Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline–Alkaline Stress on Rice Seedlings
Abstract
:1. Introduction
2. Results
2.1. Effects of Magnetized Water on Growth
2.2. Effects of Magnetized Water on Total Nitrogen, NO3−-Nitrogen, and NH4+-Nitrogen Concentration
2.3. Effects of Magnetized Water on Root System Architecture
2.4. Effects of Magnetized Water on the Expression of Genes Involved in Nitrogen Uptake
2.5. Effects of Magnetized Water on Total Nitrogen Content, Available Nitrogen Content, NO3−Nitrogen Content, and NH4+-Nitrogen Content
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Germination Treatments
4.2. Measurements of Plant Growth
4.3. Measurements of Chlorophyll (CHL) Concentration
4.4. Measurements of Photosynthetic Characteristics
4.5. Determination of Total Nitrogen Concentration, NO3−-Nitrogen Concentration, and NH4+-Nitrogen Concentration in Rice Plants
4.6. Determination of Total Nitrogen Content, Available Nitrogen Content, NO3−-Nitrogen Content, and NH4+-Nitrogen Content in the Soil
4.7. RNA Isolation and Real-Time RT-PCR
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Vinod, K.K.; Krishnan, S.G.; Babu, N.N.; Nagarajan, M.; Singh, A.K. Improving salt tolerance in rice: Looking beyond the conventional. In Salt Stress in Plants: Signalling Omics and Adaptations; Ahmad, P., Azooz, M.M., Prasad, M.N.V., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Li, Q.; Yang, A.; Zhang, W.-H. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J. Exp. Bot. 2016, 67, 6431–6444. [Google Scholar] [CrossRef]
- An, Y.; Yang, X.X.; Zhang, L.; Zhang, J.; Du, B.; Yao, L.; Li, X.T.; Guo, C. Alfalfa MsCBL4 enhances calcium metabolism but not sodium transport in transgenic tobacco under salt and saline–alkali stress. Plant Cell Rep. 2020, 39, 997–1011. [Google Scholar] [CrossRef]
- Fu, J.; Wang, Y.F.; Liu, Z.H.; Li, Z.T.; Yang, K.J. Trichoderma asperellum alleviates the effects of saline–alkaline stress on maize seedlings via the regulation of photosynthesis and nitrogen metabolism. Plant Growth Regul. 2018, 85, 363–374. [Google Scholar] [CrossRef]
- Shi, D.; Yin, S.; Yang, G.; Zhao, K. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Bot. Sin. 2002, 44, 537–540. [Google Scholar]
- Fang, S.; Hou, X.; Liang, X. Response mechanisms of plants under saline-alkali stress. Front. Plant Sci. 2021, 12, 667458. [Google Scholar] [CrossRef]
- Kaiwen, G.; Zisong, X.; Yuze, H.; Qi, S.; Yue, W.; Yanhui, C.; Jiechen, W.; Wei, L.; Huihui, Z. Effects of salt concentration, pH, and their interaction on plant growth, nutrient uptake, and photochemistry of alfalfa (Medicago sativa) leaves. Plant Signal Behav. 2020, 15, 1832373. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.L.; Zhang, R.X.; Yuan, H.Y.; Wang, M.M.; Yang, H.Y.; Ma, H.Y.; Liu, D.; Jiang, C.J.; Liang, Z.W. Root Damage under alkaline stress is associated with reactive oxygen species accumulation in rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 1580. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Amirinejad, A.A.; Sayyari, M.; Ghanbari, F.; Kordi, S. Salicylic acid improves salinity- alkalinity tolerance in pepper (Capsicum annuum L.). Adv. Agric. Technol. Plant Sci. 2017, 31, 157–163. [Google Scholar]
- Ye, T.; Wang, Y.; Feng, Y.Q.; Chan, Z. Physiological and metabolomic responses of bermudagrass (Cynodon dactylon) to alkali stress. Physiol. Plant 2021, 171, 22–33. [Google Scholar] [CrossRef]
- Soussi, M.; Lluch, C.; Ocaña, A. Comparative study of nitrogen fixation and carbon metabolism in two chick-pea (Cicer arietinum L.) cultivars under salt stress. J. Exp. Bot. 1999, 50, 1701–1708. [Google Scholar] [CrossRef]
- Wang, H.; Ahan, J.; Wu, Z.; Shi, D.; Liu, B.; Yang, C. Alteration of nitrogen metabolism in rice variety ‘Nipponbare’ induced by alkali stress. Plant Soil 2011, 355, 131–147. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y.; Guo, H.; Min, W. Saline and alkaline stresses alter soil properties and composition and structure of gene-based nitrifier and denitrifier communities in a calcareous desert soil. BMC Microbiol. 2021, 21, 246. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, J.; Wang, Y.; Kang, H.; Zeng, J. The tolerance to saline-alkaline stress was dependent on the roots in wheat. Physiol. Mol. Biol. Plants 2020, 26, 947–954. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Cheng, Y.H.; Chen, K.E.; Tsay, Y.F. Nitrate transport, signaling, and use efficiency. Annu. Rev. Plant Biol. 2018, 69, 85–122. [Google Scholar] [CrossRef]
- Wu, P.; Xu, G.; Lian, X. Nitrogen and phosphorus uptake and utilization. In Genetics and Genomics of Rice; Zhang, Q., Wing, R.A., Eds.; Springer: New York, NY, USA, 2013; pp. 217–226. [Google Scholar]
- Wang, D.; Xu, T.; Yin, Z.; Wu, W.; Geng, H.; Li, L.; Yang, M.; Cai, H.; Lian, X. Overexpression of OsMYB305 in rice enhances the nitrogen uptake under low-nitrogen condition. Front. Plant Sci. 2020, 11, 369. [Google Scholar] [CrossRef]
- Abobatta, W.F. Overview of role of magnetizing treated water in agricultural sector development. Adv. Hortic. Sci. 2019, 2, 180023. [Google Scholar]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- El-Shafik, E.-Z.A.; Meleha, M.; El-Sawy, M.; El-Attar, E.H.; Bayoumi, Y.; Alshaal, T. Application of magnetic field improves growth, yield and fruit quality of tomato irrigated alternatively by fresh and agricultural drainage water. Ecotoxicol. Environ. Saf. 2019, 181, 248–254. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009, 96, 1229–1236. [Google Scholar] [CrossRef]
- Al-Mana, F.A.; Algahtani, A.M.; Dewir, Y.H.; Alotaibi, M.A.; Al-Yafrsi, M.A.; Elhindi, K.M. Water magnetization and application of soil amendments enhance growth and productivity of Snapdragon plants. HortScience 2021, 56, 1464–1470. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.; Wei, K.; Guo, Y.; Mu, W.; Sun, Y. Magnetic Water Treatment: An eco-friendly irrigation alternative to alleviate salt stress of brackish water in seed germination and early seedling growth of cotton (Gossypium hirsutum L.). Plants 2022, 11, 1397. [Google Scholar] [CrossRef]
- Selim, D.A.-F.H.; Nassar, R.M.A.; Boghdady, M.S.; Bonfill, M. Physiological and anatomical studies of two wheat cultivars irrigated with magnetic water under drought stress conditions. Plant Physiol. Biochem. 2019, 135, 480–488. [Google Scholar] [CrossRef]
- Mousa, E.M.; Gendy, A.A.; Maria, A.M.; Selim, D.A. Physio-anatomical responses of salinity stressed wheat plants to magnetic field. Minufiya J. Agric. Res. 2013, 38, 31–41. [Google Scholar]
- Silva, J.A.T.D.; Dobránszki, J. Impact of magnetic water on plant growth. Environ. Exp. Bot. 2014, 12, 137–142. [Google Scholar]
- Wang, Y.; Zhang, B.; Gong, Z.; Gao, K.; Ou, Y.; Zhang, J. The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments. J. Mol. Struct. 2013, 1052, 102–104. [Google Scholar] [CrossRef]
- Elhindi, K.M.; Al-Mana, F.A.; Algahtani, A.M.; Alotaibi, M.A. Effect of irrigation with saline magnetized water and different soil amendments on growth and flower production of Calendula officinalis L. plants. Saudi J. Biol. Sci. 2020, 27, 3072–3078. [Google Scholar] [CrossRef]
- Garnett, T.; Conn, V.; Kaiser, B.N. Root based approaches to improving nitrogen use efficiency in plants. Plant Cell Environ. 2009, 32, 1272–1283. [Google Scholar] [CrossRef]
- Meng, S.Y.; Zhang, Y.; Wang, H.T.; Song, C.D.; Ma, F.Y. The effects of magnetic treatment on nitrogen absorption and distribution in seedlings of Populus × euramericana ‘Neva’ under NaCl stress. Sci. Rep. 2019, 9, 10025. [Google Scholar]
- Zhang, Y.; Zhang, L.; Hu, X.-H. Exogenous spermidine-induced changes at physiological and biochemical parameters levels in tomato seedling grown in saline-alkaline condition. Bot. Stud. 2014, 55, 58. [Google Scholar] [CrossRef]
- Tsay, Y.-F.; Schroeder, J.I.; Feldmann, K.A.; Crawford, N.M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 1993, 72, 705–713. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Guo, R.; Shi, D.; Liu, B.; Lin, X.; Yang, C. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol. 2012, 12, 194. [Google Scholar] [CrossRef]
- Esteban, R.; Ariz, I.; Cruz, C.; Moran, J.F. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Sci. 2016, 248, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Ludewig, U.; Neuhauser, B.; Dynowski, M. Molecular mechanisms of ammonium transport and accumulation in plants. FEBS Lett. 2007, 581, 2301–2308. [Google Scholar] [CrossRef]
- Abouelsaad, I.; Weihrauch, D.; Renault, S. Effects of salt stress on the expression of key genes related to nitrogen assimilation and transport in the roots of the cultivated tomato and its wild salt-tolerant relative. Sci. Hortic. 2016, 211, 70–78. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Han, J.; Zheng, W.; Yang, C. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants. PLoS ONE 2012, 7, e37817. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, J.; Wu, N.; Qi, F.; Peng, Z.; Nie, D.; Yao, R.; Qi, X.; Slaski, J.; Yang, F.; et al. Transcriptome study of rice roots status under high alkaline stress at seedling stage. Agronomy 2022, 12, 925. [Google Scholar] [CrossRef]
- Liu, X.; Ma, F.; Zhu, H.; Ma, X.; Guo, J.; Wan, X.; Wang, L.; Wang, H.; Wang, Y. Effects of magnetized water treatment on growth characteristics and ion absorption, transportation and distribution in Populus × euramericana ‘Neva’ under NaCl stress. Can. J. For. Res 2017, 47, 828–838. [Google Scholar] [CrossRef]
- Yang, X.; Fan, J.; Ge, J.; Luo, Z. Effect of irrigation with activated water on root morphology of hydroponic rice and wheat seedlings. Agronomy 2022, 12, 1068. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; He, Y.; Li, S.; Liang, Z.; Peng, C.; Polle, A.; Luo, Z.-B. Changes in carbon, nutrients and stoichiometric relations under different soil depths, plant tissues and ages in black locust plantations. Acta Physiol. Plant 2013, 35, 2951–2964. [Google Scholar] [CrossRef]
- Luo, J.; Li, H.; Liu, T.; Polle, A.; Peng, C.; Luo, Z.-B. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. J. Exp. Bot. 2013, 64, 4207–4224. [Google Scholar] [CrossRef]
- Ivančič, I.; Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 1984, 18, 1143–1147. [Google Scholar] [CrossRef]
- Patterson, K.; Cakmak, T.; Cooper, A.; Lager, I.D.A.; Rasmusson, A.G.; Escobar, M.A. Distinct signalling pathways and transcriptome response signatures differentiate ammonium- and nitrate-supplied plants. Plant Cell Environ. 2010, 33, 1486–1501. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Li, Q.; Song, Z.; Su, L.; Tao, W.; Zhou, B.; Wang, Q. Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline–Alkaline Stress on Rice Seedlings. Int. J. Mol. Sci. 2022, 23, 10048. https://doi.org/10.3390/ijms231710048
Ma C, Li Q, Song Z, Su L, Tao W, Zhou B, Wang Q. Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline–Alkaline Stress on Rice Seedlings. International Journal of Molecular Sciences. 2022; 23(17):10048. https://doi.org/10.3390/ijms231710048
Chicago/Turabian StyleMa, Changkun, Qian Li, Zhaoxin Song, Lijun Su, Wanghai Tao, Beibei Zhou, and Quanjiu Wang. 2022. "Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline–Alkaline Stress on Rice Seedlings" International Journal of Molecular Sciences 23, no. 17: 10048. https://doi.org/10.3390/ijms231710048
APA StyleMa, C., Li, Q., Song, Z., Su, L., Tao, W., Zhou, B., & Wang, Q. (2022). Irrigation with Magnetized Water Alleviates the Harmful Effect of Saline–Alkaline Stress on Rice Seedlings. International Journal of Molecular Sciences, 23(17), 10048. https://doi.org/10.3390/ijms231710048