Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
- (1)
- Synthesis of compound IDT-TNIC
- (2)
- Device fabrication method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J.; et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Z.; Zu, Y.; Wang, Y.; Liu, X.; Zhang, S.; Zhang, M.; Hou, J. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control. Adv. Mater. 2021, 33, 2102787. [Google Scholar] [CrossRef]
- Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 2022, 34, 2109516. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Y.; Yang, X.; Gao, Y.; Chen, Z.; Li, K.; Qiao, J.; Wang, T.; Guo, J.; Liu, C.; et al. Single-junction organic solar cells with 19.17% efficiency enabled by introducing one asymmetric guest acceptor. Adv. Mater. 2022, 34, 2110147. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Xu, J.; Li, C.; Yan, J.; Zhou, G.; Zhong, W.; Hao, T.; Song, J.; Xue, X.; et al. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nat. Mater. 2022, 21, 656–663. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.L.; Lau, T.K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P.A.; et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151. [Google Scholar] [CrossRef]
- Wadsworth, A.; Hamid, Z.; Kosco, J.; Gasparini, N.; McCulloch, I. The bulk heterojunction in organic photovoltaic photodetector and photocatalytic applications. Adv. Mater. 2020, 32, 2001763. [Google Scholar] [CrossRef]
- Hou, J.; Inganäs, O.; Friend, R.H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.-Y.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Wei, Q.; Liu, W.; Leclerc, M.; Yuan, J.; Chen, H.; Zou, Y. A-DA’D-A non-fullerene acceptors for high-performance organic solar cells. Sci. China Chem. 2020, 63, 1352–1366. [Google Scholar] [CrossRef]
- Kan, B.; Kan, Y.; Zuo, L.; Shi, X.; Gao, K. Recent progress on all-small molecule organic solar cells using small-molecule nonfullerene acceptors. InfoMat 2021, 3, 175–200. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Chow, P.C.Y.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.; Huang, F.; Yan, H. Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chem. Rev. 2018, 118, 3447–3507. [Google Scholar] [CrossRef]
- Li, C.; Song, J.; Cai, Y.; Han, G.; Zheng, W.; Yi, Y.; Ryu, H.S.; Woo, H.Y.; Sun, Y. Heteroatom substitution-induced asymmetric A–D–A type non-fullerene acceptor for efficient organic solar cells. J. Energy Chem. 2020, 40, 144–150. [Google Scholar] [CrossRef]
- Ma, X.; Zeng, A.; Gao, J.; Hu, Z.; Xu, C.; Son, J.H.; Jeong, S.Y.; Zhang, C.; Li, M.; Wang, K.; et al. Approaching 18% efficiency of ternary organic photovoltaics with wide bandgap polymer donor and well compatible Y6:Y6-1O as acceptor. Nat. Sci. Rev. 2021, 8, nwaa305. [Google Scholar] [CrossRef]
- Li, C.; Fu, H.; Xia, T.; Sun, Y. Asymmetric nonfullerene small molecule acceptors for organic solar cells. Adv. Energy Mater. 2019, 9, 1900999. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, L.; Wu, F.-P.; Yuan, Y.; Bin, H.-J.; Jiang, Z.-Q.; Zhang, Z.; Zhang, Z.-G.; Li, Y.; Liao, L.-S. Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. Energy Environ. Sci. 2016, 9, 3429–3435. [Google Scholar] [CrossRef]
- Jia, B.; Zhan, X. Fused-ring electron acceptors in China. Sci. China Chem. 2020, 63, 1179–1181. [Google Scholar] [CrossRef]
- Chan, S.-H.; Chen, C.-P.; Chao, T.-C.; Ting, C.; Lin, C.-S.; Ko, B.-T. Synthesis characterization and photovoltaic properties of novel semiconducting polymers with thiophene−phenylene−thiophene (TPT) as coplanar units. Macromolecules 2008, 41, 5519–5526. [Google Scholar] [CrossRef]
- Li, Y.; Yao, K.; Yip, H.-L.; Ding, F.-Z.; Xu, Y.-X.; Li, X.; Chen, Y.; Jen, A.K.-Y. Eleven-membered fused-ring low band-gap polymer with enhanced charge carrier mobility and photovoltaic performance. Adv. Funct. Mater. 2014, 24, 3631–3638. [Google Scholar] [CrossRef]
- Carsten, B.; Szarko, J.M.; Son, H.J.; Wang, W.; Lu, L.; He, F.; Rolczynski, B.S.; Lou, S.J.; Chen, L.X.; Yu, L. Examining the effect of the dipole moment on charge separation in donor-acceptor polymers for organic photovoltaic applications. J. Am. Chem. Soc. 2011, 133, 20468–20475. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Kim, S.; Lee, C.; Gunasekar, K.; Sree, V.G.; Gautam, B.; Gundogdu, K.; Jin, S.-H.; Kim, B.J. The impact of sequential fluorination of π-conjugated polymers on charge generation in all-polymer solar cells. Adv. Funct. Mater. 2017, 27, 1701256. [Google Scholar] [CrossRef]
- Gier, H.D.; Jahani, F.; Broer, R.; Hummelen, J.C.; Havenith, R.W.A. Promising strategy to improve charge separation in organic photovoltaics: Installing permanent dipoles in PCBM analogues. J. Phys. Chem. A 2016, 120, 4664–4671. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Zhang, M.; Liu, T.; Ming, R.; An, Q.; Wu, K.; Xie, D.; Luo, Z.; Zhong, C.; Liu, F.; et al. Asymmetrical ladder-type donor-induced polar small molecule acceptor to promote fill factors approaching 77% for high-performance nonfullerene polymer solar cells. Adv. Mater. 2018, 30, 1800052. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; An, Q.; Zhong, C.; Luo, Z.; Ming, R.; Zhang, M.; Zou, Y.; Liu, F.; Zhang, F.; Yang, C. Designing an asymmetrical isomer to promote the LUMO energy level and molecular packing of a non-fullerene acceptor for polymer solar cells with 12.6% efficiency. Chem. Sci. 2018, 9, 8142–8149. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, C.; Ye, L.; Koh, C.; Cai, Y.; Wei, D.; Woo, H.Y.; Sun, Y. Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A-D-A type non-fullerene acceptors. J. Mater. Chem. A 2018, 6, 18847–18852. [Google Scholar] [CrossRef]
- Li, C.; Song, J.; Ye, L.; Koh, C.; Weng, K.; Fu, H.; Cai, Y.; Xie, Y.; Wei, D.; Woo, H.Y.; et al. High-performance eight-membered indacenodithiophene-based asymmetric A-D-A type non-fullerene acceptors. Sol. RRL 2018, 3, 1800246. [Google Scholar] [CrossRef]
- Li, C.; Xia, T.; Song, J.; Fu, H.; Ryu, H.S.; Weng, K.; Ye, L.; Woo, H.Y.; Sun, Y. Asymmetric selenophene-based non-fullerene acceptors for high-performance organic solar cells. J. Mater. Chem. A 2019, 7, 1435–1441. [Google Scholar] [CrossRef]
- Zhai, W.; Tang, A.; Xiao, B.; Wang, X.; Chen, F.; Zhou, E. A small molecular electron acceptor based on asymmetric hexacyclic core of thieno[1,2-b]indaceno[5,6-b’]thienothiophene for efficient fullerene-free polymer solar cells. Sci. Bull. 2018, 63, 845–852. [Google Scholar] [CrossRef]
- Jia, B.; Wang, J.; Wu, Y.; Zhang, M.; Jiang, Y.; Tang, Z.; Russell, T.P.; Zhan, X. Enhancing performance of fused-ring electron acceptor by unidirectional extension. J. Am. Chem. Soc. 2019, 141, 19023–19031. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, D.; Zhou, L.; Gu, C.; Zhang, K.; Bao, X.; Li, Q.; Yang, R. Length evolution of fused-ring electron acceptors toward optimal blend morphology in polymer solar cells incorporating asymmetric benzodithiophene-based donors. J. Mater. Chem. A 2019, 7, 4823–4828. [Google Scholar] [CrossRef]
- Tang, W.; Cao, J.; Qu, S.; Yu, J.; Zhang, Z.; Gen, R.; Yang, L.; Wang, H.; Du, F. 13.76% Efficiency nonfullerene solar cells enabled by selenophene integrated dithieno[3,2-b:2′,3′-d]pyrrole asymmetric acceptors. Mater. Chem. Front. 2020, 49, 24–932. [Google Scholar] [CrossRef]
- Tang, W.; Yang, L.; Song, X.; Yu, J.; Wang, H.; Zhang, Z.; Gen, R.; Cao, J.; Baran, D. Asymmetric nonfullerene acceptors tuning conformation for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 22279–22286. [Google Scholar] [CrossRef]
- Jiao, C.; Guo, Z.; Sun, B.; Yi, Y.; Meng, L.; Wan, X.; Zhang, M.; Zhang, H.; Li, C.; Chen, Y. An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. J. Mater. Chem. C 2020, 8, 6293–6298. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, Z.; Li, G.; Luo, J.; Zhang, Z.; Li, Y.; Yang, C. De novo design of small molecule acceptors via fullerene/non-fullerene hybrids for polymer solar cells. Chem. Commun. 2018, 54, 9801–9804. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Y.; Zhang, J.; Song, J.; Bo, Z. Tuning the dipole moments of nonfullerene acceptors with an asymmetric terminal strategy for highly efficient organic solar cells. J. Mater. Chem. A 2019, 78, 8889–8896. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, L.; Xie, Y.; Xiao, Y.; Song, J.; Li, C.; Fu, H.; Weng, K.; Lu, X.; Tan, S. Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 8055–8060. [Google Scholar] [CrossRef]
- Aldrich, T.J.; Matta, M.; Zhu, W.; Swick, S.M.; Stern, C.L.; Schatz, G.C.; Facchetti, A.; Melkonyan, F.S.; Marks, T.J. Fluorination effects on indacenodithienothiophene acceptor packing and electronic structure end-group redistribution and solar cell photovoltaic response. J. Am. Chem. Soc. 2019, 141, 3274–3287. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, C.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 2017, 29, 1703527. [Google Scholar] [CrossRef]
- Kan, B.; Chen, X.; Gao, K.; Zhang, M.; Lin, F.; Peng, X.; Liu, F.; Jen, A.K.-Y. Asymmetrical side-chain engineering of small-molecule acceptors enable high-performance nonfullerene organic solar cells. Nano Energy 2020, 67, 104209. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Z.; Ortiz, R.P.; Newman, C.; Usta, H.; Lou, S.; Youn, J.; Noh, Y.-Y.; Baeg, K.-J.; Chen, L.X.; et al. Combining electron-neutral building blocks with intramolecular “Conformational locks” affords stable high-mobility P- and N-channel polymer semiconductors. J. Am. Chem. Soc. 2012, 134, 10966–10973. [Google Scholar] [CrossRef]
- Dong, T.; Lv, L.; Feng, L.; Xia, Y.; Deng, W.; Ye, P.; Yang, B.; Ding, S.; Facchetti, A.; Dong, H.; et al. Noncovalent Se···O conformational locks for constructing high-performing optoelectronic conjugated polymers. Adv. Mater. 2017, 29, 1606025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Qin, L.; Yu, J.; Li, Y.; Wei, Y.; Liu, X.; Lu, X.; Gao, F.; Huang, H. High-performance noncovalently fused-ring electron acceptors for organic solar cells enabled by noncovalent intramolecular interactions and end-group engineering. Angew. Chem. Int. Ed. 2021, 60, 12475–12481. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Chen, Y.; Yang, L.; Ye, P.; Wu, J.; Yu, J.; Zhang, S.; Gao, Y.; Huang, H. Significantly enhancement of photovoltaic performances through introducing S∙∙∙N conformational locks. J. Mater. Chem. A 2017, 5, 21674–21678. [Google Scholar] [CrossRef]
- Ye, P.; Chen, Y.; Wu, J.; Wu, X.; Xu, Y.; Li, Z.; Hong, S.; Sun, M.; Peng, A.; Huang, H. Combination of noncovalent conformational locks and side chain engineering to tune the crystallinity of nonfullerene acceptors for high-performance P3HT based organic solar cells. Mater. Chem. Front. 2019, 3, 64–69. [Google Scholar] [CrossRef]
- Wang, K.; Guo, X.; Ye, C.; Wang, Y.; Meng, Y.; Li, X.; Zhang, M. A new small-molecule donor containing non-fused ring π-bridge enables efficient organic solar cells with high open circuit voltage and low acceptor content. ChemPhysChem 2019, 20, 2674–2682. [Google Scholar] [CrossRef]
- Guo, Q.; Lin, J.; Liu, H.; Dong, X.; Guo, X.; Ye, L.; Ma, Z.; Tang, Z.; Ade, H.; Zhang, M.; et al. Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability. Nano Energy 2020, 74, 104861. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Jones, L.O.; Alzola, J.M.; Mukherjee, S.; Feng, L.; Zhu, W.; Stern, C.L.; Huang, W.; Yu, J.; et al. Systematic merging of non-fullerene acceptor π-extension and tetrafluorination strategies affords polymer solar cells with > 16% efficiency. J. Am. Chem. Soc. 2021, 143, 6123–6139. [Google Scholar] [CrossRef]
- Qin, R.; Wang, D.; Zhou, G.; Yu, Z.P.; Li, S.; Li, Y.; Liu, Z.X.; Zhu, H.; Shi, M.; Lu, X.; et al. Tuning terminal aromatics of electron acceptors to achieve high-efficiency organic solar cells. J. Mater. Chem. A 2019, 7, 27632–27639. [Google Scholar] [CrossRef]
- Li, S.; Ye, L.; Zhao, W.; Liu, X.; Zhu, J.; Ade, H.; Hou, J. Design of a new small-molecule electron acceptor enables efficient polymer solar cells with high fill factor. Adv. Mater. 2017, 29, 1704051. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, H.; Yang, C.; Li, Y. Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 2003, 13, 800–806. [Google Scholar] [CrossRef]
- Li, R.; Liu, G.; Xiao, M.; Yang, X.; Liu, X.; Wang, Z.; Ying, L.; Huang, F.; Cao, Y. Non-fullerene acceptors based on fused-ring oligomers for efficient polymer solar cells via complementary light-absorption. J. Mater. Chem. A 2017, 5, 23926–23936. [Google Scholar] [CrossRef]
- Wu, J.-L.; Chen, F.-C.; Hsiao, Y.-S.; Chien, F.C.; Chen, P.; Kuo, C.H.; Huang, M.H.; Hsu, C.S. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 2011, 5, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Leman, D.; Kelly, M.A.; Ness, S.; Engmann, S.; Herzing, A.; Snyder, C.; Ro, H.W.; Kline, R.J.; DeLongchamp, D.M.; Richter, L.J. In situ characterization of polymer−fullerene bilayer stability. Macromolecules 2015, 48, 383–392. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Peng, Q. Recent advances in morphology optimizations towards highly efficient ternary organic solar cells. Nano Sel. 2020, 1, 30–58. [Google Scholar] [CrossRef]
- Fan, Q.; An, Q.; Lin, Y.; Xia, Y.; Li, Q.; Zhang, M.; Su, W.; Peng, W.; Zhang, C.; Liu, F.; et al. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy Environ. Sci. 2020, 13, 5017–5027. [Google Scholar] [CrossRef]
- Ma, R.; Liu, T.; Luo, Z.; Gao, K.; Chen, K.; Zhang, G.; Gao, W.; Xiao, Y.; Lau, T.-K.; Fan, Q.; et al. Adding a third component with reduced miscibility and higher LUMO level enables efficient ternary organic solar cells. ACS Energy Lett. 2020, 5, 2711–2720. [Google Scholar] [CrossRef]
- Smilgies, D.-M. Scherrer grain-size analysis adapted to grazingincidence scattering with area detectors. J. Appl. Cryst. 2009, 42, 1030–1034. [Google Scholar] [CrossRef]
- Demadrille, R.; Egreve, S.; Kervella, Y.; Verand, S. Organic colourant and uses thereof in photovoltaic cells. U.S. Patent US2014/0290748Al, 2 October 2014. [Google Scholar]
- Lin, J.; Guo, Q.; Liu, Q.; Lv, J.; Liang, H.; Wang, Y.; Zhu, L.; Liu, F.; Guo, X.; Zhang, M. A noncovalently fused-ring asymmetric electron acceptor enables efficient organic solar cells. Chin. J. Chem. 2021, 39, 2685–2691. [Google Scholar] [CrossRef]
Active Layer | Voc (V) | Jsc (mA cm−2) | Cal. Jsc a (mA cm−2) | FF (%) | PCE (PCEavg) b (%) | |
---|---|---|---|---|---|---|
PBDB-T:IDT-TNIC | As-cast | 0.87 | 18.73 | 18.10 | 62.5 | 10.19 (10.00) |
CN + TA | 0.87 | 19.85 | 18.86 | 65.9 | 11.32 (11.21) | |
PBDB-T:IDT-N | CN + TA | 0.79 | 15.88 | -- | 71.9 | 9.0 [51] |
PBDB-TF:IDT-N | DIO + TA | 0.946 | 16.58 | 16.02 | 78.0 | 12.2 [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Guo, Q.; Nie, Z.; Wang, H.; Gao, J.; Zhang, J.; Yu, L.; Guo, X.; Zhang, M. Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells. Int. J. Mol. Sci. 2022, 23, 10079. https://doi.org/10.3390/ijms231710079
Wang K, Guo Q, Nie Z, Wang H, Gao J, Zhang J, Yu L, Guo X, Zhang M. Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells. International Journal of Molecular Sciences. 2022; 23(17):10079. https://doi.org/10.3390/ijms231710079
Chicago/Turabian StyleWang, Kun, Qing Guo, Zengkun Nie, Huiyan Wang, Jingshun Gao, Jianqi Zhang, Linfeng Yu, Xia Guo, and Maojie Zhang. 2022. "Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells" International Journal of Molecular Sciences 23, no. 17: 10079. https://doi.org/10.3390/ijms231710079
APA StyleWang, K., Guo, Q., Nie, Z., Wang, H., Gao, J., Zhang, J., Yu, L., Guo, X., & Zhang, M. (2022). Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells. International Journal of Molecular Sciences, 23(17), 10079. https://doi.org/10.3390/ijms231710079