Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis
Abstract
:1. Introduction
2. Results
2.1. In Silico Analysis of SPK1 and Its Variants
2.2. Recombinant NUC Were Secreted as Enzymatically Active Products in All Recombinants
2.3. Analysis of Secretion Efficiency and Yield of NUC by SPK1 Variants Showed Improved Secretion
3. Discussion
4. Materials and Methods
4.1. In Silico Characterization and Design of Site-Directed Mutation of Signal Peptide
4.2. Bacterial Strains and Plasmids
4.3. Synthesis and Amplification of Signal Peptides and Reporter Gene
4.4. Construction of SP-NUC Secretory Cassettes
4.5. Cloning and Transformation into L. lactis Host
4.6. Expression and Secretion Condition of Recombinants L. lactis
4.7. Characterization of Protein Products by SDS Page and Western Blotting
4.8. Detection of Extracellular Proteins by Enzymatic Activity Plate Assay
4.9. Quantification of Secretion Efficiency and Yield by Fluorescence Resonance Energy Transfer (FRET) Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pohl, S.; Harwood, C.R. Heterologous protein secretion by Bacillus species. From the cradle to the grave. Adv. Appl. Microbiol. 2010, 73, 1–25. [Google Scholar] [PubMed]
- Song, A.A.-L.; In LL, A.; Lim SH, E.; Rahim, R.A. A review on Lactococcus lactis: From food to factory. Microb. Cell Factories 2017, 16, 55. [Google Scholar] [CrossRef] [PubMed]
- Le Loir Yves Azevedo, V.; Oliveira, S.C.; Freitas, D.A.; Miyoshi, A.; Bermúdez-Humarán, L.G.; Nouaille, S.; Ribeiro, L.A.; Leclercq, S.; Gabriel, J.E.; Guimaraes, V.D.; et al. Protein secretion in Lactococcus lactis: An efficient way to increase the overall heterologous protein production. Microb. Cell Factories 2005, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Gao, Z.; Zhang, Y.; Pan, L. Lactic acid bacteria as mucosal delivery vehicles: A realistic therapeutic option. Appl. Microbiol. Biotechnol. 2016, 100, 5691–5701. [Google Scholar] [CrossRef]
- Baradaran, A.; Sieo, C.C.; Foo, H.L.; Illias, R.M.; Yusoff, K.; Rahim, R.A. Cloning and in silico characterization of two signal peptides from Pediococcus pentosaceus and their function for the secretion of heterologous protein in Lactococcus lactis. Biotechnol. Lett. 2013, 35, 233–238. [Google Scholar] [CrossRef]
- Fernandez, A.; Horn, N.; Wegmann, U.; Nicoletti, C.; Gasson, M.J.; Narbad, A. Enhanced secretion of biologically active murine interleukin-12 by Lactococcus lactis. Appl. Environ. Microbiol. 2008, 75, 869–871. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhong, J.; Liang, X. Improvement of human interferon alpha secretion by Lactococcus lactis. Biotechnol. Lett. 2010, 32, 1271–1277. [Google Scholar] [CrossRef]
- Westers, L.; Westers, H.; Quax, W.J. Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 2004, 1694, 299–310. [Google Scholar] [CrossRef]
- Freudl, R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Factories 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Ng, D.T.W.; Sarkar, C.A. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis. Appl. Environ. Microbiol. 2013, 79, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Ravn, P.; Arnau, J.; Madsen, S.M.; Vrang, A.; Israelsen, H. The development of TnNuc and its use for the isolation of novel secretion signals in Lactococcus lactis. Gene 2000, 242, 347–356. [Google Scholar] [CrossRef]
- Morello, E.; Bermúdez-Humarán, L.G.; Llull, D.; Solé, V.; Miraglio, N.; Langella, P.; Poquet, I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J. Mol. Microbiol. Biotechnol. 2008, 14, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Ravn, P.; Arnau, J.; Madsen, S.M.; Vrang, A.; Israelsen, H. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 2003, 149, 2193–2201. [Google Scholar] [CrossRef]
- Subramaniam, M.; Baradaran, A.; Rosli, M.I.; Rosfarizan, M.; Khatijah, Y.; Raha, A.R. Effect of signal peptides on the secretion of β-cyclodextrin glucanotransferase in Lactococcus lactis NZ9000. J. Mol. Microbiol. Biotechnol. 2013, 22, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Koko, I.; Song AA, L.; Masarudin, M.J.; Abdul Rahim, R. Engineering integrative vectors based on phage site-specific recombination mechanism for Lactococcus lactis. BMC Biotechnol. 2019, 19, 82. [Google Scholar] [CrossRef]
- Roslan, A.M.; Mustafa Kamil, A.; Chandran, C.; Song AA, L.; Yusoff, K.; Abdul Rahim, R. Secretion of recombinant xylanase in Lactococcus lactis using signal peptides Usp45 and Spk1. Biotechnol. Lett. 2020, 42, 1727–1733. [Google Scholar] [CrossRef]
- Hu, Y.; Meng, J.; Shi, C.; Hervin, K.; Fratamico, P.M.; Shi, X. Characterization and comparative analysis of a second thermonuclease from Staphylococcus aureus. Microbiol. Res. 2013, 168, 174–182. [Google Scholar] [CrossRef]
- Le Loir, Y.; Gruss, A.; Ehrlich, S.D.; Langella, P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 1998, 180, 1895–1903. [Google Scholar] [CrossRef]
- Choo, K.H.; Ranganathan, S. Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinform. 2008, 9, S15. [Google Scholar] [CrossRef]
- Poquet, I.; Saint, V.; Seznec, E.; Simoes, N.; Bolotin, A.; Gruss, A. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol. Microbiol. 2000, 35, 1042–1051. [Google Scholar] [CrossRef]
- Kiedrowski, M.R.; Kavanaugh, J.S.; Malone, C.L.; Mootz, J.M.; Voyich, J.M.; Smeltzer, M.S.; Bayles, K.W.; Horswill, A.R. Nuclease modulates biofilm formation in community-associated methicillin-resistant Staphylococcus aureus. PLoS ONE 2011, 6, e26714. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H. Predicting secretory proteins with SignalP. Methods Mol. Biol. 2017, 1611, 59–73. [Google Scholar] [PubMed]
- Peng, C.; Shi, C.; Cao, X.; Li, Y.; Liu, F.; Lu, F. Factors influencing recombinant protein secretion efficiency in Gram-positive bacteria: Signal peptide and beyond. Front. Bioeng. Biotechnol. 2019, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- von Heijne, G. The signal peptide. J. Membr. Biol. 1990, 115, 195–201. [Google Scholar] [CrossRef]
- von Heijne, G. Net N-C charge imbalance may be important for signal sequence function in bacteria. J. Mol. Biol. 1986, 192, 287–290. [Google Scholar] [CrossRef]
- Cuatrecasas, P.; Ftjchs, S.; Anfinsen, C.B. Catalytic properties and specificity of Staphylococcus aureus of the extracellular nuclease. J. Biol. Chem. 1967, 242, 1541–1547. [Google Scholar] [CrossRef]
- van Roosmalen, M.L.; Geukens, N.; Jongbloed JD, H.; Tjalsma, H.; Dubois, J.-Y.F.; Bron, S.; van Dijl, J.M.; Anné, J. Type I signal peptidases of Gram-positive bacteria. Biochim. Biophys. Acta 2004, 1694, 279–297. [Google Scholar] [CrossRef]
- Tjalsma Harold Antelmann, H.; Jongbloed JD, H.; Braun, P.G.; Darmon, E.; Dorenbos, R.; Dubois, J.-Y.F.; Westers, H.; Zanen, G.; Quax, W.J.; Kuipers, O.P.; et al. Proteomics of protein secretion by Bacillus subtilis: Separating the secret of the secretome. Microbiol. Mol. Biol. Rev. 2004, 68, 207–233. [Google Scholar] [CrossRef]
- Auclair, S.M.; Bhanu, M.K.; Kendall, D.A. Signal peptidase I: Cleaving the way to mature proteins. Protein Sci. 2012, 21, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.M.; Kendall, D.A. Polymeric sequences reveal a functional interrelationship between hydrophobicity and length of signal peptides. J. Biol. Chem. 1990, 265, 2873–2880. [Google Scholar] [CrossRef]
- Takimura, Y.; Kato, M.; Ohta, T.; Yamagata, H.; Udaka, S. Secretion of human interleukin-2 in biologically active form by Bacillus brevis directly into culture medium. Biosci. Biotechnol. Biochem. 1997, 61, 1858–1861. [Google Scholar] [CrossRef] [PubMed]
- Tjalsma, H.; Bolhuis, A.; Jongbloed, J.D.; Bron, S.; van Dijl, J.M. Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 2000, 64, 515–547. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, H.; Ismail, A.; Abdul Rahim, R.; Low, K.O.; Md Illias, R. Enhanced secretion of cyclodextrin glucanotransferase (CGTase) by Lactococcus lactis using heterologous signal peptides and optimization of cultivation conditions. J. Biotechnol. 2019, 296, 22–31. [Google Scholar] [CrossRef]
- Jonet, M.A.; Mahadi, N.M.; Murad AM, A.; Rabu, A.; Bakar FD, A.; Rahim, R.A.; Low, K.O.; Illias, R.M. Optimization of a heterologous signal peptide by site-directed mutagenesis for improved secretion of recombinant proteins in Escherichia coli. J. Mol. Microbiol. Biotechnol. 2012, 22, 48–58. [Google Scholar] [CrossRef]
- Kajava, A.V.; Zolov, S.N.; Kalinin, A.E.; Nesmeyanova, M.A. The net charge of the first 18 residues of the mature sequence affects protein translocation across the cytoplasmic membrane of Gram-negative bacteria. J. Bacteriol. 2000, 182, 2163–2169. [Google Scholar] [CrossRef]
- Le Loir, Y.; Nouaille, S.; Commissaire, J.; Brétigny, L.; Gruss, A.; Langella, P. Signal Peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 2001, 67, 4119–4127. [Google Scholar] [CrossRef]
- Bendtsen, J.D.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Xiao, X.; Cheng, X.; Chen, G.; Mao, Q.; Chou, K.C. pLoc_bal-mGpos: Predict subcellular localization of Gram-positive bacterial proteins by quasi-balancing training dataset and PseAAC. Genomics 2019, 111, 886–892. [Google Scholar] [CrossRef]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef] [PubMed]
- Holo, H.; Nes, I.F. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 1989, 55, 3119–3123. [Google Scholar] [CrossRef] [PubMed]
- Koontz, L. TCA precipitation. Methods Enzymol. 2014, 541, 3–10. [Google Scholar] [PubMed]
Signal Peptide | Aa | SPase I Cleavage Position | SPase I Cleavage Site | D-Score | pI | Net Charge SP | First 10aa Charge MP | GRAVY Index | Aliphatic Index | Instability Index |
---|---|---|---|---|---|---|---|---|---|---|
USP45 * | 27 | 27–28 | VYA-GT | 0.700 | 10.0 | +3 | −1 | 1.174 | 141.11 | 50.14 |
SPK1 * | 23 | 22–23 | VHA-GT | 0.781 | 10.0 | +2 | −1 | 1.552 | 165.22 | 16.09 |
SPKM20 | 23 | 23–24 | VHA-GT | 0.673 | 10.0 | +2 | −1 | 1.126 | 131.30 | 7.71 |
SPKM6 | 23 | 23–24 | VHA-GT | 0.781 | 10.0 | +2 | −1 | 1.704 | 165.22 | 16.09 |
SPKM9 | 26 | 25–26 | VHA-GT | 0.839 | 10.0 | +2 | −1 | 1.188 | 146.15 | 36.50 |
SPKM16 | 24 | 23–24 | VHA-GT | 0.840 | 10.0 | +2 | −1 | 1.562 | 162.50 | 15.83 |
SPKM17 | 25 | 25–26 | AHA-GT | 0.872 | 10.0 | +2 | −1 | 1.462 | 154.58 | 12.30 |
SPKM19 | 25 | 25–26 | AHA-AG | 0.893 | 10.0 | +2 | −1 | 1.462 | 154.58 | 12.30 |
SPKM22 | 26 | 26–27 | AHA-AG | 0.916 | 10.0 | +2 | −1 | 1.340 | 148.40 | 19.91 |
SPKM30 | 29 | 28–29 | AHA-AG | 0.917 | 10.6 | +5 | −1 | 0.779 | 132.50 | 18.85 |
SP | Amino acid sequence | |||||||||
N domain | H-domain | C-domain | ||||||||
USP45 * | MKK KII SA | I LMS TVI LSA AAP | LSG VYA | |||||||
SPK1 * | MKK | ILT LVF IFV ISI LT | ATN VHA | |||||||
SPKM20 | MKK | ILT LVF GFV ISG LT | ATN VHA | |||||||
SPKM6 | MKK | ILF LVF IFV ISI LT | ATN VHA | |||||||
SPKM9 | MKK | ILT LVF IFV ISI LT | ATN PPP VHA | |||||||
SPKM16 | MKK | ILT LVF IFV ISI LT | AATN VHA | |||||||
SPKM17 | MKK | ILT LVF IFV ISI LT | AATN AHA | |||||||
SPKM19 | MKK | ILT LVF IFV ISI LT | ATN AHAA | |||||||
SPKM22 | MKK | ILT LVF IFV ISI LT | APTN AHAA | |||||||
SPKM30 | MKK KKK | ILT LVF IFV ISI LT | APTN AHAA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alias, N.A.R.; Song, A.A.-L.; Alitheen, N.B.; Rahim, R.A.; Othman, S.S.; In, L.L.A. Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis. Int. J. Mol. Sci. 2022, 23, 10044. https://doi.org/10.3390/ijms231710044
Alias NAR, Song AA-L, Alitheen NB, Rahim RA, Othman SS, In LLA. Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis. International Journal of Molecular Sciences. 2022; 23(17):10044. https://doi.org/10.3390/ijms231710044
Chicago/Turabian StyleAlias, Nur Aqlili Riana, Adelene Ai-Lian Song, Noorjahan Banu Alitheen, Raha Abdul Rahim, Siti Sarah Othman, and Lionel Lian Aun In. 2022. "Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis" International Journal of Molecular Sciences 23, no. 17: 10044. https://doi.org/10.3390/ijms231710044
APA StyleAlias, N. A. R., Song, A. A. -L., Alitheen, N. B., Rahim, R. A., Othman, S. S., & In, L. L. A. (2022). Optimization of Signal Peptide via Site-Directed Mutagenesis for Enhanced Secretion of Heterologous Proteins in Lactococcus lactis. International Journal of Molecular Sciences, 23(17), 10044. https://doi.org/10.3390/ijms231710044