Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”
Abstract
:1. Introduction
2. Results
2.1. Acquisition and Population Dymatic of CLasMV1 and CLas in Psyllid
2.2. Acquisition and Population Dymatic of CLasMV1 and CLas in Dodder
2.3. Quantitative Distribution of CLasMV1 Phage in CLas-Infected Citrus Branch
2.4. Genome-Wide Transcriptome Analyses of CLasMV1 Phage and CLas in Leaf Midribs and Fruit Pith
3. Discussion
4. Materials and Methods
4.1. Quantification Analyses of CLas and CLasMV1 Phage
4.2. Psyllid and Dodder Acquisition Assay
4.3. Distribution Analyses of CLasMV1 Phage in CLas-Infected Citrus Branches
4.4. Transcriptome Analyses of CLas and CLasMV1 Phage by Dual RNA-Seq
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hall, D.G.; Richardson, M.L.; Ammar, E.D.; Halbert, S.E. Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), vector of citrus huanglongbing disease. Entomol. Exp. Appl. 2013, 146, 207–223. [Google Scholar] [CrossRef]
- Garnier, M. Transmission of the organism associated with citrus greening disease from sweet orange to periwinkle by dodder. Phytopathology 1983, 73, 1358–1363. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, J.C.; Deng, X.L. Historical perspectives, management, and current research of citrus HLB in Guangdong Province of China, where the disease has been endemic for over a hundred years. Phytopathology 2018, 108, 1224–1236. [Google Scholar] [CrossRef]
- Fang, F.; Guo, H.Y.; Zhao, A.M.; Li, T.; Liao, H.H.; Deng, X.L.; Xu, M.R.; Zheng, Z. A significantly high abundance of “Candidatus Liberibacter asiaticus” in citrus fruit pith: In planta transcriptome and anatomical analyses. Front. Microbiol. 2021, 12, 1412. [Google Scholar] [CrossRef]
- Tatineni, S.; Sagaram, U.S.; Gowda, S.; Robertson, C.J.; Dawson, W.O.; Iwanami, T.; Wang, N. In planta distribution of ‘Candidatus Liberibacter asiaticus’ as revealed by polymerase chain reaction (PCR) and real-time PCR. Phytopathology 2008, 98, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Levy, L.; Hartung, J.S. Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 2009, 99, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Flores-Cruz, Z.; Zhou, L.J.; Kang, B.H.; Fleites, L.A.; Gooch, M.D.; Wulff, N.A.; Davis, M.J.; Duan, Y.P.; Gabriel, D.W. “Ca. Liberibacter asiaticus” carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. Mol. Plant Microbe Interact 2011, 24, 458–468. [Google Scholar] [CrossRef]
- Zheng, Z.; Bao, M.L.; Wu, F.N.; Van, H.C.; Chen, J.C.; Deng, X.L. A type 3 prophage of ‘Candidatus Liberibacter asiaticus’ carrying a restriction-modification system. Phytopathology 2018, 108, 454–461. [Google Scholar] [CrossRef]
- Dominguez-Mirazo, M.; Jin, R.; Weitz, J.S. Functional and comparative genomic analysis of integrated prophage-like sequences in “Candidatus Liberibacter asiaticus”. mSphere 2019, 4, e00409-19. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.Y.; Bao, M.L.; Li, T.; Fang, F.; Zheng, Y.Q.; Liu, Y.X.; Xu, M.R.; Chen, J.C.; Deng, X.L.; et al. A novel Microviridae phage (CLasMV1) from “Candidatus Liberibacter asiaticus”. Front. Microbiol. 2021, 12, 754245. [Google Scholar] [CrossRef]
- Cui, X.J.; Liu, K.H.; Atta, S.; Zeng, C.H.; Zhou, C.Y.; Wang, X.F. Two unique prophages of “Candidatus Liberibacter asiaticus” strains from Pakistan. Phytopathology 2020, 111, 784–788. [Google Scholar] [CrossRef]
- Fleites, L.A.; Jain, M.; Zhang, S.J.; Gabriel, D.W. “Candidatus Liberibacter asiaticus” prophage late genes may limit host range and culturability. Appl. Environ. Microbiol. 2014, 80, 6023–6030. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Fleites, L.A.; Gabriel, D.W. Prophage encoded peroxidase in “Candidatus Liberibacter asiaticus” is a secreted effector that suppresses plant defenses. Mol. Plant Microbe Interact 2015, 28, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Bao, M.L.; Wu, F.N.; Chen, J.C.; Deng, X.L. Predominance of single prophage carrying a CRISPR/cas System in “Candidatus Liberibacter asiaticus” strains in southern China. PLoS ONE 2016, 11, e0146422. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, F.N.; Kumagai, L.B.; Polek, M.; Deng, X.L.; Chen, J.C. Two “Candidatus Liberibacter asiaticus” strains recently found in California harbor different prophages. Phytopathology 2017, 107, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Rao, M.J.; Deng, X.; Pandey, S.S.; Hendrich, C.; Ding, F.; Wang, N.; Xu, Q. Molecular signatures between citrus and Candidatus Liberibacter asiaticus. PLoS Pathog. 2021, 17, e1010071. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.Y.; Zeng, C.H.; Zhou, C.Y.; Wang, X.F. A prophage-encoded nonclassical secretory protein of “Candidatus Liberibacter asiaticus” induces a strong immune response in Nicotiana benthamiana and citrus. Mol. Plant Pathol. 2022, 23, 1022–1034. [Google Scholar] [CrossRef]
- Hao, G.X.; Ammar, D.; Duan, Y.P.; Stover, E. Transgenic citrus plants expressing a ‘Candidatus Liberibacter asiaticus’ prophage protein LasP235 display Huanglongbing-like symptoms. Agri Gene 2019, 12, 100085. [Google Scholar] [CrossRef]
- Jain, M.; Fleites, L.A.; Gabriel, D.W. A small Wolbachia protein directly represses phage lytic cycle genes in “Candidatus Li-beribacter asiaticus” within psyllids. mSphere 2017, 2, e00171-17. [Google Scholar] [CrossRef]
- Vogel, A.; Schwacke, R.; Denton, A.K.; Usadel, B.; Hollmann, J.; Fischer, K.; Bolger, A.; Schmidt, M.H.; Bolger, M.E.; Gundlach, H.; et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 2018, 9, 2515. [Google Scholar] [CrossRef] [Green Version]
- Garzo, E.; Bonani, J.P.; Lopes, J.R.S.; Fereres, A. Morphological description of the mouthparts of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Arthropod Struct. Dev. 2012, 41, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Salmond, G.P.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Krupovic, M.; Forterre, P. Microviridae goes temperate: Microvirus-related proviruses reside in the genomes of Bacteroidetes. PLoS ONE 2011, 6, e19893. [Google Scholar]
- Székely, A.J.; Breitbart, M. Single-stranded DNA phages: From early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol. Lett. 2016, 363, fnw027. [Google Scholar] [CrossRef]
- Roychoudhury, P.; Shrestha, N.; Wiss, V.R.; Krone, S.M. Fitness benefits of low infectivity in a spatially structured population of bacteriophages. Proc. Biol. Sci. 2013, 281, 20132563. [Google Scholar] [CrossRef]
- Aliashkevich, A.; Cava, F. LD-transpeptidases: The great unknown among the peptidoglycan cross-linkers. FEBS J. 2021, 289, 4718–4730. [Google Scholar] [CrossRef]
- Pagliai, F.A.; Gardner, C.L.; Bojilova, L.; Sarnegrim, A.; Tamayo, C.; Potts, A.H.; Teplitski, M.; Folimonova, S.Y.; Gonzalez, C.F.; Lorca, G.L. The transcriptional activator LdtR from ‘Candidatus Liberibacter asiaticus’ mediates osmotic stress tolerance. PLoS Pathog. 2014, 10, e1004101. [Google Scholar] [CrossRef]
- Coyle, J.F.; Pagliai, F.A.; Zhang, D.; Lorca, G.L.; Gonzalez, C.F. Purification and partial characterization of LdtP, a cell envelope modifying enzyme in Liberibacter asiaticus. BMC Microbiol. 2018, 18, 201. [Google Scholar] [CrossRef]
- Morè, N.; Martorana, A.M.; Biboy, J.; Otten, C.; Winkle, M.; Serrano, C.; Montón Silva, A.; Atkinson, L.; Yau, H.; Breukink, E.; et al. Peptidoglycan remodeling enables Escherichia coli to survive severe outer membrane assembly defect. mBio 2019, 10, e02729-18. [Google Scholar] [CrossRef] [PubMed]
- Lovering, A.L.; Safadi, S.S.; Strynadka, N.C. Structural perspective of peptidoglycan biosynthesis and assembly. Annu. Rev. Biochem. 2012, 81, 451–478. [Google Scholar] [CrossRef]
- Li, X.; Gerlach, D.; Du, X.; Larsen, J.; Stegger, M.; Kühner, P.; Peschel, A.; Xia, G.; Winstel, V. An accessory wall teichoic acid glycosyltransferase protects Staphylococcus aureus from the lytic activity of Podoviridae. Sci. Rep. 2015, 5, 17219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, G.G.; Murray, N.E. Restriction and modification systems. Annu. Rev. Genet. 1991, 25, 585–627. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.E. Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 2000, 64, 412–434. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.J. Restriction endonucleases: Classification, properties, and applications. Mol. Biotechnol. 2003, 23, 225–243. [Google Scholar] [CrossRef]
- Chaturongakul, S.; Ounjai, P. Phage-host interplay: Examples from tailed phages and Gram-negative bacterial pathogens. Front. Microbiol. 2014, 5, 442. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Peters, D.L.; Dennis, J.J. Identification and characterization of type IV pili as the cellular receptor of broad host range Stenotrophomonas maltophilia bacteriophages DLP1 and DLP2. Viruses 2018, 10, 338. [Google Scholar] [CrossRef]
- Choi, Y.; Shin, H.; Lee, J.H.; Ryu, S. Identification and characterization of a novel flagellum-dependent Salmonella-infecting bacteriophage, iEPS5. Appl. Environ. Microbiol. 2013, 79, 4829–4837. [Google Scholar] [CrossRef]
- Marti, R.; Zurfluh, K.; Hagens, S.; Pianezzi, J.; Klumpp, J.; Loessner, M.J. Long tail fibres of the novel broad-host-range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol. Microbiol. 2013, 87, 818–834. [Google Scholar] [CrossRef]
- Shin, H.; Lee, J.H.; Kim, H.; Choi, Y.; Heu, S.; Ryu, S. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS ONE 2012, 7, e43392. [Google Scholar] [CrossRef]
- Beckwith, J. The Sec-dependent pathway. Res. Microbiol. 2013, 164, 497–504. [Google Scholar] [CrossRef]
- Rapoza, M.P.; Webster, R.E. The filamentous bacteriophage assembly proteins require the bacterial SecA protein for correct localization to the membrane. J. Bacteriol. 1993, 175, 1856–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piya, D.; Lessor, L.; Koehler, B.; Stonecipher, A.; Cahill, J.; Gill, J.J. Genome-wide screens reveal Escherichia coli genes required for growth of T1-like phage LL5 and V5-like phage LL12. Sci. Rep. 2020, 10, 8058. [Google Scholar] [CrossRef]
- Guerrero-Ferreira, R.C.; Viollier, P.H.; Ely, B.; Poindexter, J.S.; Georgieva, M.; Jensen, G.J.; Wright, E.R. Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 2011, 108, 9963–9968. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.L.; Zheng, Z.; Sun, X.A.; Chen, J.C.; Deng, X.L. Enhancing PCR capacity to detect ‘Candidatus Liberibacter asiaticus’ utilizing whole genome sequence information. Plant Dis. 2020, 104, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, L.; Deng, Y.S.; Deng, X.L.; Zheng, Z. Establishment of a Cuscuta campestris-mediated enrichment system for genomic and transcriptomic analyses of ‘Candidatus Liberibacter asiaticus’. Microb. Biotechnol. 2021, 14, 737–751. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
Plant ID | Ct Value (Plant) | Copy Number of CLasMV1 Phage per CLas Cell | No. of Psyllids | Copy Number of CLasMV1 per CLas Cell * | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CLas | ClasMV1 | Feeding Psyllid | CLas-Positive | CLasMV1-Positive | <1 | ≈1 | >1 | Range | ||
CT1 | 21.55 | 18.56 | 23.8 | 10 | 10 | 2 | 0 | 1 | 1 | 0.98~2.26 |
CT2 | 21.37 | 17.09 | 58.2 | 10 | 10 | 2 | 0 | 2 | 0 | 0.98~1.06 |
CT3 | 23.74 | 25.05 | 1.21 | 10 | 10 | 5 | 0 | 1 | 4 | 1.04~4.77 |
CT4 | 21.58 | 20.92 | 4.74 | 10 | 10 | 4 | 0 | 0 | 4 | 1.77~2.70 |
Total | - | - | - | 40 | 40 | 13 | 0 | 4 | 9 | - |
Group | No. | Sample ID | CLas (Ct Value) | CLasMV1 Phage (Ct Value) | Copy Number of CLasMV1 per CLas Cell | ||||
---|---|---|---|---|---|---|---|---|---|
Citrus | Dodder | Citrus | Dodder | Citrus | Dodder | Ratio (Dodder/Citrus) | |||
CLas-enriched dodder group | 1 | C912 | 21.01 | 19.47 | 17.88 | 17.07 | 26.33 | 15.83 | 0.60 |
2 | C94 | 21.98 | 19.04 | 17.25 | 13.31 | 80.01 | 158.58 | 1.98 | |
3 | TSZ63 | 18.35 | 15.68 | 15.92 | 11.55 | 16.18 | 52.66 | 3.26 | |
4 | TSZ51 | 21.07 | 17.83 | 21.75 | 17.52 | 1.88 | 3.73 | 1.98 | |
5 | TSZ22 | 20.45 | 16.97 | 17.99 | 13.52 | 16.58 | 32.64 | 1.97 | |
6 | R10 | 21.06 | 18.92 | 26.13 | 23.28 | 0.09 | 0.15 | 1.64 | |
(Avg.) | - | 20.66 | 17.99 | 19.49 | 16.04 | 23.51 | 43.93 | 1.91 | |
CLas-unenriched dodder group | 7 | KS21 | 18.27 | 20.72 | 19.16 | 21.04 | 1.62 | 2.40 | 1.48 |
8 | KS2 | 18.45 | 24.85 | 17.28 | 24.93 | 6.75 | 2.83 | 0.42 | |
9 | HZ1 | 18.15 | 20.71 | 24.08 | 24.56 | 0.05 | 0.21 | 4.26 | |
10 | HZ3 | 19.89 | 23.54 | 16.45 | 20.47 | 32.63 | 25.18 | 0.77 | |
11 | HZ7 | 20.25 | 24.07 | 17.15 | 21.95 | 25.81 | 13.07 | 0.51 | |
12 | HZ9 | 19.41 | 23.06 | 16.97 | 19.86 | 16.19 | 27.60 | 1.71 | |
13 | CH14 | 19.35 | 24.45 | 18.63 | 24.28 | 4.94 | 3.37 | 0.68 | |
14 | CH2 | 19.39 | 22.52 | 18.95 | 22.20 | 4.04 | 3.77 | 0.93 | |
15 | TSZ84 | 20.88 | 26.43 | 21.17 | 25.09 | 2.45 | 7.61 | 3.10 | |
16 | TSZ72 | 21.13 | 21.30 | 20.07 | 19.65 | 6.27 | 9.42 | 1.50 | |
17 | TSZ74 | 21.10 | 25.11 | 21.34 | 23.46 | 2.53 | 9.44 | 3.73 | |
18 | TSZ81 | 22.77 | 26.19 | 23.54 | 25.15 | 1.76 | 6.19 | 3.52 | |
19 | TSZ62 | 20.77 | 25.95 | 21.00 | 25.10 | 2.55 | 5.38 | 2.11 | |
20 | TSZ23 | 20.44 | 23.87 | 18.59 | 22.50 | 10.81 | 7.77 | 0.72 | |
(Avg.) | - | 20.02 | 23.77 | 19.60 | 22.87 | 8.46 | 8.87 | 1.82 | |
Total | (Avg.) | - | - | - | - | - | 12.97 | 19.39 | - |
Tissue Type | Sample ID | Ct Value * | Copy Number of CLasMV1 Phage Per CLas Cell | Clean Reads * | CLas Reads * | CLasMV1 Reads * | |
---|---|---|---|---|---|---|---|
CLas | CLasMV1 | ||||||
Fruit pith | F1 | 18.32 | 11.50 | 338.97 | 126,816,860 | 272,423 | 16,474 (6.05%) |
F2 | 18.86 | 11.94 | 363.30 | 155,302,372 | 344,849 | 20,682 (6.00%) | |
F3 | 19.46 | 12.63 | 341.32 | 98,738,248 | 229,076 | 13,673 (5.97%) | |
(Avg./Total) | 18.88 ± 0.33 | 12.02 ± 0.33 | 347.86 ± 7.75 | 380,857,480 | 846,348 | 50,829 (6.01%) | |
Leaf midribs | L1 | 26.48 | 26.16 | 3.75 | 135,312,504 | 22,235 | 125 (0.56%) |
L2 | 25.86 | 25.33 | 4.33 | 134,505,318 | 22,368 | 106 (0.47%) | |
L3 | 26.51 | 25.94 | 4.45 | 138,098,642 | 22,751 | 135 (0.59%) | |
(Avg./Total) | 26.28 ± 0.21 | 25.81 ± 0.25 | 4.18 ± 0.22 | 407,916,464 | 67,354 | 366 (0.54%) |
No. | Gene Locus Tag | Annotation | Gene Length (bp) | TPM * | Log2 Fold Change | FDR * | |
---|---|---|---|---|---|---|---|
Fruit Pith | Leaf midribs | ||||||
1 | GE519_gp01 | Hypothetical protein | 486 | 14,892 | 1468 | 3.20 | 0.000 |
2 | GE519_gp02 | Hypothetical protein | 282 | 11,435 | 849 | 3.01 | 0.022 |
3 | GE519_gp03 | Hypothetical protein | 327 | 4579 | 674 | 2.02 | 0.049 |
4 | GE519_gp04 | Hypothetical protein | 483 | 17,911 | 2037 | 3.02 | 0.013 |
5 | GE519_gp05 | Hypothetical protein | 2655 | 719 | 12 | 3.74 | 0.000 |
6 | GE519_gp06 | Replication initiation protein | 1218 | 886 | 18 | 2.71 | 0.049 |
7 | GE519_gp07 | Hypothetical protein | 675 | 6120 | 97 | 4.16 | 0.000 |
8 | GE519_gp08 | Major capsid protein | 1428 | 9880 | 1145 | 3.17 | 0.000 |
Avg. | - | - | - | 8303 | 787 | 3.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Fang, F.; Li, Y.; Zhang, L.; Wu, J.; Li, T.; Zheng, Y.; Xu, Q.; Fan, S.; Chen, J.; et al. Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”. Int. J. Mol. Sci. 2022, 23, 10024. https://doi.org/10.3390/ijms231710024
Wang C, Fang F, Li Y, Zhang L, Wu J, Li T, Zheng Y, Xu Q, Fan S, Chen J, et al. Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”. International Journal of Molecular Sciences. 2022; 23(17):10024. https://doi.org/10.3390/ijms231710024
Chicago/Turabian StyleWang, Cheng, Fang Fang, Yun Li, Ling Zhang, Jinghua Wu, Tao Li, Yongqin Zheng, Qian Xu, Shuting Fan, Jianchi Chen, and et al. 2022. "Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”" International Journal of Molecular Sciences 23, no. 17: 10024. https://doi.org/10.3390/ijms231710024
APA StyleWang, C., Fang, F., Li, Y., Zhang, L., Wu, J., Li, T., Zheng, Y., Xu, Q., Fan, S., Chen, J., Deng, X., & Zheng, Z. (2022). Biological Features and In Planta Transcriptomic Analyses of a Microviridae Phage (CLasMV1) in “Candidatus Liberibacter asiaticus”. International Journal of Molecular Sciences, 23(17), 10024. https://doi.org/10.3390/ijms231710024