Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Methylorubrum extorquens AM1 for the Development of Bioelectrocatalytical Systems
Abstract
:1. Introduction
2. Results
2.1. Construction of the Expression Vector
2.2. Expression and Purification of the Recombinant MDH
2.3. Characterization of the Recombinant MDH
2.4. Biosensor Based on the Recombinant MDH
3. Discussion
4. Materials and Methods
4.1. Objects of the Study and Cultivation Conditions
4.2. Construction of Vector for Expression/Production of the Recombinant Protein
4.3. Conventional Methods
4.3.1. Polymerase Chain Reaction (PCR)
4.3.2. Treatment of DNA with Restriction Endonucleases
4.3.3. Ligation of DNA Fragments
4.3.4. Isolation of Plasmid DNA and Transformation of Competent Cells
4.3.5. Conjugative Plasmid Transfer
4.4. Isolation of Recombinant Methanol Dehydrogenase by Metal Chelate Affinity Chromatography
4.5. Methanol Dehydrogenase Activity Measurement
4.6. Electrophoresis in Polyacrylamide Gel
4.7. Protein Molecular Mass Determination
4.8. Electrochemical Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Pham, D.N.; Nguyen, A.D.; Lee, E.Y. Outlook on engineering methylotrophs for one-carbon-based industrial biotechnology. Chem. Eng. J. 2022, 449, 137769. [Google Scholar] [CrossRef]
- Chistoserdova, L.; Kalyuzhnaya, M.G. Current Trends in Methylotrophy. Trends Microbiol. 2018, 26, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Anthony, C. The Biochemistry of Methylotrophs; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
- Doronina, N.V.; Torgonskaya, M.L.; Fedorov, D.N.; Trotsenko, Y.A. Aerobic methylobacteria as promising objects of modern biotechnology (Review). Appl. Biochem. Microbiol. 2015, 51, 125–134. [Google Scholar] [CrossRef]
- Ochsner, A.M.; Sonntag, F.; Buchhaupt, M.; Schrader, J.; Vorholt, J.A. Methylobacterium extorquens: Methylotrophy and biotechnological applications. Appl. Microbiol. Biotechnol. 2015, 99, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Khmelenina, V.N.; But, S.Y.; Rozova, O.N.; Trotsenko, Y.A. Metabolic Features of Aerobic Methanotrophs: News and Views. Curr. Issues Mol. Biol. 2019, 33, 85–100. [Google Scholar] [CrossRef]
- Bosch, G.; Skovran, E.; Xia, Q.; Wang, T.; Taub, F.; Miller, J.A.; Lidstrom, M.E.; Hackett, M. Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 2008, 8, 3494–3505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yuan, X.J.; Zhang, C.; Zhu, L.P.; Mo, X.H.; Chen, W.J.; Yang, S. Bioconversion of methanol into valueadded chemicals in native and synthetic methylotrophs. Curr. Issues Mol. Biol. 2019, 33, 225–236. [Google Scholar] [CrossRef]
- Le, T.K.; Lee, Y.J.; Han, G.H.; Yeom, S.J. Methanol dehydrogenases as a key biocatalysts for synthetic methylotrophy. Front. Bioeng. Biotechnol. 2021, 428, 2–9. [Google Scholar] [CrossRef]
- Le, T.K.; Ju, S.B.; Lee, H.W.; Lee, J.Y.; Oh, S.H.; Kwon, K.K.; Sung, B.H.; Lee, S.G.; Yeom, S.J. Biosensor-based directed evolution of methanol dehydrogenase from Lysinibacillus xylanilyticus. Int. J. Mol. Sci. 2021, 22, 1471. [Google Scholar] [CrossRef] [PubMed]
- Anthony, C. Methanol dehydrogenase, a PQQ-containing quinoprotein dehydrogenase. Sub-Cell. Cell. Biochem. 2000, 35, 73–117. [Google Scholar] [CrossRef]
- Gvozdev, A.R.; Tukhvatullin, I.A.; Gvozdev, R.I. Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases. Biochemistry 2012, 77, 843–856. [Google Scholar] [CrossRef]
- Keltjens, J.T.; Pol, A.; Reimann, J.; Op den Camp, H.J.M. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference. Appl. Microbiol. Microbiol. Microbiol. Biotechnol. 2014, 98, 6163–6183. [Google Scholar] [CrossRef] [PubMed]
- Firsova, Y.E.; Torgonskaya, M.L.; Trotsenko, Y.A. Functionality of the xoxF gene in Methylobacterium dichloromethanicum DM4. Microbiology 2015, 84, 796–803. [Google Scholar] [CrossRef]
- Yanpirat, P.; Nakatsuji, Y.; Hiraga, S.; Fujitani, Y.; Izumi, T.; Masuda, S.; Mitsui, R.; Nakagawa, T.; Tani, A. Lanthanide-dependent methanol and formaldehyde oxidation in Methylobacterium aquaticum strain 22A. Microorganisms 2020, 8, 822. [Google Scholar] [CrossRef]
- Vu, H.N.; Subuyuj, G.A.; Vijayakumar, S.; Good, N.M.; Martinez-Gomez, N.C.; Skovran, E.; Metcalf, W.W. Lanthanide-dependent regulation of methanol oxidation systems in Methylobacterium extorquens AM1 and their contribution to methanol growth. J. Bacteriol. 2016, 198, 1250–1259. [Google Scholar] [CrossRef]
- Good, N.M.; Fellner, M.; Demirer, K.; Hu, J.; Hausinger, R.P.; Martinez-Gomez, N.C. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. J. Biol. Chem. 2020, 295, 8272–8284. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.S.; Rajpurohit, Y.S.; Khairnar, N.P. Pyrroloquinoline-quinone and its versatile roles in biological processes. J. Biosci. 2012, 37, 313–325. [Google Scholar] [CrossRef]
- Ikeda, T.; Kano, K. Bioelectrocatalysis-based application of quinoproteins and quinoprotein-containing bacterial cells in biosensors and biofuel cells. Biochim. Biophys Acta 2003, 1647, 121–126. [Google Scholar] [CrossRef]
- Williams, P.A.; Coates, L.; Mohammed, F.; Gill, R.; Erskine, P.T.; Coker, A.; Wood, S.P.; Anthony, C.; Cooper, J.B. The atomic resolution structure of methanol dehydrogenase from Methylobacterium extorquens. Acta Crystallographica. Sect. D Biol. Crystallogr. 2005, 61 Pt 1, 75–79. [Google Scholar] [CrossRef]
- Jahn, B.; Jonasson, N.S.W.; Hu, H.; Singer, H.; Pol, A.; Good, N.M.; den Camp, H.; Martinez-Gomez, N.C.; Daumann, L.J. Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster’s Blue in methanol dehydrogenase assays. J. Biol. Inorg. Chem. 2020, 25, 199–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, G.; Hill, H.A.O.; Aston, W.J.; John Higgins, I.; Turner, A.P.F. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzym. Microb. Technol. 1983, 5, 383–388. [Google Scholar] [CrossRef]
- Suye, S.-i.; Nakamura, Y.; Inuta, S.; Ikeda, T.; Senda, M. Mediated amperometric determination of ammonia with a methanol dehydrogenase from Pseudomonas sp. AM-1 immobilized carbon paste electrode. Biosens. Bioelectron. 1996, 11, 529–534. [Google Scholar] [CrossRef]
- Liu, Q.F.; Kirchhoff, J.R. Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor. J. Electroanal. Chem. 2007, 601, 125–131. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Beschastnyi, A.P.; Alferov, S.V.; Trotsenko Iu, A. Properties of modified amperometric biosensors based on methanol dehydrogenase and Methylobacterium nodulans cells. Prikl. Biokhim. Mikrobiol. 2013, 49, 613–618. [Google Scholar] [CrossRef]
- Kalimuthu, P.; Daumann, L.J.; Pol, A.; Op den Camp, H.J.M.; Bernhardt, P.V. Electrocatalysis of a Europium-Dependent Bacterial Methanol Dehydrogenase with Its Physiological Electron-Acceptor Cytochrome cGJ. Chemistry 2019, 25, 8760–8768. [Google Scholar] [CrossRef]
- Kadowaki, M.A.S.; Magri, S.; de Godoy, M.O.; Monclaro, A.V.; Zarattini, M.; Cannella, D. A fast and easy strategy for lytic polysaccharide monooxygenase-cleavable His6-Tag cloning, expression, and purification. Enzyme Microb. Technol. 2021, 143, 109704. [Google Scholar] [CrossRef] [PubMed]
- Hofer, M.; Bonsch, K.; Greiner-Stoffele, T.; Ballschmiter, M. Characterization and Engineering of a Novel Pyrroloquinoline Quinone Dependent Glucose Dehydrogenase from Sorangium cellulosum So ce56. Mol. Biotechnol. 2011, 47, 253–261. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, Y.; Groom, J.D.; Yu, Z.; Chistoserdova, L. Chapter Four—Expression, purification and properties of the enzymes involved in lanthanide-dependent alcohol oxidation: XoxF4, XoxF5, ExaF/PedH, and XoxG4. In Methods in Enzymology; Cotruvo, J.A., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 650, pp. 81–96. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Z.; Groom, J.; Cheng, J.-F.; Tarver, A.; Yoshikuni, Y.; Chistoserdova, L. Rare earth element alcohol dehydrogenases widely occur among globally distributed, numerically abundant and environmentally important microbes. ISME J. 2019, 13, 2005–2017. [Google Scholar] [CrossRef]
- Marx, C.J.; Lidstrom, M.E. Development of improved versatile broad-host-range vectors for use in methylotrophs and other Gram-negative bacteria. Microbiology 2001, 147 Pt 8, 2065–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuilleumier, S.; Chistoserdova, L.; Lee, M.C.; Bringel, F.; Lajus, A.; Zhou, Y.; Gourion, B.; Barbe, V.; Chang, J.; Cruveiller, S.; et al. Methylobacterium genome sequences: A reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS ONE 2009, 4, e5584. [Google Scholar] [CrossRef]
- Chistoserdova, L.; Chen, S.W.; Lapidus, A.; Lidstrom, M.E. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J. Bacteriol. 2003, 185, 2980–2987. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Biville, F.; Turlin, E.; Lee, E.; Ellermann, K.; Fan, W.H.; Ramamoorthi, R.; Springer, A.L.; Lidstrom, M.E. Isolation, phenotypic characterization, and complementation analysis of mutants of Methylobacterium extorquens AM1 unable to synthesize pyrroloquinoline quinone and sequences of pqqD, pqqG, and pqqC. J. Bacteriol. 1994, 176, 1746–1755. [Google Scholar] [CrossRef] [PubMed]
- Toyama, H.; Chistoserdova, L.; Lidstrom, M.E. Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 1997, 143 Pt 2, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Yoshida, T.; Watanabe, K.; Izumi, Y.; Mitsunaga, T. Cloning and analysis of methanol oxidation genes in the methylotroph Hyphomicrobium methylovorum GM2. FEMS Microbiol. Lett. 1997, 154, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.; Wu, B.; Shen, P. Overexpression of the methanol dehydrogenase gene mxaF in Methylobacterium sp. MB200 enhances L-serine production. Lett. Appl. Microbiol. 2015, 61, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.G.; Avezoux, A.; Dales, S.L.; Anthony, C. Reconstitution of the quinoprotein methanol dehydrogenase from inactive Ca(2+)-free enzyme with Ca2+, Sr2+ or Ba2+. Biochem. J. 1996, 319 Pt 3, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Espinosa, R.M. Heterologous and Homologous Expression of Proteins from Haloarchaea: Denitrification as Case of Study. Int. J. Mol. Sci. 2020, 21, 82. [Google Scholar] [CrossRef]
- Anthony, C.; Williams, P. The structure and mechanism of methanol dehydrogenase. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2003, 1647, 18–23. [Google Scholar] [CrossRef]
- Kim, H.G.; Han, G.H.; Kim, D.; Choi, J.S.; Kim, S.W. Comparative analysis of two types of methanol dehydrogenase from Methylophaga aminisulfidivorans MPT grown on methanol. J. Basic Microbiol. 2012, 52, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Hothi, P.; Sutcliffe, M.J.; Scrutton, N.S. Kinetic isotope effects and ligand binding in PQQ-dependent methanol dehydrogenase. Biochem. J. 2005, 388 Pt 1, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.; Voigt, C.; Wendlandt, K.-D.; Kleber, H.-P. Purification and properties of methanol dehydrogenase from Methylosinus sp. WI 14. J. Basic Microbiol. 1998, 38, 189–196. [Google Scholar] [CrossRef]
- Grosse, S.; Wendlandt, K.D.; Kleber, H.P. Purification and properties of methanol dehydrogenase from Methylocystis sp. GB 25. J. Basic Microbiol. 1997, 37, 269–279. [Google Scholar] [CrossRef]
- Frank, J.; Duine, J.A. Methanol Dehydrogenase from Hyphomicrobium-X. Method Enzymol. 1990, 188, 202–209. [Google Scholar]
- Richardson, I.W.; Anthony, C. Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion. Biochem. J. 1992, 287 Pt 3, 709–715. [Google Scholar] [CrossRef]
- Kuznetsova, T.A.; Beschastny, A.P.; Ponamoreva, O.N.; Trotsenko, Y.A. Purification and characterization of methanol dehydrogenase of Methylobacterium nodulans rhizosphere phytosymbionts. Appl. Biochem. Microbiol. 2012, 48, 546–551. [Google Scholar] [CrossRef]
- Anthony, C. The quinoprotein dehydrogenases for methanol and glucose. Arch. Biochem. Biophys. 2004, 428, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Kirchhoff, J.R.; Faehnle, C.R.; Viola, R.E.; Hudson, R.A. A rapid method for the purification of methanol dehydrogenase from Methylobacterium extorquens. Protein Expr. Purif. 2006, 46, 316–320. [Google Scholar] [CrossRef]
- Chang, A.K.; Lim, C.Y.; Kim, S.W.; You, H.J.; Hahm, K.S.; Yoon, S.M.; Park, J.K.; Lee, J.S. Purification and characterization of two forms of methanol dehydrogenases from a marine methylotroph. J. Basic Microbiol. 2002, 42, 238–245. [Google Scholar] [CrossRef]
- Martic, S.; Labib, M.; Shipman, P.O.; Kraatz, H.B. Ferrocene-peptido conjugates: From synthesis to sensory applications. Dalton Trans. 2011, 40, 7264–7290. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Khalilzadeh, M.A.; Tajik, S.; Safaei, M.; Zhang, K.; Jang, H.W.; Shokouhimehr, M. Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS Omega 2020, 5, 2049–2059. [Google Scholar] [CrossRef] [Green Version]
- Kurganov, B.I.; Lobanov, A.V.; Borisov, I.A.; Reshetilov, A.N. Criterion for Hill equation validity for description of biosensor calibration curves. Anal. Chim. Acta 2001, 427, 11–19. [Google Scholar] [CrossRef]
- Zhang, X.; Reddy, S.Y.; Bruice, T.C. Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase. Proc. Natl. Acad. Sci. USA 2007, 104, 745–749. [Google Scholar] [CrossRef]
- Alferov, V.A.; Zaitsev, M.G.; Ponomareva, O.N.; Kuznetsova, T.A.; Rogova, T.V.; Reshetilov, A.N. An Alcohol Oxidase-Based Electrochemical Sensor for the Rapid Determination of Lower Alcohols. J. Anal. Chem. 2011, 66, 1205–1211. [Google Scholar] [CrossRef]
- Gulce, H.; Gulce, A.; Kavanoz, M.; Coskun, H.; Yildiz, A. A new amperometric enzyme electrode for alcohol determination. Biosens Bioelectron 2002, 17, 517–521. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Sung, B.H.; Oh, S.-H.; Kwon, K.K.; Lee, H.; Kim, H.; Lee, D.-H.; Yeom, S.-J.; Lee, S.-G. C1 Compound biosensors: Des. functional study and applications. Int. J. Mol. Sci. 2019, 20, 2253. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Priefer, U.; Pühler, A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Bio/Technology 1983, 1, 784–791. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012; Volume 1–3. [Google Scholar]
- Skovran, E.; Palmer, A.D.; Rountree, A.M.; Good, N.M.; Lidstrom, M.E. XoxF is required for expression of methanol dehydrogenase in Methylobacterium extorquens AM1. J. Bacteriol. 2011, 193, 6032–6038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Purification Step | Specific Activity, Units/mg | Activity, Units/mL | Protein, mg/mL | Total Activity, Units | Total Protein, mg | Yield, % | Purification Degree |
---|---|---|---|---|---|---|---|
Supernatant | 0.54 | 1.04 | 1.93 | 2.60 | 4.82 | 100.0 | 1.0 |
MDH- His6-tag | 3.74 | 0.93 | 0.25 | 0.93 | 0.25 | 35.6 | 7.00 |
Temperature, °C | Incubation Time, min | |||
---|---|---|---|---|
20 | 30 | 45 | 60 | |
40 | 82.6 | 71.3 | 69.4 | 61.1 |
50 | 81.4 | 64.7 | 64.7 | 64.1 |
60 | 68.3 | 43.7 | 49.1 | 29.9 |
Buffer Solution, 0.1M | pH | Activity, % |
---|---|---|
Acetate-NaOH | 4 | 56.1 ± 0.6 |
Acetate-NaOH | 5 | 77 ± 3 |
KH2PO4-NaOH | 6 | 84 ± 2 |
KH2PO4-NaOH | 7 | 92 ± 3 |
Tris-HCl | 8 | 92 ± 2 |
Tris-HCl | 9 | 100 |
Glycine-NaOH | 10 | 93 ± 0.2 |
Na2HPO4-NaOH | 11 | 91 ± 0.1 |
Substrate | Apparent KM, mM | Vmax, U/mg Protein | Activity, % |
---|---|---|---|
Methanol | 0.36 ± 0.07 | 4.2 ± 0.2 | 100 |
Ethanol | 0.61 ± 0.06 | 2.9 ± 0.1 | 79 |
Butanol-1 | 1.9 ± 0.2 | 2.7 ± 0.1 | 71 |
Amyl alcohol | 1.4 ± 0.1 | 2.8 ± 0.1 | 67 |
Formaldehyde | n.a. | n.a. | 91 |
Stage of Recombinant MDH Purification | Time Required, Days |
---|---|
| 1 |
| 1 |
| |
| 1 |
| |
| 1 |
| 1 (plus shipping time in case of sequencing in other institutions) |
| 2 |
| 3 |
| 7 |
| 7 |
| 1 |
Total time, days: | 25 |
Strain or Plasmid | Specification | Reference |
---|---|---|
Escherichia coli | ||
S17-1 | thi pro recA hsdR [RP4-2Tc::Mu-Km::Tn7] Tpr Smr | [58] |
TOP10 | F– crAΔ(mrr + hsdRMS + mcrBC) ϕ80lacZΔM15ΔlacΧ74recA1araD139 Δ(ara + leu)7697 galU galK rpsL (Strr) endA1 nupG λ- | Invitrogen, Carlsbad, CA, USA |
Methylorubrum extorquens | ||
AM1 | Wild-type strain | |
pCM160::mxaF | Recombinant strains containing pCM160mxaF, Kmr plasmid | This work |
Plasmids | ||
pCM160 | Mobilizable vector for protein expression in M. extorquens under control of mxaF gene promoter, Kmr | [31] |
pCM160::mxaF | pCM160 containing PaeI/EcoRI-fragment with MxaF gene from M. extorquens AM1, Kmr | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaseva, T.; Fedorov, D.; Baklagina, S.; Ponamoreva, O.; Alferov, S.; Ekimova, G.; Abdullatypov, A.; Trubitsina, L.; Mustakhimov, I. Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Methylorubrum extorquens AM1 for the Development of Bioelectrocatalytical Systems. Int. J. Mol. Sci. 2022, 23, 10337. https://doi.org/10.3390/ijms231810337
Karaseva T, Fedorov D, Baklagina S, Ponamoreva O, Alferov S, Ekimova G, Abdullatypov A, Trubitsina L, Mustakhimov I. Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Methylorubrum extorquens AM1 for the Development of Bioelectrocatalytical Systems. International Journal of Molecular Sciences. 2022; 23(18):10337. https://doi.org/10.3390/ijms231810337
Chicago/Turabian StyleKaraseva, Tatiana, Dmitry Fedorov, Sophia Baklagina, Olga Ponamoreva, Sergey Alferov, Galina Ekimova, Azat Abdullatypov, Liubov Trubitsina, and Ildar Mustakhimov. 2022. "Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Methylorubrum extorquens AM1 for the Development of Bioelectrocatalytical Systems" International Journal of Molecular Sciences 23, no. 18: 10337. https://doi.org/10.3390/ijms231810337
APA StyleKaraseva, T., Fedorov, D., Baklagina, S., Ponamoreva, O., Alferov, S., Ekimova, G., Abdullatypov, A., Trubitsina, L., & Mustakhimov, I. (2022). Isolation and Characterization of Homologically Expressed Methanol Dehydrogenase from Methylorubrum extorquens AM1 for the Development of Bioelectrocatalytical Systems. International Journal of Molecular Sciences, 23(18), 10337. https://doi.org/10.3390/ijms231810337