Target Lines for in Planta Gene Stacking in Japonica Rice
Abstract
:1. Introduction
2. Results
2.1. Target Constructs
2.2. Generating Target Sites in the Rice Genome
2.3. Map Locations
2.4. Bxb1-Mediated Site-Specific Integration into Rice Target Lines
2.5. Southern Blot Analysis
2.6. Expression of Reporter Genes in T2 Integrant Plants
3. Discussion
4. Materials and Methods
4.1. Molecular Constructs
4.2. PCR and qRT PCR Analysis
4.3. Southern Blot Analysis
4.4. Target Site Identification and Mapping
4.5. Rice Transformation and Site-Specific Integration
4.6. Transgene Expression
5. Deposition in GenBank
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, L.; Yau, Y.Y.; Wei, J.; Han, Z.; Dong, Z.; Ow, D.W. An open-source system for in planta gene stacking by Bxb1 and Cre recombinases. Mol. Plant 2014, 7, 1756–1765. [Google Scholar] [CrossRef] [Green Version]
- Shih, P.; Vuu, K.; Mansoori, N.; Ayad, L.; Louie, K.B.; Bowen, B.P.; Northen, T.R.; Loqué, D. A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nat. Commun. 2016, 7, 13215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Q.; Yu, S.; Zeng, D.; Liu, H.; Wang, H.; Yang, Z.; Xie, X.; Shen, R.; Tan, J.; Li, H.; et al. Development of “Purple Endosperm Rice” by Engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol. Plant 2017, 10, 918–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.S.; Xu, J.; Wang, B.; Fu, X.Y.; Gao, J.J.; Han, H.J.; Li, Z.J.; Wang, L.J.; Zhang, F.J.; Zhang, W.H.; et al. Riboflavin fortification of rice endosperm by metabolic engineering. Plant Biotechnol. J. 2021, 19, 1483–1485. [Google Scholar] [CrossRef] [PubMed]
- Puchta, H.; Dujon, B.; Hohn, B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993, 21, 5034–5040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, D.A.; Townsend, J.A.; Winfrey, R.J., Jr.; Irwin, P.A.; Rajagopal, J.; Lonosky, P.M.; Hall, B.D.; Jondle, M.D.; Voytas, D.F. High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 2005, 44, 693–705. [Google Scholar] [CrossRef]
- Fauser, F.; Roth, N.; Pacher, M.; Ilg, G.; Sánchez-Fernández, R.; Biesgen, C.; Puchta, H. In planta gene targeting. Proc. Natl. Acad. Sci. USA 2012, 109, 7535–7540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, F.; Li, X.; Baller, J.A.; Qi, Y.; Starker, C.G.; Bogdanove, A.J.; Voytas, D.F. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2012, 161, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, O.X.; Ronald, P.C. Targeted DNA insertion in plants. Proc. Natl. Acad. Sci. USA 2021, 118, e2004834117. [Google Scholar] [CrossRef]
- Ainley, W.M.; Sastry-Dent, L.; Welter, M.E.; Murray, M.G.; Zeitler, B.; Amora, R.; Corbin, D.R.; Miles, R.R.; Arnold, N.L.; Strange, T.L.; et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 2013, 11, 1126–1134. [Google Scholar] [CrossRef]
- D’Halluin, K.; Vanderstraeten, C.; Van Hulle, J.; Rosolowska, J.; Van Den Brande, I.; Pennewaert, A.; D’Hont, K.; Bossut, M.; Jantz, D.; Ruiter, R.; et al. Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol. J. 2013, 11, 933–941. [Google Scholar] [CrossRef] [Green Version]
- Bonawitz, N.D.; Ainley, W.M.; Itaya, A.; Chennareddy, S.R.; Cicak, T.; Effinger, K.; Jiang, K.; Mall, T.K.; Marri, P.R.; Samuel, J.P.; et al. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining. Plant Biotechnol. J. 2019, 17, 750–761. [Google Scholar] [CrossRef]
- Albert, H.; Dale, E.C.; Lee, E.; Ow, D.W. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995, 7, 649–659. [Google Scholar] [CrossRef]
- Day, C.D.; Lee, E.; Kobayashi, J.; Holappa, L.D.; Albert, H.; Ow, D.W. Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev. 2000, 14, 2869–2880. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xing, A.; Moon, B.P.; McCardell, R.P.; Mills, K.; Falco, S.C. Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol. 2009, 151, 1087–1095. [Google Scholar] [CrossRef] [Green Version]
- Yau, Y.Y.; Wang, Y.; Thomson, J.G.; Ow, D.W. Method for Bxb1-mediated site-specific integration in planta. Methods Mol. Biol. 2011, 701, 147–166. [Google Scholar] [CrossRef]
- De Paepe, A.; De Buck, S.; Nolf, J.; Van Lerberge, E.; Depicker, A. Site-Specific T-DNA Integration in Arabidopsis Thaliana Mediated by the Combined Action of CRE Recombinase and ΦC31 Integrase. Plant J. 2013, 75, 172–184. [Google Scholar] [CrossRef]
- Nandy, S.; Zhao, S.; Pathak, B.P.; Manoharan, M.; Srivastava, V. Gene stacking in plant cell using recombinases for gene integration and nucleases for marker gene deletion. BMC Biotechnol. 2015, 15, 93. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Kaur, G.; Hou, L.; Li, R.; Ow, D.W. Replacement of stacked transgenes in planta. Plant Biotechnol. J. 2019, 17, 2029–2031. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Mutti, J.; Young, J.K.; Yang, M.; Schroder, M.; Lenderts, B.; Wang, L.; Peterson, D.; St Clair, G.; Jones, S.; et al. Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front. Plant Sci. 2020, 11, 535. [Google Scholar] [CrossRef]
- Pathak, B.; Srivastava, V. Recombinase-mediated integration of a multigene cassette in rice leads to stable expression and inheritance of the stacked locus. Plant Direct. 2020, 4, e00236. [Google Scholar] [CrossRef]
- Ow, D.W. Recombinase-mediated gene stacking as a transformation operating system. J. Int. Plant Biol. 2011, 53, 512–519. [Google Scholar] [CrossRef]
- Ghosh, P.; Kim, A.I.; Hatfull, G.F. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol. Cell 2003, 12, 1101–1111. [Google Scholar] [CrossRef]
- Gerlitz, M.; Hrabak, O.; Schwab, H. Partitioning of broad-host range plasmid RP4 is a complex system involving site-specific recombination. J. Bacteriol. 1990, 172, 6194–6203. [Google Scholar] [CrossRef] [Green Version]
- Kholodii, G. The shuffling function of resolvases. Gene 2001, 269, 121–130. [Google Scholar] [CrossRef]
- Sakai, H.; Lee, S.S.; Tanaka, T.; Numa, H.; Kim, J.; Kawahar, Y.; Wakimoto, H.; Yang, C.C.; Iwamoto, M.; Abe, T.; et al. Rice Annotation Project Database (RAP-DB): An integrative and interactive database for rice genomics. Plant Cell Physiol. 2013, 54, e6. [Google Scholar] [CrossRef]
- Wang, J.; Kong, L.; Zhao, S.; Zhang, H.; Tang, L.; Li, Z.; Gu, X.; Luo, J.; Gao, G. Rice-Map: A new-generation rice genome browser. BMC Genom. 2011, 12, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, R.; Han, Z.; Wang, H.; Zhou, S.; Li, Y.; Wang, Y.; Qi, J.; Ow, D.W. Recombinase-mediated gene stacking in cotton. Plant Physiol. 2022, 188, 1852–1865. [Google Scholar] [CrossRef]
- Jiang, L.; Li, R.; Han, Z.; Zhao, X.; Cao, D.; Ow, D.W. Target lines for recombinase mediated gene stacking in soybean. Theor. Appl. Genet. 2022, 135, 1163–1175. [Google Scholar] [CrossRef]
- Rajaee, M.; Ow, D.W. A new location to split Cre recombinase for protein fragment complementation. Plant Biotechnol. J. 2017, 15, 1420–1428. [Google Scholar] [CrossRef] [Green Version]
- Yin, Q.; Li, R.; Ow, D.W. Split-Cre mediated deletion of DNA no longer needed after site-specific integration in rice. Theor. Appl. Genet. 2022, 135, 2333–2340. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Li, R.; Ow, D.W. Site-specific sequence exchange between homologous and non-homologous chromosomes. Front. Plant Sci. 2022, 13, 828960. [Google Scholar] [CrossRef] [PubMed]
- McElroy, D.; Zhang, W.; Cao, J.; Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 1990, 2, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; McElroy, D.; Wu, R. Analysis of rice Act1 5′ region activity in transgenic rice plants. Plant Cell 1991, 3, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Lin, Z.; McElroy, D.; Wu, R. Identification of a rice Actin2 gene regulatory region for high-level expression of transgenes in monocots. Plant Biotechnol. J. 2009, 7, 227–239. [Google Scholar] [CrossRef]
- Kuroda, M.; Kimizu, M.; Mikami, C. A simple set of plasmids for the production of transgenic plants. Biosci. Biotechnol. Biochem. 2010, 74, 2348–2351. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Jia, J.; Yang, L.; Wen, H.; Zhang, C.; Liu, W.; Zhang, D. Validation of a rice-specific gene, sucrose–phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J. Agric. Food Chem. 2004, 52, 3372–3377. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, Y. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Liu, Y.G.; Mitsukawa, N.; Oosumi, T.; Whittier, R.F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric inter-laced PCR. Plant J. 1995, 8, 457–463. [Google Scholar] [CrossRef]
- Liu, Y.G.; Chen, Y.L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques 2007, 43, 649–656. [Google Scholar] [CrossRef]
- Li, M.R.; Li, H.Q. A simple and highly efficient Agrobacterium-mediated rice transformation system. Acta Biol. Exp. Sin. 2003, 36, 289–294. [Google Scholar] [CrossRef]
- Li, R.; Han, Z.; Hou, L.; Kaur, G.; Yin, Q.; Ow, D.W. Method for biolistic site-specific integration in plants catalyzed by bxb1 integrase. Methods Mol. Biol. 2016, 1469, 15–30. [Google Scholar] [CrossRef]
- Lu, Y.J.; Zheng, K.L. A simple method for isolation of rice DNA. Chin. J. Rice Sci. 1992, 6, 47–48. [Google Scholar]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. GUSPLUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [CrossRef]
Target Lines | Number of Bombarded Calluses | * Number of Transformed Calluses (Transformation Efficiency) | PCR of Recombination Junctions | Site-Specific Integration Efficiency | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Calluses | Type I | Type II | ||||||||
Type I Only | Type II Only | Type I + II | a + b | c + d | a + e | f + d | ||||
TS131 | 30 | 5 (17%) | 4 | + | + | − | − | 80% (4/5) | ||
TS284 | 90 | 7 (8%) | 1 | + | + | − | − | 14% (1/7) | ||
TS325 | 765 | 145 (19%) | 14 | + | + | − | − | 16% (23/145) | ||
2 | − | − | + | + | ||||||
7 | + | + | + | + | ||||||
TS537 | 330 | 21 (6%) | 2 | + | + | − | − | 24% (5/21) | ||
2 | − | − | + | + | ||||||
1 | + | + | + | + | ||||||
TS281 | 315 | 29 (9%) | 4 | + | + | − | − | 14% (4/29) | ||
TS367 | 285 | 25 (9%) | 4 | + | + | − | − | 20% (5/25) | ||
1 | + | + | + | + | ||||||
TS766 | 300 | 48 (16%) | 3 | + | + | − | − | 15% (7/48) | ||
2 | − | − | + | + | ||||||
2 | + | + | + | + | ||||||
Total | 2115 | 280 (13.2%) | 32 | + | + | − | − | 11.4% (32/280) | ||
6 | − | − | + | + | 2.15% (6/280) | |||||
11 | + | + | + | + | 4.0% (11/280) |
Target Lines | Different Calluses | Number of Integrant Plants Tested by PCR | Junction PCR (a + b) | Junction PCR (c + d) | Number of Integrant Plants Tested by Southern | Number of gfp Copy |
---|---|---|---|---|---|---|
TS131 | A | 61 | + | + | 5 | 1 |
B | 34 | + | + | 5 | 1 | |
C | 36 | + | + | 5 | 1 | |
D | 60 | + | + | 5 | 1 | |
2 | − | − | 0 | nd | ||
Subtotal | 193 | 191 | 191 | 20 | 1 | |
TS537 | A | 204 | + | + | 5 | 1 |
2 | + | − | 0 | nd | ||
10 | − | − | 0 | nd | ||
Subtotal | 216 | 206 | 204 | 5 | 1 | |
TS325 | A | 6 | − | − | 0 | nd |
B | 4 | + | + | 4 | 5 | |
22 | − | − | 0 | nd | ||
C | 2 | + | + | 2 | 2 to 3 | |
38 | − | − | 0 | nd | ||
D | 1 | + | + | 0 | nd | |
4 | + | − | 0 | nd | ||
E | 2 | + | + | 2 | 2 | |
1 | − | + | 0 | nd | ||
27 | − | − | 0 | nd | ||
F | 36 | − | + | 0 | nd | |
18 | − | − | 0 | nd | ||
G | 19 | + | + | 5 | 1 | |
H | 2 | + | + | 1 | 4 | |
1 | − | + | 0 | nd | ||
16 | − | − | 0 | nd | ||
I | 2 | + | + | 0 | nd | |
1 | − | + | 0 | nd | ||
8 | − | − | 0 | nd | ||
J | 4 | − | − | 0 | nd | |
K | 45 | + | + | 5 | 1 | |
1 | + | − | 0 | nd | ||
2 | − | − | 0 | nd | ||
Subtotal | 262 | 84 | 116 | 19 | 1~5 | |
Total | 671 | 44 | 1~5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Han, Z.; Yin, Q.; Li, M.; Zhang, M.; Li, Z.; Wang, P.; Jiang, L.; Ow, D.W. Target Lines for in Planta Gene Stacking in Japonica Rice. Int. J. Mol. Sci. 2022, 23, 9385. https://doi.org/10.3390/ijms23169385
Li R, Han Z, Yin Q, Li M, Zhang M, Li Z, Wang P, Jiang L, Ow DW. Target Lines for in Planta Gene Stacking in Japonica Rice. International Journal of Molecular Sciences. 2022; 23(16):9385. https://doi.org/10.3390/ijms23169385
Chicago/Turabian StyleLi, Ruyu, Zhiguo Han, Qian Yin, Meiru Li, Mingyong Zhang, Zhenzhen Li, Ping Wang, Li Jiang, and David W. Ow. 2022. "Target Lines for in Planta Gene Stacking in Japonica Rice" International Journal of Molecular Sciences 23, no. 16: 9385. https://doi.org/10.3390/ijms23169385
APA StyleLi, R., Han, Z., Yin, Q., Li, M., Zhang, M., Li, Z., Wang, P., Jiang, L., & Ow, D. W. (2022). Target Lines for in Planta Gene Stacking in Japonica Rice. International Journal of Molecular Sciences, 23(16), 9385. https://doi.org/10.3390/ijms23169385