scholar] [CrossRef]
- Chen, L.-Q.; Hou, B.-H.; Lalonde, S.; Takanaga, H.; Hartung, M.L.; Qu, X.-Q.; Guo, W.-J.; Kim, J.-G.; Underwood, W.; Chaudhuri, B.; et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 2010, 468, 527–532. [Google Scholar] [CrossRef]
- Chong, J.; Piron, M.C.; Meyer, S.; Merdinoglu, D.; Bertsch, C.; Mestre, P. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J. Exp. Bot. 2014, 65, 6589–6601. [Google Scholar] [CrossRef]
- Summanwar, A.; Basu, U.; Rahman, H.; Kav, N.N.V. Non-coding RNAs as emerging targets for crop improvement. Plant Sci. 2020, 297, 110521. [Google Scholar] [CrossRef]
- Nejat, N.; Mantri, N. Emerging roles of long non-coding RNAs in plant response to biotic and abiotic stresses. Crit. Rev. Biotechnol. 2018, 38, 93–105. [Google Scholar] [CrossRef]
- Shriram, V.; Kumar, V.; Devarumath, R.M.; Khare, T.S.; Wani, S.H. MicroRNAs as potential targets for abiotic stress tolerance in plants. Front. Plant Sci. 2016, 7, 817. [Google Scholar] [CrossRef] [PubMed]
- Carrington, J.C.; Ambros, V. Role of microRNAs in plant and animal development. Science 2003, 301, 336–338. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Kulshrestha, C.; Pathak, H.; Kumar, D.; Dave, S.; Sudan, J. Elucidating micro RNAs role in different plant-pathogen interactions. Mol. Biol. Rep. 2020, 47, 8219–8227. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and their regulatory roles in plant-environment interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Verma, S.S.; Rahman, M.H.; Deyholos, M.K.; Basu, U.; Kav, N.N. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS ONE 2014, 9, e86648. [Google Scholar] [CrossRef]
- Wei, X.; Xu, W.; Yuan, Y.; Yao, Q.; Zhao, Y.; Wang, Z.; Jiang, W.; Zhang, X. Genome-wide investigation of microRNAs and their targets in Brassica rapa ssp. pekinensis root with Plasmodiophora brassicae infection. Hortic. Plant J. 2016, 2, 209–216. [Google Scholar] [CrossRef]
- Guo, H.S.; Xie, Q.; Fei, J.F.; Chua, N.H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 2005, 17, 1376–1386. [Google Scholar] [CrossRef]
- Paul, P.; Chhapekar, S.S.; Rameneni, J.J.; Oh, S.H.; Dhandapani, V.; Subburaj, S.; Shin, S.-Y.; Ramchiary, N.; Shin, C.; Choi, S.R.; et al. MiR1885 regulates disease tolerance genes in Brassica rapa during early infection with Plasmodiophora brassicae. Int. J. Mol. Sci. 2021, 22, 9433. [Google Scholar] [CrossRef]
- Li, Q.; Shah, N.; Zhou, X.; Wang, H.; Yu, W.; Luo, J.; Liu, Y.; Li, G.; Liu, C.; Zhang, C.; et al. Identification of icro Ribonucleic Acids and their targets in response to Plasmodiophora brassicae infection in Brassica napus. Front. Plant Sci. 2021, 12, 734419. [Google Scholar] [CrossRef]
- Wilusz, J.E.; Sunwoo, H.; Spector, D.L. Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 2009, 23, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Matsui, A.; Seki, M. The involvement of long noncoding RNAs in response to plant stress. Methods Mol. Biol. 2019, 1933, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, A.E.; Guenzl, P.M.; Barlow, D.P.; Pauler, F.M. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, X.; Xi, D.; Zhai, W.; Zhang, Z.; Zhu, Y. Integrating long noncoding RNAs and mRNAs expression profiles of response to Plasmodiophora brassicae infection in Pakchoi (Brassica campestris ssp. chinensis Makino). PLoS ONE 2019, 14, e0224927. [Google Scholar] [CrossRef] [PubMed]
- Summanwar, A.; Basu, U.; Rahman, H.; Kav, N. Identification of lncRNAs responsive to infection by Plasmodiophora brassicae in clubroot-susceptible and -resistant Brassica napus lines carrying resistance introgressed from Rutabaga. Mol. Plant Microbe. Interact. 2019, 32, 1360–1377. [Google Scholar] [CrossRef]
- Hasan, M.J.; Rahman, H. Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica). Genome 2016, 59, 805–815. [Google Scholar] [CrossRef]
- Summanwar, A.; Basu, U.; Kav, N.N.V.; Rahman, H. Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 2021, 64, 547–566. [Google Scholar] [CrossRef]
- Raza, A.; Tabassum, J.; Kudapa, H.; Varshney, R.K. Can omics deliver temperature resilient ready-to-grow crops? Crit. Rev. Biotechnol. 2021, 41, 1209–1232. [Google Scholar] [CrossRef]
- Weckwerth, W.; Ghatak, A.; Bellaire, A.; Chaturvedi, P.; Varshney, R.K. PANOMICS meets germplasm. Plant Biotechnol. J. 2020, 18, 1507–1525. [Google Scholar] [CrossRef]
- Quirino, B.F.; Candido, E.S.; Campos, P.F.; Franco, O.L.; Krüger, R.H. Proteomic approaches to study plant–pathogen interactions. Phytochemistry 2010, 71, 351–362. [Google Scholar] [CrossRef]
- Lodha, T.D.; Hembram, P.; Nitile Tep, J.B. Proteomics: A successful approach to understand the molecular mechanism of plant-pathogen interaction. Am. J. Plant Sci 2013, 4, 1212–1226. [Google Scholar] [CrossRef]
- Eldakak, M.; Milad, S.I.M.; Nawar, A.I.; Rohila, J.S. Proteomics: A biotechnology tool for crop improvement. Front. Plant Sci. 2013, 4, 35. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P.; Doerfler, H.; Jegadeesan, S.; Ghatak, A.; Pressman, E.; Castillejo, M.A.; Wienkoop, S.; Egelhofer, V.; Firon, N.; Weckwerth, W. Heat-treatment-responsive proteins in different developmental stages of tomato pollen detected by targeted Mass Accuracy Precursor Alignment (tMAPA). J. Proteome. Res. 2015, 14, 4463–4471. [Google Scholar] [CrossRef] [PubMed]
- Pomastowski, P.; Buszewski, B. Two-dimensional gel electrophoresis in the light of new developments. TrAC Trends Anal. Chem. 2014, 53, 167–177. [Google Scholar] [CrossRef]
- Boersema, P.J.; Kahraman, A.; Picotti, P. Proteomics beyond large-scale protein expression analysis. Curr. Opin. Biotechnol. 2015, 34, 162–170. [Google Scholar] [CrossRef]
- Borràs, E.; Sabidó, E. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry. Proteomics 2017, 17, 1700180. [Google Scholar] [CrossRef]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef]
- Su, T.; Yu, S.; Wang, W.; Li, P.; Zhang, F.; Yu, Y.; Zhang, D.; Zhao, X. iTRAQ analysis of protein profile during the secondary stage of infection of Plasmodiophora brassicae in Chinese cabbage (Brassica rapa subsp. pekinensis). J. Plant Pathol. 2018, 100, 533–542. [Google Scholar] [CrossRef]
- Lan, M.; Li, G.; Hu, J.; Yang, H.; Zhang, L.; Xu, X.; Liu, J.; He, J.; Sun, R. iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) in response to Plasmodiophora brassicae infection. Sci. Rep. 2019, 9, 12058. [Google Scholar] [CrossRef]
- Song, T.; Chu, M.; Lahlali, R.; Yu, F.; Peng, G. Shotgun label-free proteomic analysis of clubroot (Plasmodiophora brassicae) resistance conferred by the gene Rcr1 in Brassica rapa. Front. Plant Sci. 2016, 7, 1013. [Google Scholar] [CrossRef]
- Moon, J.; Kim, S.; Choi, G.; Kwon, S.-Y.; Cho, H.S.; Kim, H.-S.; Moon, J.S.; Park, J.M. Comparative proteomic analysis of host responses to Plasmodiophora brassicae infection in susceptible and resistant Brassica oleracea. Plant Biotechnol. Rep. 2020, 14, 263–274. [Google Scholar] [CrossRef]
- Hansen, C.E.; Flengsrud, R.; Kopperud, C. Two-dimensional gel electrophoresis of proteins in healthy roots and clubroots of Brassica oleracea. Acta Agric. Scand.-B Soil Plant Sci. 1994, 44, 123–128. [Google Scholar] [CrossRef]
- Ji, R.; Gao, S.; Bi, Q.; Wang, Y.; Lv, M.; Ge, W.; Feng, H. The salicylic acid signaling pathway plays an important role in the resistant process of Brassica rapa L. ssp. pekinensis to Plasmodiophora brassicae Woronin. J. Plant Growth Regul. 2021, 40, 405–422. [Google Scholar] [CrossRef]
- Jeung, J.Y.; Lim, Y.P.; Hwang, C.H. Root proteome analysis of Chinese cabbage in response to Plasmodipohora brassicae Woron. J. Plant Biotechnol. 2015, 42, 350–355. [Google Scholar] [CrossRef]
- Adhikary, D.; Mehta, D.; Uhrig, R.G.; Rahman, H.; Kav, N.N.V. A Proteome-level investigation into Plasmodiophora brassicae resistance in Brassica napus canola. Front. Plant Sci. 2022, 13, 860393. [Google Scholar] [CrossRef]
- Yang, Y.; Saand, M.A.; Huang, L.; Abdelaal, W.B.; Zhang, J.; Wu, Y.; Li, J.; Sirohi, M.H.; Wang, F. Applications of multi-omics technologies for crop improvement. Front. Plant Sci. 2021, 12, 563953. [Google Scholar] [CrossRef]
- Liu, X.; Locasale, J.W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42, 274–284. [Google Scholar] [CrossRef]
- Castro-Moretti, F.R.; Gentzel, I.N.; Mackey, D.; Alonso, A.P. Metabolomics as an emerging tool for the study of plant-pathogen interactions. Metabolites 2020, 10, 52. [Google Scholar] [CrossRef]
- Raza, A. Metabolomics: A systems biology approach for enhancing heat stress tolerance in plants. Plant. Cell. Rep. 2020, 41, 741–763. [Google Scholar] [CrossRef]
- Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2006, 169, 453–468. [Google Scholar] [CrossRef]
- Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.P. Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed. Engl. 2010, 49, 5426–5445. [Google Scholar] [CrossRef] [PubMed]
- Aigu, Y.; Daval, S.; Gazengel, K.; Marnet, N.; Lariagon, C.; Laperche, A.; Legeai, F.; Manzanares-Dauleux, M.J.; Gravot, A. Multi-Omic investigation of low-nitrogen conditional resistance to clubroot reveals Brassica napus genes involved in nitrate assimilation. Front. Plant Sci. 2022, 13, 790563. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.; Charton, S.; Lariagon, C.; Laperche, A.; Lugan, R.; Hopkins, J.; Frendo, P.; Bouchereau, A.; Delourme, R.; Gravot, A.; et al. Metabotyping: A new approach to investigate rapeseed (Brassica napus L.) genetic diversity in the metabolic response to clubroot infection. Mol. Plant Microbe. Interact. 2012, 25, 1478–1491. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.E.I.; Hu, J.; Yang, H.; Zhang, L.; Xu, X.; He, J. Phytohormonal and metabolism analysis of Brassica rapa L. ssp. pekinensis with different resistance during Plasmodiophora brassicae infection. BIOCELL 2020, 44, 751–767. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Bendel, U.; Thermann, P.; Ruppel, M.; Epstein, E.; Hilgenberg, W. Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol. 1993, 125, 763–769. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Epstein, E.; Hilgenberg, W. Auxin-conjugate hydrolysis in Chinese cabbage: Characterization of an amidohydrolase and its role during infection with clubroot disease. Physiol. Plant. 1996, 97, 627–634. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Pieper, K.; Ruppel, M.; Cohen, J.D.; Epstein, E.; Kiddle, G.; Bennett, R. Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta 1999, 208, 409–419. [Google Scholar] [CrossRef]
- Rausch, T.; Butcher, D.N.; Hilgenberg, W. Indole-3-methylglucosinolate biosynthesis and metabolism in clubroot diseased plants. Physiol. Plant. 1983, 58, 93–100. [Google Scholar] [CrossRef]
- Ugajin, T.; Takita, K.; Takahashi, H.; Muraoka, S.; Tada, T.; Mitsui, T.; Hayakawa, T.; Ohyama, T.; Hori, H. Increase in indole-3-acetic acid (IAA) level and nitrilase activity in turnips induced by Plasmodiophora brassicae infection. Plant Biotechnol. 2003, 20, 215–220. [Google Scholar] [CrossRef]
- Ishikawa, T.; Okazaki, K.; Kuroda, H.; Itoh, K.; Mitsui, T.; Hori, H. Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol. Plant Pathol. 2007, 8, 623–637. [Google Scholar] [CrossRef]
- Müller, P.; Hilgenberg, W. Isomers of zeatin and zeatin riboside in clubroot tissue: Evidence for trans-zeatin biosynthesis by Plasmodiophora brassicae. Physiol. Plant. 2006, 66, 245–250. [Google Scholar] [CrossRef]
- Devos, S.; Vissenberg, K.; Verbelen, J.P.; Prinsen, E. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: Impacts on cell wall metabolism and hormone balance. New Phytol. 2005, 166, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Pajerowska-Mukhtar, K.; Culler, A.H.; Dong, X. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 2007, 17, 1784–1790. [Google Scholar] [CrossRef]
- Knaust, A.; Ludwig-Müller, J. The Ethylene signaling pathway is needed to restrict root gall growth in Arabidopsis after infection with the obligate biotrophic protist Plasmodiophora brassicae. J. Plant Growth Regul. 2013, 32, 9–21. [Google Scholar] [CrossRef]
- Lahlali, R.; McGregor, L.; Song, T.; Gossen, B.D.; Narisawa, K.; Peng, G. Heteroconium chaetospira induces resistance to clubroot via upregulation of host genes involved in jasmonic acid, ethylene, and auxin biosynthesis. PLoS ONE 2014, 9, e94144. [Google Scholar] [CrossRef]
- Ishida, M.; Hara, M.; Fukino, N.; Kakizaki, T.; Morimitsu, Y. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci. 2014, 64, 48–59. [Google Scholar] [CrossRef]
- Wittstock, U.; Halkier, B.A. Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 2002, 7, 263–270. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. Glucosinolates and the clubroot disease: Defense compounds or auxin precursors? Phytochem. Rev. 2009, 8, 135–148. [Google Scholar] [CrossRef]
- Eliu, T.; Ezhang, X.; Eyang, H.; Agerbirk, N.; Eqiu, Y.; Ewang, H.; Eshen, D.; Esong, J.; Eli, X. Aromatic glucosinolate biosynthesis pathway in Barbarea vulgaris and its response to Plutella xylostella Infestation. Front. Plant Sci. 2016, 7, 83. [Google Scholar] [CrossRef]
- Clay, N.K.; Adio, A.M.; Denoux, C.; Jander, G.; Ausubel, F.M. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 2009, 323, 95–101. [Google Scholar] [CrossRef]
- Butcher, D.N.; El-Tigani, S.; Ingram, D.S. The role of indole glucosinolates in the club root disease of the Cruciferae. Physiol. Plant Pathol. 1974, 4, 127–140. [Google Scholar] [CrossRef]
- Ockendon, J.G.; Buczacki, S.T. Indole glucosinolate incidence and clubroot susceptibility of three cruciferous weeds [asparagus]. Trans. Br. Mycol. Soc. 1979, 72, 156–157. [Google Scholar] [CrossRef]
- Chong, C.; Chiang, M.S.; Crete, R. Thiocyanate ion content in relation to clubroot disease severity in cabbages [by Plasmodiophora brassicae]. HortScience 1981, 16, 663–664. [Google Scholar]
- Zamani-Noor, N.; Hornbacher, J.; Comel, C.J.; Papenbrock, J. Variation of glucosinolate contents in clubroot-resistant and -susceptible Brassica napus cultivars in response to virulence of Plasmodiophora brassicae. Pathogens 2021, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.S.C.; Zheng, Q.-A.; Strelkov, S. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: Phytoalexins and phytoanticipins. J. Agric. Food Chem. 2008, 56, 9949–9961. [Google Scholar] [CrossRef] [PubMed]
- Langridge, P.; Fleury, D. Making the most of ’omics’ for crop breeding. Trends Biotechnol. 2011, 29, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Varshney, R.K.; Graner, A.; Sorrells, M.E. Genomics-assisted breeding for crop improvement. Trends Plant Sci. 2005, 10, 621–630. [Google Scholar] [CrossRef]
- Shapiro, E.; Biezuner, T.; Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 2013, 14, 618–630. [Google Scholar] [CrossRef]
- Laloum, T.; Martín, G.; Duque, P. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 2018, 23, 140–150. [Google Scholar] [CrossRef]
- Weckwerth, W. Green systems biology—From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteom. 2011, 75, 284–305. [Google Scholar] [CrossRef]
- Salih, R.; Pérez-López, E. Digitalization of clubroot disease index, a long overdue task. Horticulturae 2021, 7, 241. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Crandall, S.G.; Gold, K.M.; Jiménez-Gasco, M.D.M.; Filgueiras, C.C.; Willett, D.S. A multi-omics approach to solving problems in plant disease ecology. PLoS ONE 2020, 15, e0237975. [Google Scholar] [CrossRef] [PubMed]
- Donald, E.C.; Jaudzems, G.; Porter, I.J. Pathology of cortical invasion by Plasmodiophora brassicae in clubroot resistant and susceptible Brassica oleracea hosts. Plant Pathol. 2008, 57, 201–209. [Google Scholar] [CrossRef]
- Khan, A.W.; Garg, V.; Roorkiwal, M.; Golicz, A.A.; Edwards, D.; Varshney, R.K. Super-Pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 2020, 25, 148–158. [Google Scholar] [CrossRef]
- Ludwig-Müller, J. What can we learn from -Omics approaches to understand clubroot disease? Int. J. Mol. Sci. 2022, 23, 6293. [Google Scholar] [CrossRef]
- Town, C.D.; Cheung, F.; Maiti, R.; Crabtree, J.; Haas, B.J.; Wortman, J.R.; Hine, E.E.; Althoff, R.; Arbogast, T.S.; Tallon, L.J.; et al. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 2006, 18, 1348–1359. [Google Scholar] [CrossRef]
- Cheung, F.; Trick, M.; Drou, N.; Lim, Y.P.; Park, J.-Y.; Kwon, S.-J.; Kim, J.-A.; Scott, R.; Pires, J.C.; Paterson, A.H.; et al. Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 2009, 21, 1912–1928. [Google Scholar] [CrossRef]
- Neik, T.X.; Barbetti, M.J.; Batley, J. Current status and challenges in identifying disease resistance genes in Brassica napus. Front. Plant Sci. 2017, 8, 1788. [Google Scholar] [CrossRef]
- Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites 2019, 9, 76. [Google Scholar] [CrossRef]
- Kumar, A.; Pathak, R.K.; Gupta, S.M.; Gaur, V.S.; Pandey, D. Systems biology for smart crops and agricultural innovation: Filling the gaps between genotype and phenotype for complex traits linked with robust agricultural productivity and sustainability. Omics 2015, 19, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Daldoul, S.; Ben Amar, A.; Guillaumie, S.; Mliki, A. Integration of omics and system biology approaches to study grapevine (Vitis vinifera L.) response to salt stress: A perspective for functional genomics—A review. J. Int. Sci. Vigne Vin 2014, 48, 189–200. [Google Scholar] [CrossRef]
- Lee, G.; Baek, N.; Park, K. Genetic Mapping of Resistant Genes in Brassica pekinensis Against Plasmodiophora brassicae Race 6. Plant Pathol. J. 2002, 18, 266–270. [Google Scholar] [CrossRef]
- Hirai, M.; Harada, T.; Kubo, N.; Tsukada, M.; Suwabe, K.; Matsumoto, S. A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor. Appl. Genet. 2004, 108, 639–643. [Google Scholar] [CrossRef]
- Hayashida, N.; Takabatake, Y.; Nakazawa, N.; Aruga, D.; Nakanishi, H.; Taguchi, G.; Sakamoto, K.; Matsumoto, E. Construction of a practical SCAR marker linked to clubroot resistance in Chinese cabbage, with intensive analysis of HC352b genes. J. Jpn. Soc. Hortic. Sci. 2008, 77, 150–154. [Google Scholar] [CrossRef]
- Cho, K.H.; Park, S.H.; Kim, K.T.; Kim, S.; Kim, J.S.; Park, B.S.; Woo, J.G.; Lee, H.J. Mapping quantitative trait loci (QTL) for clubroot resistance in Brassica rapa L. J. Hortic. Sci. Biotechnol. 2012, 87, 325–333. [Google Scholar] [CrossRef]
- Kato, T.; Hatakeyama, K.; Fukino, N.; Matsumoto, S. Identificaiton of a clubroot resistance locus conferring resistance to a Plasmodiophora brassicae classified into pathotype group 3 in Chinese cabbage (Brassica rapa L.). Breed. Sci. 2012, 62, 282–287. [Google Scholar] [CrossRef]
- Chu, M.; Yu, F.; Falk, K.C.; Liu, X.; Zhang, X.; Chang, A.; Peng, G. Identification of the clubroot resistance gene RPB1 and introgression of the resistance into canola breeding lines using a marker-assisted approach. Acta Horticulturae 2013, 1005, 599–605. [Google Scholar] [CrossRef]
- Chen, J.; Jing, J.; Zhan, Z.; Zhang, T.; Zhang, C.; Piao, Z. Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa. PLoS ONE 2013, 8, e85307. [Google Scholar] [CrossRef]
- Pang, W.; Liang, S.; Li, X.; Li, P.; Yu, S.; Lim, Y.P.; Piao, Z. Genetic detection of clubroot resistance loci in a new population of Brassica rapa. Hortic Environ Biotechnol. 2015, 55, 540–547. [Google Scholar] [CrossRef]
- Nguyen, M.L.; Monakhos, G.F.; Komakhin, R.A.; Monakhos, S.G. The new clubroot resistance locus is located on chromosome A05 in Chinese cabbage (Brassica rapa L.). Russ. J. Genet. 2018, 54, 296–304. [Google Scholar] [CrossRef]
- Hirani, A.H.; Gao, F.; Liu, J.; Fu, G.; Wu, C.; McVetty, P.B.E.; Duncan, R.W.; Li, G. Combinations of independent dominant loci conferring clubroot resistance in all four turnip accessions (Brassica rapa) from the European clubroot differential set. Front. Plant Sci. 2018, 9, 1628. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhai, W.; Li, X.; Zhu, Y. Two QTLs controlling clubroot resistance identified from Bulked Segregant Sequencing in Pakchoi (Brassica campestris ssp. chinensis Makino). Sci. Rep. 2019, 9, 9228. [Google Scholar] [CrossRef]
- Manzanares-Dauleux, M.J.; Delourme, R.; Baron, F.; Thomas, G. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor. Appl. Genet. 2000, 101, 885–891. [Google Scholar] [CrossRef]
- Fredua-Agyeman, R.; Rahman, H. Mapping of the clubroot disease resistance in spring Brassica napus canola introgressed from European winter canola cv. ‘Mendel’. Euphytica 2016, 211, 201–213. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Hwang, S.F.; Strelkov, S.E.; Falak, I.; Huang, X.; Sun, R. Mapping of clubroot (Plasmodiophora brassicae) resistance in canola (Brassica napus). Plant Pathol. 2016, 65, 435–440. [Google Scholar] [CrossRef]
- Li, L.; Luo, Y.; Chen, B.; Xu, K.; Zhang, F.; Li, H.; Huang, Q.; Xiao, X.; Zhang, T.; Hu, J.; et al. A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus. Front Plant Sci 2016, 7, 1483. [Google Scholar] [CrossRef]
- Laperche, A.; Aigu, Y.; Jubault, M.; Ollier, M.; Guichard, S.; Glory, P.; Strelkov, S.E.; Gravot, A.; Manzanares-Dauleux, M.J. Clubroot resistance QTL are modulated by nitrogen input in Brassica napus. Theor. Appl. Genet. 2017, 130, 669–684. [Google Scholar] [CrossRef]
- Aigu, Y.; Laperche, A.; Mendes, J.; Lariagon, C.; Guichard, S.; Gravot, A.; Manzanares-Dauleux, M.J. Nitrogen supply exerts a major/minor switch between two QTL s controlling Plasmodiophora brassicae spore content in rapeseed. Plant Pathol. 2018, 67, 1574–1581. [Google Scholar] [CrossRef]
- Wagner, G.; Laperche, A.; Lariagon, C.; Marnet, N.; Renault, D.; Guitton, Y.; Bouchereau, A.; Delourme, R.; Manzanares-Dauleux, M.J.; Gravot, A. Resolution of quantitative resistance to clubroot into QTL-specific metabolic modules. J. Exp. Bot. 2019, 70, 5375–5390. [Google Scholar] [CrossRef] [PubMed]
- Fredua-Agyeman, R.; Yu, Z.; Hwang, S.-F.; Strelkov, S.E. Genome-wide mapping of loci associated with resistance to clubroot in Brassica napus ssp. napobrassica (Rutabaga) accessions from Nordic countries. Front. Plant Sci. 2020, 11, 742. [Google Scholar] [CrossRef] [PubMed]
- Botero-Ramírez, A.; Laperche, A.; Guichard, S.; Jubault, M.; Gravot, A.; Strelkov, S.E.; Manzanares-Dauleux, M.J. Clubroot symptoms and resting spore production in a doubled haploid population of oilseed rape (Brassica napus) Are Controlled by Four Main QTLs. Front. Plant Sci. 2020, 11, 604527. [Google Scholar] [CrossRef] [PubMed]
- Dakouri, A.; Lamara, M.; Karim, M.M.; Wang, J.; Chen, Q.; Gossen, B.D.; Strelkov, S.E.; Hwang, S.-F.; Peng, G.; Yu, F. Identification of resistance loci against new pathotypes of Plasmodiophora brassicae in Brassica napus based on genome-wide association mapping. Sci. Rep. 2021, 11, 6599. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, R.K.; Shen, Y.; Yu, H.; Sheng, X.; Wang, J.; Gu, H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int. J. Mol. Sci. 2022, 23, 9280. https://doi.org/10.3390/ijms23169280
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. International Journal of Molecular Sciences. 2022; 23(16):9280. https://doi.org/10.3390/ijms23169280
Chicago/Turabian StyleShaw, Ranjan K., Yusen Shen, Huifang Yu, Xiaoguang Sheng, Jiansheng Wang, and Honghui Gu. 2022. "Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L." International Journal of Molecular Sciences 23, no. 16: 9280. https://doi.org/10.3390/ijms23169280
APA StyleShaw, R. K., Shen, Y., Yu, H., Sheng, X., Wang, J., & Gu, H. (2022). Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. International Journal of Molecular Sciences, 23(16), 9280. https://doi.org/10.3390/ijms23169280