Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies
Abstract
:1. Introduction
1.1. Maternal Vascular Changes during Healthy Pregnancies and Pregnancy Complications
1.2. K+ Channels as Regulators of Vascular Function
2. Ca2+-Activated K+ Channels
2.1. BKCa Channels in Healthy Pregnancies
2.2. BKCa Channel Impaired Function in Pregnancy Complications
2.3. SK and IK Channels in Healthy Pregnancies
2.4. SK and IK Channels in Pregnancy Complications
3. ATP-Sensitive K+ Channels
3.1. KATP Channels in Healthy Pregnancies
3.2. KATP Channel Impaired Function in Pregnancy Complications
4. Voltage-Gated K+ Channels
4.1. Kv Channels in Healthy Pregnancies
4.2. Kv Channels in Pregnancy Complications
5. Therapeutic Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Osol, G.; Moore, L.G. Maternal uterine vascular remodeling during pregnancy. Microcirculation 2014, 21, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.K.; Zamudio, S.; Coffin, C.; Parker, S.; Stamm, E.; Moore, L.G. Quantitative estimation of human uterine artery blood flow and pelvic blood flow redistribution in pregnancy. Obstet. Gynecol. 1992, 80, 1000–1006. [Google Scholar] [PubMed]
- van der Heijden, O.W.; Essers, Y.P.; Fazzi, G.; Peeters, L.L.; De Mey, J.G.; van Eys, G.J. Uterine artery remodeling and reproductive performance are impaired in endothelial nitric oxide synthase-deficient mice. Biol. Reprod. 2005, 72, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.A.; Weger, L.; Mandala, M.; Osol, G. Reduced NO signaling during pregnancy attenuates outward uterine artery remodeling by altering MMP expression and collagen and elastin deposition. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H1266–H1275. [Google Scholar] [CrossRef] [Green Version]
- Osol, G.; Barron, C.; Gokina, N.; Mandala, M. Inhibition of nitric oxide synthases abrogates pregnancy-induced uterine vascular expansive remodeling. J. Vasc. Res. 2009, 46, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Joyce, J.M.; Phernetton, T.M.; Magness, R.R. Effect of uterine blood flow occlusion on shear stress-mediated nitric oxide production and endothelial nitric oxide synthase expression during ovine pregnancy. Biol. Reprod. 2002, 67, 320–326. [Google Scholar] [CrossRef] [Green Version]
- Itoh, S.; Brawley, L.; Wheeler, T.; Anthony, F.W.; Poston, L.; Hanson, M.A. Vasodilation to vascular endothelial growth factor in the uterine artery of the pregnant rat is blunted by low dietary protein intake. Pediatr. Res. 2002, 51, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.R.; Roy, T.; Cox, B.E. Mechanisms modulating estrogen-induced uterine vasodilation. Vasc. Pharmacol. 2002, 38, 115–125. [Google Scholar] [CrossRef]
- Rosenfeld, C.R.; Cox, B.E.; Roy, T.; Magness, R.R. Nitric oxide contributes to estrogen-induced vasodilation of the ovine uterine circulation. J. Clin. Investig. 1996, 98, 2158–2166. [Google Scholar] [CrossRef]
- Salhab, W.A.; Shaul, P.W.; Cox, B.E.; Rosenfeld, C.R. Regulation of types I and III NOS in ovine uterine arteries by daily and acute estrogen exposure. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2134–H2142. [Google Scholar] [CrossRef]
- Rosenfeld, C.R.; Roy, T. Large conductance Ca2+-activated and voltage-activated K+ channels contribute to the rise and maintenance of estrogen-induced uterine vasodilation and maintenance of blood pressure. Endocrinology 2012, 153, 6012–6020. [Google Scholar] [CrossRef] [PubMed]
- Kublickiene, K.R.; Lindblom, B.; Kruger, K.; Nisell, H. Preeclampsia: Evidence for impaired shear stress-mediated nitric oxide release in uterine circulation. Am. J. Obstet. Gynecol. 2000, 183, 160–166. [Google Scholar] [CrossRef]
- Luksha, L.; Luksha, N.; Kublickas, M.; Nisell, H.; Kublickiene, K. Diverse mechanisms of endothelium-derived hyperpolarizing factor-mediated dilatation in small myometrial arteries in normal human pregnancy and preeclampsia. Biol. Reprod. 2010, 83, 728–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, S.S.; Moore, R.J.; Warren, A.Y.; Crocker, I.P.; Fulford, J.; Tyler, D.J.; Gowland, P.A.; Baker, P.N. Myometrial and placental artery reactivity alone cannot explain reduced placental perfusion in pre-eclampsia and intrauterine growth restriction. BJOG 2003, 110, 909–915. [Google Scholar] [CrossRef]
- Lorca, R.A.; Matarazzo, C.J.; Bales, E.S.; Houck, J.A.; Orlicky, D.J.; Euser, A.G.; Julian, C.G.; Moore, L.G. AMPK activation in pregnant human myometrial arteries from high-altitude and intrauterine growth-restricted pregnancies. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H203–H212. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.K.; Moore, L.G.; Young, D.; Cregger, B.; Berman, J.C.; Zamudio, S. Altered blood pressure course during normal pregnancy and increased preeclampsia at high altit.tude (3100 meters) in Colorado. Am. J. Obstet. Gynecol. 1999, 180, 1161–1168. [Google Scholar] [CrossRef]
- Julian, C.G.; Galan, H.L.; Wilson, M.J.; Desilva, W.; Cioffi-Ragan, D.; Schwartz, J.; Moore, L.G. Lower uterine artery blood flow and higher endothelin relative to nitric oxide metabolite levels are associated with reductions in birth weight at high altitude. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R906–R915. [Google Scholar] [CrossRef] [Green Version]
- Zamudio, S.; Palmer, S.K.; Droma, T.; Stamm, E.; Coffin, C.; Moore, L.G. Effect of altitude on uterine artery blood flow during normal pregnancy. J. Appl. Physiol. 1995, 79, 7–14. [Google Scholar] [CrossRef]
- Aljunaidy, M.M.; Morton, J.S.; Cooke, C.L.; Davidge, S.T. Maternal vascular responses to hypoxia in a rat model of intrauterine growth restriction. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R1068–R1075. [Google Scholar] [CrossRef]
- White, M.M.; Zhang, L. Effects of chronic hypoxia on maternal vasodilation and vascular reactivity in guinea pig and ovine pregnancy. High Alt. Med. Biol. 2003, 4, 157–169. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martinez, O.; Garcia-Montero, C.; Saez, M.A.; Alvarez-Mon, M.A.; Torres-Carranza, D.; Alvarez-Mon, M.; Bujan, J.; Garcia-Honduvilla, N.; Bravo, C.; et al. The Pivotal Role of the Placenta in Normal and Pathological Pregnancies: A Focus on Preeclampsia, Fetal Growth Restriction, and Maternal Chronic Venous Disease. Cells 2022, 11, 568. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.F. Potassium Channels in Regulation of Vascular Smooth Muscle Contraction and Growth. Adv. Pharmacol. 2017, 78, 89–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korovkina, V.P.; England, S.K. Molecular diversity of vascular potassium channel isoforms. Clin. Exp. Pharmacol. Physiol. 2002, 29, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.T.; Quayle, J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995, 268 Pt 1, C799–C822. [Google Scholar] [CrossRef]
- Busse, R.; Edwards, G.; Feletou, M.; Fleming, I.; Vanhoutte, P.M.; Weston, A.H. EDHF: Bringing the concepts together. Trends Pharmacol. Sci. 2002, 23, 374–380. [Google Scholar] [CrossRef]
- Behringer, E.J.; Segal, S.S. Membrane potential governs calcium influx into microvascular endothelium: Integral role for muscarinic receptor activation. J. Physiol. 2015, 593, 4531–4548. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.D.; Dora, K.A.; Ings, N.T.; Crane, G.J.; Garland, C.J. Activation of endothelial cell IK(Ca) with 1-ethyl-2-benzimidazolinone evokes smooth muscle hyperpolarization in rat isolated mesenteric artery. Br. J. Pharmacol. 2001, 134, 1548–1554. [Google Scholar] [CrossRef] [Green Version]
- Kaczmarek, L.K.; Aldrich, R.W.; Chandy, K.G.; Grissmer, S.; Wei, A.D.; Wulff, H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol. Rev. 2017, 69, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wei, A.; Solaro, C.; Lingle, C.; Salkoff, L. Calcium sensitivity of BK-type KCa channels determined by a separable domain. Neuron 1994, 13, 671–681. [Google Scholar] [CrossRef]
- Wallner, M.; Meera, P.; Toro, L. Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N terminus. Proc. Natl. Acad. Sci. USA 1996, 93, 14922–14927. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Perez, V.; Lingle, C.J. Regulation of BK Channels by Beta and Gamma Subunits. Annu. Rev. Physiol. 2019, 81, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Evanson, K.W.; Bannister, J.P.; Leo, M.D.; Jaggar, J.H. LRRC26 is a functional BK channel auxiliary γ subunit in arterial smooth muscle cells. Circ. Res. 2014, 115, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, R.; Perez, G.J.; Bonev, A.D.; Eckman, D.M.; Kosek, J.C.; Wiler, S.W.; Patterson, A.J.; Nelson, M.T.; Aldrich, R.W. Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature 2000, 407, 870–876. [Google Scholar] [CrossRef]
- Tanaka, Y.; Meera, P.; Song, M.; Knaus, H.G.; Toro, L. Molecular constituents of maxi KCa channels in human coronary smooth muscle: Predominant α+β subunit complexes. J. Physiol. 1997, 502 Pt 3, 545–557. [Google Scholar] [CrossRef]
- Taylor, M.S.; Bonev, A.D.; Gross, T.P.; Eckman, D.M.; Brayden, J.E.; Bond, C.T.; Adelman, J.P.; Nelson, M.T. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ. Res. 2003, 93, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.Q.; Xiao, D.; Zhu, R.; Huang, X.; Yang, S.; Wilson, S.; Zhang, L. Pregnancy upregulates large-conductance Ca2+-activated K+ channel activity and attenuates myogenic tone in uterine arteries. Hypertension 2011, 58, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Lorca, R.A.; Wakle-Prabagaran, M.; Freeman, W.E.; Pillai, M.K.; England, S.K. The large-conductance voltage- and Ca2+-activated K+ channel and its γ1-subunit modulate mouse uterine artery function during pregnancy. J. Physiol. 2018, 596, 1019–1033. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.R.; Roy, T.; DeSpain, K.; Cox, B.E. Large-conductance Ca2+-dependent K+ channels regulate basal uteroplacental blood flow in ovine pregnancy. J. Soc. Gynecol. Investig. 2005, 12, 402–408. [Google Scholar] [CrossRef]
- Rosenfeld, C.R.; Liu, X.T.; DeSpain, K. Pregnancy modifies the large conductance Ca2+-activated K+ channel and cGMP-dependent signaling pathway in uterine vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1878. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Bai, J.; Yang, Y.H.; Hoshi, N.; Chen, D.B. Hydrogen Sulfide Relaxes Human Uterine Artery via Activating Smooth Muscle BKCa Channels. Antioxidants 2020, 9, 1127. [Google Scholar] [CrossRef]
- Nagar, D.; Liu, X.T.; Rosenfeld, C.R. Estrogen regulates β1-subunit expression in Ca2+-activated K+ channels in arteries from reproductive tissues. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H1417. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Dasgupta, C.; Xiong, F.; Zhang, L. Epigenetic upregulation of large-conductance Ca2+-activated K+ channel expression in uterine vascular adaptation to pregnancy. Hypertension 2014, 64, 610–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.Q.; Dasgupta, C.; Chen, M.; Xiao, D.; Huang, X.; Han, L.; Yang, S.; Xu, Z.; Zhang, L. Pregnancy Reprograms Large-Conductance Ca2+-Activated K+ Channel in Uterine Arteries: Roles of Ten-Eleven Translocation Methylcytosine Dioxygenase 1-Mediated Active Demethylation. Hypertension 2017, 69, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Lorca, R.A.; Prabagaran, M.; England, S.K. Functional insights into modulation of BKCa channel activity to alter myometrial contractility. Front. Physiol. 2014, 5, 289. [Google Scholar] [CrossRef] [Green Version]
- Barman, S.A.; Zhu, S.; White, R.E. Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286 Pt 1, L149–L155. [Google Scholar] [CrossRef] [Green Version]
- Magness, R.R.; Rosenfeld, C.R.; Carr, B.R. Protein kinase C in uterine and systemic arteries during ovarian cycle and pregnancy. Am. J. Physiol. 1991, 260, E464–E470. [Google Scholar] [CrossRef]
- Farley, D.B.; Ford, S.P. Evidence for declining extracellular calcium uptake and protein kinase C activity in uterine arterial smooth muscle during gestation in gilts. Biol. Reprod. 1992, 46, 315–321. [Google Scholar] [CrossRef]
- Xiao, D.; Zhu, R.; Zhang, L. Gestational hypoxia up-regulates protein kinase C and inhibits calcium-activated potassium channels in ovine uterine arteries. Int. J. Med. Sci. 2014, 11, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Song, R.; Romero, M.; Dasgupta, C.; Huang, X.; Holguin, M.A.; Williams, V.; Xiao, D.; Wilson, S.M.; Zhang, L. Pregnancy Increases Ca2+ Sparks/Spontaneous Transient Outward Currents and Reduces Uterine Arterial Myogenic Tone. Hypertension 2019, 73, 691–702. [Google Scholar] [CrossRef]
- Song, R.; Hu, X.Q.; Romero, M.; Holguin, M.A.; Kagabo, W.; Xiao, D.; Wilson, S.M.; Zhang, L. Ryanodine receptor subtypes regulate Ca2+ sparks/spontaneous transient outward currents and myogenic tone of uterine arteries in pregnancy. Cardiovasc. Res. 2021, 117, 792–804. [Google Scholar] [CrossRef]
- Shen, Y.T.; Pittman, T.J.; Buie, P.S.; Bolduc, D.L.; Kane, S.A.; Koblan, K.S.; Gould, R.J.; Lynch, J.J., Jr. Functional role of α-calcitonin gene-related peptide in the regulation of the cardiovascular system. J. Pharmacol. Exp. Ther. 2001, 298, 551–558. [Google Scholar] [PubMed]
- Stevenson, J.C.; Macdonald, D.W.; Warren, R.C.; Booker, M.W.; Whitehead, M.I. Increased concentration of circulating calcitonin gene related peptide during normal human pregnancy. Br. Med. J. 1986, 293, 1329–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.L.; Chauhan, M.; Green, K.E.; Vegiraju, S.; Wang, H.Q.; Hankins, G.D.; Yallampalli, C. Circulating calcitonin gene-related peptide and its placental origins in normotensive and preeclamptic pregnancies. Am. J. Obstet. Gynecol. 2006, 195, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Gangula, P.R.; Wimalawansa, S.J.; Yallampalli, C. Studies on the effects of the N-terminal domain antibodies of calcitonin receptor-like receptor and receptor activity-modifying protein 1 on calcitonin gene-related peptide-induced vasorelaxation in rat uterine artery. Biol. Reprod. 2004, 70, 1658–1663. [Google Scholar] [CrossRef] [Green Version]
- Gangula, P.R.; Thota, C.; Wimalawansa, S.J.; Bukoski, R.D.; Yallampalli, C. Mechanisms involved in calcitonin gene-related Peptide-induced relaxation in pregnant rat uterine artery. Biol. Reprod. 2003, 69, 1635–1641. [Google Scholar] [CrossRef] [Green Version]
- Vedernikov, Y.P.; Fulep, E.E.; Saade, G.R.; Garfield, R.E. Calcitonin gene-related peptide dilates the pregnant rat uterine vascular bed via guanylate cyclase, ATP- and Ca-sensitive potassium channels and gap junctions. Curr. Med. Res. Opin. 2002, 18, 465–470. [Google Scholar] [CrossRef]
- Di Iorio, R.; Marinoni, E.; Letizia, C.; Alo, P.; Villaccio, B.; Cosmi, E.V. Adrenomedullin, a new vasoactive peptide, is increased in preeclampsia. Hypertension 1998, 32, 758–763. [Google Scholar] [CrossRef] [Green Version]
- Jerat, S.; Kaufman, S. Effect of pregnancy and steroid hormones on plasma adrenomedullin levels in the rat. Can. J. Physiol. Pharmacol. 1998, 76, 463–466. [Google Scholar] [CrossRef]
- Ross, G.R.; Yallampalli, U.; Gangula, P.R.; Reed, L.; Sathishkumar, K.; Gao, H.; Chauhan, M.; Yallampalli, C. Adrenomedullin relaxes rat uterine artery: Mechanisms and influence of pregnancy and estradiol. Endocrinology 2010, 151, 4485–4493. [Google Scholar] [CrossRef]
- Soliman, A.; Lacasse, A.A.; Lanoix, D.; Sagrillo-Fagundes, L.; Boulard, V.; Vaillancourt, C. Placental melatonin system is present throughout pregnancy and regulates villous trophoblast differentiation. J. Pineal Res. 2015, 59, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, C.; Zhang, N.; Liu, F. Melatonin ameliorates hypertension in hypertensive pregnant mice and suppresses the hypertension-induced decrease in Ca2+-activated K+ channels in uterine arteries. Hypertens. Res. 2021, 44, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, T.J.; Qi, Q.R.; Magness, R.R.; Chen, D.B. Ovine uterine artery hydrogen sulfide biosynthesis in vivo: Effects of ovarian cycle and pregnancydagger. Biol. Reprod. 2019, 100, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, L.; Lechuga, T.J.; Zhang, H.; Hameed, A.; Wing, D.A.; Kumar, S.; Rosenfeld, C.R.; Chen, D.B. Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation. Biol. Reprod. 2017, 96, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Xiao, D.; Huang, X.; Longo, L.D.; Zhang, L. Chronic hypoxia increases pressure-dependent myogenic tone of the uterine artery in pregnant sheep: Role of ERK/PKC pathway. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1840–H1849. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Huang, X.; Xiao, D.; Zhang, L. Direct effect of chronic hypoxia in suppressing large conductance Ca2+-activated K+ channel activity in ovine uterine arteries via increasing oxidative stress. J. Physiol. 2016, 594, 343–356. [Google Scholar] [CrossRef]
- Zhu, R.; Huang, X.; Hu, X.Q.; Xiao, D.; Zhang, L. Gestational hypoxia increases reactive oxygen species and inhibits steroid hormone-mediated upregulation of Ca2+-activated K+ channel function in uterine arteries. Hypertension 2014, 64, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Chen, M.; Dasgupta, C.; Xiao, D.; Huang, X.; Yang, S.; Zhang, L. Chronic hypoxia upregulates DNA methyltransferase and represses large conductance Ca2+-activated K+ channel function in ovine uterine arteries. Biol. Reprod. 2017, 96, 424–434. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Xiao, D.; Hu, X.Q.; Dasgupta, C.; Yang, S.; Zhang, L. Hypoxia Represses ER-α Expression and Inhibits Estrogen-Induced Regulation of Ca2+-Activated K+ Channel Activity and Myogenic Tone in Ovine Uterine Arteries: Causal Role of DNA Methylation. Hypertension 2015, 66, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.Q.; Dasgupta, C.; Xiao, D.; Huang, X.; Yang, S.; Zhang, L. MicroRNA-210 Targets Ten-Eleven Translocation Methylcytosine Dioxygenase 1 and Suppresses Pregnancy-Mediated Adaptation of Large Conductance Ca2+-Activated K+ Channel Expression and Function in Ovine Uterine Arteries. Hypertension 2017, 70, 601–612. [Google Scholar] [CrossRef]
- Hu, X.Q.; Dasgupta, C.; Xiao, J.; Yang, S.; Zhang, L. Long-term high altitude hypoxia during gestation suppresses large conductance Ca2+-activated K+ channel function in uterine arteries: A causal role for microRNA-210. J. Physiol. 2018, 596, 5891–5906. [Google Scholar] [CrossRef] [Green Version]
- Bavelloni, A.; Ramazzotti, G.; Poli, A.; Piazzi, M.; Focaccia, E.; Blalock, W.; Faenza, I. MiRNA-210: A Current Overview. Anticancer Res. 2017, 37, 6511–6521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineles, B.L.; Romero, R.; Montenegro, D.; Tarca, A.L.; Han, Y.M.; Kim, Y.M.; Draghici, S.; Espinoza, J.; Kusanovic, J.P.; Mittal, P.; et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am. J. Obstet. Gynecol. 2007, 196, 261.e1–261.e6. [Google Scholar] [CrossRef] [PubMed]
- Enquobahrie, D.A.; Abetew, D.F.; Sorensen, T.K.; Willoughby, D.; Chidambaram, K.; Williams, M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011, 204, 178.e12–178.e21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jairajpuri, D.S.; Malalla, Z.H.; Sarray, S.; Mahmood, N. Analysis of differential expression of hypoxia-inducible microRNA-210 gene targets in mild and severe preeclamptic patients. Noncoding RNA Res. 2021, 6, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Hayder, H.; Fu, G.; Nadeem, L.; O’Brien, J.A.; Lye, S.J.; Peng, C. Overexpression of miR-210-3p Impairs Extravillous Trophoblast Functions Associated with Uterine Spiral Artery Remodeling. Int. J. Mol. Sci. 2021, 22, 3961. [Google Scholar] [CrossRef]
- Korkes, H.A.; De Oliveira, L.; Sass, N.; Salahuddin, S.; Karumanchi, S.A.; Rajakumar, A. Relationship between hypoxia and downstream pathogenic pathways in preeclampsia. Hypertens. Pregnancy 2017, 36, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Shao, X.; Xu, P.; Liu, Y.; Wang, Y.; Zhao, Y.; Liu, M.; Ji, L.; Li, Y.X.; Chang, C.; et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension 2014, 64, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Biro, O.; Fothi, A.; Alasztics, B.; Nagy, B.; Orban, T.I.; Rigo, J., Jr. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene 2019, 692, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Gillham, J.C.; Myers, J.E.; Baker, P.N.; Taggart, M.J. Regulation of endothelial-dependent relaxation in human systemic arteries by SKCa and IKCa channels. Reprod. Sci. 2007, 14, 43–50. [Google Scholar] [CrossRef]
- Chauhan, M.; Betancourt, A.; Balakrishnan, M.; Mishra, A.; Espinosa, J.; Shamshirsaz, A.A.; Fox, K.; Belfort, M.; Yallampalli, C. Calcitonin Gene Related Peptide, Adrenomedullin, and Adrenomedullin 2 Function in Uterine Artery During Human Pregnancy. Endocrinology 2022, 163, bqab204. [Google Scholar] [CrossRef]
- Gokina, N.I.; Kuzina, O.Y.; Vance, A.M. Augmented EDHF signaling in rat uteroplacental vasculature during late pregnancy. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1642–H1652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.A.; Senadheera, S.N.; Jelinic, M.; O’Sullivan, K.; Parry, L.J.; Tare, M. Relaxin Deficiency Leads to Uterine Artery Dysfunction During Pregnancy in Mice. Front. Physiol. 2018, 9, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakade, U.P.; Sharma, A.; Kumari, P.; Bhatiya, S.; Nair, S.V.; Karikaran, K.N.; Sharma, V.; Choudhury, S.; Garg, S.K. Functional and molecular characterization of endothelium-dependent and endothelium-independent relaxant pathways in uterine artery of non-pregnant buffaloes. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 225–241. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.V.; Kanagarajah, A.; Toemoe, S.; Bertrand, P.P.; Grayson, T.H.; Britton, F.C.; Leader, L.; Senadheera, S.; Sandow, S.L. TRPV3 expression and vasodilator function in isolated uterine radial arteries from non-pregnant and pregnant rats. Vasc. Pharmacol. 2016, 83, 66–77. [Google Scholar] [CrossRef]
- Zhu, R.; Hu, X.Q.; Xiao, D.; Yang, S.; Wilson, S.M.; Longo, L.D.; Zhang, L. Chronic hypoxia inhibits pregnancy-induced upregulation of SKCa channel expression and function in uterine arteries. Hypertension 2013, 62, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Kim, J.A.; Oh, S.; Park, M.H.; Cho, G.J.; Suh, S.H. Internalization and Transportation of Endothelial Cell Surface KCa2.3 and KCa3.1 in Normal Pregnancy and Preeclampsia. Oxid. Med. Cell. Longev. 2019, 2019, 5820839. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Gokina, N.I.; Bonev, A.D.; Phillips, J.; Gokin, A.P.; Veilleux, K.; Oppenheimer, K.; Goloman, G. Impairment of IKCa channels contributes to uteroplacental endothelial dysfunction in rat diabetic pregnancy. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H592–H604. [Google Scholar] [CrossRef] [Green Version]
- Chirayath, H.H.; Wareing, M.; Taggart, M.J.; Baker, P.N. Endothelial dysfunction in myometrial arteries of women with gestational diabetes. Diabetes Res. Clin. Pract 2010, 89, 134–140. [Google Scholar] [CrossRef]
- Palomba, S.; Falbo, A.; Russo, T.; Battista, L.; Tolino, A.; Orio, F.; Zullo, F. Uterine blood flow in pregnant patients with polycystic ovary syndrome: Relationships with clinical outcomes. BJOG Int. J. Obstet. Gynaecol. 2010, 117, 711–721. [Google Scholar] [CrossRef]
- Chinnathambi, V.; Blesson, C.S.; Vincent, K.L.; Saade, G.R.; Hankins, G.D.; Yallampalli, C.; Sathishkumar, K. Elevated testosterone levels during rat pregnancy cause hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in uterine arteries. Hypertension 2014, 64, 405–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rada, C.C.; Pierce, S.L.; Nuno, D.W.; Zimmerman, K.; Lamping, K.G.; Bowdler, N.C.; Weiss, R.M.; England, S.K. Overexpression of the SK3 channel alters vascular remodeling during pregnancy, leading to fetal demise. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E825–E831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babenko, A.P.; Aguilar-Bryan, L.; Bryan, J. A view of sur/KIR6.X, KATP channels. Annu. Rev. Physiol. 1998, 60, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Jovanovic, S.; Tulic, L.; Tulic, I.; Jovanovic, A. Pregnancy-induced hypertension is associated with down-regulation of Kir6.1 in human myometrium. Pregnancy Hypertens. 2019, 18, 96–98. [Google Scholar] [CrossRef]
- Yamada, M.; Isomoto, S.; Matsumoto, S.; Kondo, C.; Shindo, T.; Horio, Y.; Kurachi, Y. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. J. Physiol. 1997, 499 Pt 3, 715–720. [Google Scholar] [CrossRef]
- Yoshida, H.; Bao, L.; Kefaloyianni, E.; Taskin, E.; Okorie, U.; Hong, M.; Dhar-Chowdhury, P.; Kaneko, M.; Coetzee, W.A. AMP-activated protein kinase connects cellular energy metabolism to KATP channel function. J. Mol. Cell. Cardiol. 2012, 52, 410–418. [Google Scholar] [CrossRef] [Green Version]
- Li, C.G.; Cui, W.Y.; Wang, H. Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis. Acta Pharmacol. Sin. 2016, 37, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Dart, C.; Standen, N.B. Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J. Physiol. 1993, 471, 767–786. [Google Scholar] [CrossRef]
- Cole, W.C.; Malcolm, T.; Walsh, M.P.; Light, P.E. Inhibition by protein kinase C of the K(NDP) subtype of vascular smooth muscle ATP-sensitive potassium channel. Circ. Res. 2000, 87, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, Y.; Nakaya, Y. Angiotensin II blocks ATP-sensitive K+ channels in porcine coronary artery smooth muscle cells. Biochem. Biophys. Res. Commun. 1991, 181, 700–706. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Nakaya, Y.; Wakatsuki, T.; Nakaya, S.; Fujino, K.; Saito, K.; Inoue, I. Endothelin blocks ATP-sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ. Res. 1992, 70, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Quayle, J.M.; Nelson, M.T.; Standen, N.B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 1997, 77, 1165–1232. [Google Scholar] [CrossRef]
- Standen, N.B.; Quayle, J.M.; Davies, N.W.; Brayden, J.E.; Huang, Y.; Nelson, M.T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989, 245, 177–180. [Google Scholar] [CrossRef]
- Xiao, D.; Longo, L.D.; Zhang, L. Role of KATP and L-type Ca2+ channel activities in regulation of ovine uterine vascular contractility: Effect of pregnancy and chronic hypoxia. Am. J. Obstet. Gynecol. 2010, 203, 596.e6–596.e12. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.H.; Suresh, M.S.; Dehring, D.J.; Johnson, R.L. Relaxation by calcitonin gene-related peptide may involve activation of K+ channels in the human uterine artery. Eur. J. Pharmacol. 1993, 242, 255–261. [Google Scholar] [CrossRef]
- Keyes, L.; Rodman, D.M.; Curran-Everett, D.; Morris, K.; Moore, L.G. Effect of K+ATP channel inhibition on total and regional vascular resistance in guinea pig pregnancy. Am. J. Physiol. 1998, 275, H680–H688. [Google Scholar] [CrossRef]
- Norton, C.E.; Segal, S.S. Calcitonin gene-related peptide hyperpolarizes mouse pulmonary artery endothelial tubes through KATP channel activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 315, L212–L226. [Google Scholar] [CrossRef] [Green Version]
- Dogan, M.F.; Yildiz, O.; Arslan, S.O.; Ulusoy, K.G. Potassium channels in vascular smooth muscle: A pathophysiological and pharmacological perspective. Fundam Clin. Pharmacol. 2019, 33, 504–523. [Google Scholar] [CrossRef]
- Yin, B.; Zhang, Y.; Wei, X.; Pang, C.; Hou, T.; Yang, C.; Ning, Y.; Fu, X. The expression of ATP-sensitive potassium channels in human umbilical arteries with severe pre-eclampsia. Sci. Rep. 2021, 11, 7955. [Google Scholar] [CrossRef]
- Li, H.; Shin, S.E.; Seo, M.S.; An, J.R.; Ha, K.S.; Han, E.T.; Hong, S.H.; Kim, J.; Yim, M.J.; Lee, J.M.; et al. Alterations of ATP-sensitive K+ channels in human umbilical arterial smooth muscle during gestational diabetes mellitus. Pflugers. Arch. 2018, 470, 1325–1333. [Google Scholar] [CrossRef]
- Djokic, V.; Jankovic-Raznatovic, S.; Novakovic, R.; Kostic, M.; Rajkovic, J.; Labudovic-Borovic, M.; Rakocevic, J.; Stanisic, J.; Djuric, M.; Gojkovic-Bukarica, L. Effect of gestational diabetes mellitus and pregnancy-induced hypertension on human umbilical vein smooth muscle KATP channels. Exp. Mol. Pathol. 2019, 111, 104323. [Google Scholar] [CrossRef]
- Aziz, Q.; Thomas, A.M.; Gomes, J.; Ang, R.; Sones, W.R.; Li, Y.; Ng, K.E.; Gee, L.; Tinker, A. The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Hypertension 2014, 64, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Knutsen, R.H.; Zhang, H.; Osei-Owusu, P.; Moreno-Dominguez, A.; Harter, T.M.; Uchida, K.; Remedi, M.S.; Dietrich, H.H.; Bernal-Mizrachi, C.; et al. Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle. J. Am. Heart Assoc. 2013, 2, e000365. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.; Tardim, J.C.; Barros, M.E.; Boim, M.A. Role of ATP-sensitive potassium channels in normal and hypertension-associated pregnancy in rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 780–786. [Google Scholar] [CrossRef]
- Gutman, G.A.; Chandy, K.G.; Adelman, J.P.; Aiyar, J.; Bayliss, D.A.; Clapham, D.E.; Covarriubias, M.; Desir, G.V.; Furuichi, K.; Ganetzky, B.; et al. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: Potassium channels. Pharmacol. Rev. 2003, 55, 583–586. [Google Scholar] [CrossRef]
- Torres, Y.P.; Morera, F.J.; Carvacho, I.; Latorre, R. A marriage of convenience: β-subunits and voltage-dependent K+ channels. J. Biol. Chem. 2007, 282, 24485–24489. [Google Scholar] [CrossRef] [Green Version]
- Jackson, W.F. KV channels and the regulation of vasc.cular smooth muscle tone. Microcirculation 2018, 25, e12421. [Google Scholar] [CrossRef]
- Mistry, D.K.; Garland, C.J. The influence of phenylephrine outward potassium currents in single smooth muscle cells from the rabbit mesenteric artery. Gen. Pharmacol. 1999, 33, 389–399. [Google Scholar] [CrossRef]
- Hayabuchi, Y.; Standen, N.B.; Davies, N.W. Angiotensin II inhibits and alters kinetics of voltage-gated K+ channels of rat arterial smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H2480–H2489. [Google Scholar] [CrossRef] [Green Version]
- Kidd, M.W.; Bulley, S.; Jaggar, J.H. Angiotensin II reduces the surface abundance of KV 1.5 channels in arterial myocytes to stimulate vasoconstriction. J. Physiol. 2017, 595, 1607–1618. [Google Scholar] [CrossRef]
- Sobey, C.G.; Faraci, F.M. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter. Am. J. Physiol. 1997, 272, H256–H262. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tang, G.; Takizawa, K.; Otsuka, K.; Eghbali, M.; Song, M.; Nishimaru, K.; Shigenobu, K.; Koike, K.; Stefani, E.; et al. Kv channels contribute to nitric oxide- and atrial natriuretic peptide-induced relaxation of a rat conduit artery. J. Pharmacol. Exp. Ther. 2006, 317, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Cheang, W.S.; Wong, W.T.; Shen, B.; Lau, C.W.; Tian, X.Y.; Tsang, S.Y.; Yao, X.; Chen, Z.Y.; Huang, Y. 4-aminopyridine-sensitive K+ channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery. Vasc. Pharmacol. 2010, 53, 94–98. [Google Scholar] [CrossRef]
- Martelli, A.; Testai, L.; Breschi, M.C.; Lawson, K.; McKay, N.G.; Miceli, F.; Taglialatela, M.; Calderone, V. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol. Res. 2013, 70, 27–34. [Google Scholar] [CrossRef]
- Hedegaard, E.R.; Nielsen, B.D.; Kun, A.; Hughes, A.D.; Kroigaard, C.; Mogensen, S.; Matchkov, V.V.; Frobert, O.; Simonsen, U. KV 7 channels are involved in hypoxia-induced vasodilatation of porcine coronary arteries. Br. J. Pharmacol. 2014, 171, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.G.; Vandier, C.; Bonnet, P.; Jackson, W.F.; Rusch, N.J. Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle. Am. J. Physiol. 1998, 275, H1351–H1359. [Google Scholar] [CrossRef] [Green Version]
- Tano, J.Y.; Schleifenbaum, J.; Gollasch, M. Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arter. Thromb. Vasc. Biol. 2014, 34, 1827–1830. [Google Scholar] [CrossRef] [Green Version]
- Miguel-Velado, E.; Moreno-Dominguez, A.; Colinas, O.; Cidad, P.; Heras, M.; Perez-Garcia, M.T.; Lopez-Lopez, J.R. Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells. Circ. Res. 2005, 97, 1280–1287. [Google Scholar] [CrossRef] [Green Version]
- Telezhkin, V.; Goecks, T.; Bonev, A.D.; Osol, G.; Gokina, N.I. Decreased function of voltage-gated potassium channels contributes to augmented myogenic tone of uterine arteries in late pregnancy. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H272–H284. [Google Scholar] [CrossRef]
- Jovanovic, A.; Grbovic, L.; Jovanovic, S. K+ channel blockers do not modify relaxation of guinea-pig uterine artery evoked by acetylcholine. Eur. J. Pharmacol. 1995, 280, 95–100. [Google Scholar] [CrossRef]
- Miguel-Velado, E.; Perez-Carretero, F.D.; Colinas, O.; Cidad, P.; Heras, M.; Lopez-Lopez, J.R.; Perez-Garcia, M.T. Cell cycle-dependent expression of Kv3.4 channels modulates proliferation of human uterine artery smooth muscle cells. Cardiovasc. Res. 2010, 86, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Hampl, V.; Bibova, J.; Stranak, Z.; Wu, X.; Michelakis, E.D.; Hashimoto, K.; Archer, S.L. Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H2440–H2449. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, J.; Lacey, H.; Baker, P.N.; Wareing, M. Altered potassium channel expression in the human placental vasculature of pregnancies complicated by fetal growth restriction. Hypertens. Pregnancy 2008, 27, 75–86. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Clinical Trials Involving Potassium Channels during Pregnancy. Available online: https://clinicaltrials.gov/ct2/results?cond=Pregnancy%3B+pregnancy+complications&term=potassium&cntry=&state=&city=&dist=&Search=Search&recrs=a&recrs=b&recrs=d&recrs=e&recrs=f (accessed on 2 August 2022).
Drug | Mechanism | Effect on Uterine Vasculature | Ref. |
---|---|---|---|
NS-1619 | BKCa opener | Relaxed pregnant UtA | [85] |
Tetraethylammonium | BKCa blocker | Decreased UtA blood flow | [38] |
Increased UtA myogenic tone, reduced BKCa-evoked currents | [36] | ||
Diminished ADM-induced UtA vasodilation | [59] | ||
Reduced CGRP-dependent UtA vasodilation and prevented CGRP-induced decrease in UtA perfusion pressure | [55,56] | ||
Iberiotoxin | BKCa blocker | Decreased late pregnant UtA diameter in wild-type but not BKCa γ1 subunit knockout mouse | [37] |
Reduced ACh-elicited UtA vasodilation | [61] | ||
Diminished H2S-induced UtA vasodilation | [40] | ||
NS-309 | SK opener | Induced vasodilation in non-pregnant UtA | [83] |
Apamin | SK blocker | Reduced EDHF-dependent myometrial artery vasodilation (in combination with TRAM-34 or charybdotoxin) | [79] |
Decreased UtA vasodilation induced by CGRP, ADM, and ADM2 (in combination with charybdotoxin) | [80] | ||
Diminished ACh-induced UtA vasodilation and increased Ca2+ levels in smooth muscle cells (in combination with charybdotoxin) | [81] | ||
Reduced ACh-induced vasodilation in non-pregnant UtA (with or without TRAM-34) | [83] | ||
Relaxed pregnant UtA | [85] | ||
SKA-31 | IK opener | Induced vasodilation in radial UtA (greater in pregnant than non-pregnant) | [84] |
TRAM-34 | IK blocker | Prevented ACh-induced vasodilation in non-pregnant UtA (with or without apamin) | [83] |
Decreased TRPV3-evoked vasodilation in radial UtA | [84] | ||
Charybdotoxin | SK/IK blocker | Attenuated EDHF-dependent myometrial artery vasodilation | [79] |
Diazoxide | KATP opener | Induced vasodilation of UtA, decreased Ca2+ levels | [104] |
Pinacidil | KATP opener | Reduced PE-dependent UtA vasoconstriction | [105] |
Glibenclamide | KATP blocker | Increased uterine vascular resistance, exacerbated the increase in uterine vascular resistance induced by AngII | [106] |
4-Aminopyridine | Kv blocker | Partially reduced ACh-induced vasodilation of UtA | [61] |
Increased myogenic tone and Ca2+ levels in radial UtA | [129] | ||
BDS-I | Kv3.4 blocker | Prevented proliferation in UtA smooth muscle cells | [131] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bresnitz, W.; Lorca, R.A. Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. Int. J. Mol. Sci. 2022, 23, 9446. https://doi.org/10.3390/ijms23169446
Bresnitz W, Lorca RA. Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. International Journal of Molecular Sciences. 2022; 23(16):9446. https://doi.org/10.3390/ijms23169446
Chicago/Turabian StyleBresnitz, Wyanet, and Ramón A. Lorca. 2022. "Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies" International Journal of Molecular Sciences 23, no. 16: 9446. https://doi.org/10.3390/ijms23169446
APA StyleBresnitz, W., & Lorca, R. A. (2022). Potassium Channels in the Uterine Vasculature: Role in Healthy and Complicated Pregnancies. International Journal of Molecular Sciences, 23(16), 9446. https://doi.org/10.3390/ijms23169446