Fullerene Derivatives (CN-[OH]β) and Single-Walled Carbon Nanotubes Modelled as Transporters for Doxorubicin Drug in Cancer Therapy
Abstract
:1. Introduction
2. Mathematical Model
2.1. Adsorption of DOX into SWCNT
2.2. Adsorption of DOX into Fullerene Derivatives (C-[OH])
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bandyopadhyay, A.; Das, T.; Yeasmin, S. Nanoparticles in Lung Cancer Therapy-Recent Trends; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Galateau-Salle, F.; Churg, A.; Roggli, V.; Travis, W.D.; World Health Organization Committee for Tumors of the Pleura. The 2015 World Health Organization classification of tumors of the pleura: Advances since the 2004 classification. J. Thorac. Oncol. 2016, 11, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Chen, Z.; Mao, R.; Liu, Y. Fullerenes for cancer diagnosis and therapy: Preparation, biological and clinical perspectives. Curr. Drug Metab. 2012, 13, 1035–1045. [Google Scholar] [CrossRef]
- Elhissi, A.; Ahmed, W.; Hassan, I.U.; Dhanak, V.; D’Emanuele, A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv. 2012, 2012, 837327. [Google Scholar] [CrossRef]
- Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. Int. J. Nanomed. 2016, 11, 5163. [Google Scholar] [CrossRef]
- Kankala, R.K.; Liu, C.G.; Yang, D.Y.; Wang, S.B.; Chen, A.Z. Ultrasmall platinum nanoparticles enable deep tumor penetration and synergistic therapeutic abilities through free radical species-assisted catalysis to combat cancer multidrug resistance. Chem. Eng. J. 2020, 383, 123138. [Google Scholar] [CrossRef]
- Kankala, R.K.; Liu, C.G.; Chen, A.Z.; Wang, S.B.; Xu, P.Y.; Mende, L.K.; Liu, C.L.; Lee, C.H.; Hu, Y.F. Overcoming multidrug resistance through the synergistic effects of hierarchical pH-sensitive, ROS-generating nanoreactors. ACS Biomater. Sci. Eng. 2017, 3, 2431–2442. [Google Scholar] [CrossRef]
- Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M. Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 2003, 38, 913–923. [Google Scholar] [CrossRef]
- Yamakoshi, Y.; Umezawa, N.; Ryu, A.; Arakane, K.; Miyata, N.; Goda, Y.; Masumizu, T.; Nagano, T. Active oxygen species generated from photoexcited fullerene (C60) as potential medicines: O2-• versus 1O2. J. Am. Chem. Soc. 2003, 125, 12803–12809. [Google Scholar] [CrossRef]
- Krusic, P.J.; Wasserman, E.; Keizer, P.N.; Morton, J.R.; Preston, K.F. Radical reactions of C60. Science 1991, 254, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Azzam, T.; Domb, A.J. Current developments in gene transfection agents. Curr. Drug Deliv. 2004, 1, 165–193. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.P.; Zeng, Q.H.; Lu, G.Q.; Yu, A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027–1040. [Google Scholar] [CrossRef]
- Feuerstein, I.; Najam-ul-Haq, M.; Rainer, M.; Trojer, L.; Bakry, R.; Aprilita, N.H.; Stecher, G.; Huck, C.W.; Bonn, G.K.; Klocker, H.; et al. Material-enhanced laser desorption/ionization (MELDI)—A new protein profiling tool utilizing specific carrier materials for time of flight mass spectrometric analysis. J. Am. Soc. Mass Spectrom. 2006, 17, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Rainer, M.; Muhammad, N.U.H.; Huck, C.W.; Feuerstein, I.; Bakry, R.; Huber, L.A.; Gjerde, D.T.; Zou, X.; Qian, H.; Du, X.; et al. Ultra-fast mass fingerprinting by high-affinity capture of peptides and proteins on derivatized poly (glycidyl methacrylate/divinylbenzene) for the analysis of serum and cell lysates. Rapid Commun. Mass Spectrom. 2006, 20, 2954–2960. [Google Scholar] [CrossRef]
- Al Garalleh, H.; Thamwattana, N.; Cox, B.J.; Hill, J.M. Modeling Interactions Between C60 Antiviral Compounds and HIV Protease. Bull. Math. Biol. 2015, 77, 184–201. [Google Scholar] [CrossRef]
- Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H.; Meziani, M.J.; Haque, S.A.; Liu, Y.; Lacher, S.; et al. Fullerene-conjugated doxorubicin in cells. ACS Appl. Mater. Interfaces 2010, 2, 1384–1389. [Google Scholar] [CrossRef]
- Prylutska, S.; Panchuk, R.; Gołuński, G.; Skivka, L.; Prylutskyy, Y.; Hurmach, V.; Skorohyd, N.; Borowik, A.; Woziwodzka, A.; Piosik, J.; et al. C60 fullerene enhances cisplatin anticancer activity and overcomes tumor cell drug resistance. Nano Res. 2017, 10, 652–671. [Google Scholar] [CrossRef]
- Zakharian, T.Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B.E.; Knight, V.; Wilson, L.J. A fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 2005, 127, 12508–12509. [Google Scholar] [CrossRef]
- Partha, R.; Mitchell, L.R.; Lyon, J.L.; Joshi, P.P.; Conyers, J.L. Buckysomes: Fullerene-based nanocarriers for hydrophobic molecule delivery. ACS Nano 2008, 2, 1950–1958. [Google Scholar] [CrossRef]
- Bogdanovic, G.; Kojic, V.; Dordevic, A.; Canadanovic-Brunet, J.; Vojinovic-Miloradov, M.; Baltic, V.V. Modulating activity of fullerol C60-(OH)22 on doxorubicin-induced cytotoxicity. Toxicol. In Vitro 2004, 18, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Injac, R.; Perse, M.; Obermajer, N.; Djordjevic-Milic, V.; Prijatelj, M.; Djordjevic, A.; Cerar, A.; Strukelj, B. Potential hepatoprotective effects of fullerenol C60-(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials 2008, 29, 3451–3460. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiao, F.; Qiu, Y.; Li, W.; Qu, Y.; Tian, C.; Li, Y.; Bai, R.; Lao, F.; Zhao, Y.; et al. Immunostimulatory properties and enhanced TNF-α mediated cellular immunity for tumor therapy by C60-(OH)20 nanoparticles. Nanotechnology 2009, 20, 415102. [Google Scholar] [CrossRef] [PubMed]
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2013, 65, 157–170. [Google Scholar] [CrossRef]
- Li, R.; Wu, R.A.; Zhao, L.; Hu, Z.; Guo, S.; Pan, X.; Zou, H. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 2011, 49, 1797–1805. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, L.; Lu, Q.; Fei, Z.; Dyson, P.J. Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials 2009, 30, 6041–6047. [Google Scholar] [CrossRef]
- Injac, R.; Perse, M.; Cerne, M.; Potocnik, N.; Radic, N.; Govedarica, B.; Djordjevic, A.; Cerar, A.; Strukelj, B. Protective effects of fullerenol C60-(OH)24 against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats with colorectal cancer. Biomaterials 2009, 30, 1184–1196. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660. [Google Scholar] [CrossRef]
- Cottrell, T.L. The Strengths of Chemical Bonds; Butterworths Scientific Publications: New York, NY, USA, 1958. [Google Scholar]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B.; Mayer, M.G. Molecular Theory of Gases and Liquids; Wiley: New York, NY, USA, 1964; Volume 165. [Google Scholar]
- Wang, Y.; Tomanek, D.; Bertsch, G.F. Stiffness of a solid composed of C60 clusters. Phys. Rev. B 1991, 44, 6562. [Google Scholar] [CrossRef]
- Qian, D.; Wagner, G.J.; Liu, W.K.; Yu, M.F.; Ruoff, R.S. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533. [Google Scholar] [CrossRef]
- Cox, B.J.; Thamwattana, N.; Hill, J.M. Mechanics of atoms and fullerenes in single-walled carbon nanotubes. I. Acceptance and suction energies. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007, 463, 461–477. [Google Scholar] [CrossRef]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ghasemvand, F.; Biazar, E.; Tavakolifard, S.; Khaledian, M.; Rahmanzadeh, S.; Momenzadeh, D.; Afroosheh, R.; Zarkalami, F.; Shabannezhad, M.; Tackallou, S.H.; et al. Synthesis and evaluation of multi-wall carbon nanotube–paclitaxel complex as an anti-cancer agent. Gastroenterol. Hepatol. Bed Bench 2016, 9, 197. [Google Scholar] [PubMed]
- Karnati, K.R.; Wang, Y. Understanding the co-loading and releasing of doxorubicin and paclitaxel using chitosan functionalized single-walled carbon nanotubes by molecular dynamics simulations. Phys. Chem. Chem. Phys. 2018, 20, 9389–9400. [Google Scholar] [CrossRef] [PubMed]
- AL Garalleh, H.; Algarni, A. Modelling of paclitaxel conjugated with carbon nanotubes as an antitumor agent for cancer therapy. J. Biomed. Nanotechnol. 2020, 16, 224–234. [Google Scholar] [CrossRef]
Interaction | (Å) | (Å) | Interaction | (Å) | (Å) |
---|---|---|---|---|---|
H-H | 0.74 | 2.886 | O-H | 0.96 | 3.193 |
O-O (sb) | 1.48 | 3.500 | O-O (db) | 1.21 | 3.500 |
N-N | 1.45 | 3.660 | N-H | 1.00 | 3.273 |
C-C (sb) | 1.54 | 3.851 | C-H | 1.09 | 3.368 |
C-C (db) | 1.34 | 3.851 | C-O (sb) | 1.43 | 3.675 |
C-O (db) | 1.20 | 3.675 | C-N | 1.47 | 3.755 |
N-O | 1.09 | 3.368 | S-S | 2.05 | 4.035 |
S-H | 1.34 | 3.461 | S-C | 1.77 | 3.943 |
Interaction | Attractive | Value (kcal/mol ) | Repulsive | Value (kcal/mol ) |
---|---|---|---|---|
C | 17.40 | 29,000 | ||
C | 17.40 | 29,000 | ||
C | 17.40 | 29,000 | ||
SWCNT | 17.40 | 29,000 | ||
Fullerene derivative ([]) | 19.08 | 50,626 | ||
Fullerene derivative ([]) | 19.46 | 52,246 | ||
Fullerene derivative ([]) | 19.77 | 53,549 | ||
Fullerene derivative ([]) | 18.85 | 49,658 | ||
Fullerene derivative ([]) | 19.25 | 51,347 | ||
Fullerene derivative ([]) | 19.58 | 52,711 | ||
DOX | 19.29 | 54,617 | ||
Small Spherical shell (Å)(DOX) | 29.18 | 88,331 | ||
Medium Spherical shell (Å)(DOX) | 35.29 | 108,923 |
Radius of CNT(22,19) | Å |
Radius of CNT(23,19) | Å |
Radius of CNT(22,21) | Å |
Radius of CNT(22,22) | Å |
Radius of CNT(23,21) | Å |
Radius of CNT(23,22) | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Radius of fullerene derivative [C-(OH)] | Å |
Surface density for the SWCNT | Å |
Radius of the small sphere (DOX) | Å |
Radius of the large sphere (DOX) | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene derivative [C-(OH)] | Å |
Surface density for the fullerene C | Å |
Surface density for the fullerene C | Å |
Surface density for the fullerene C | Å |
Surface density for the small sphere (DOX) | Å |
Surface density for the large sphere (DOX) | Å |
Interaction | Minimum Energy (E) kcal/mol | Statistical Errors |
---|---|---|
DOX–SWCNT | −38.27 | ±0.1 |
DOX-[C-(OH)] | −33.18 | ±0.3 |
DOX-[C-(OH)] | −34.02 | ±0.7 |
DOX-[C-(OH)] | −28.65 | ±0.7 |
DOX-[C-(OH)] | −27.43 | ±0.5 |
DOX-[C-(OH)] | −29.71 | ±0.7 |
DOX-[C-(OH)] | −24.98 | ±0.5 |
DOX-[C-(OH)] | −26.19 | ±0.5 |
DOX-[C-(OH)] | −30.38 | ±0.7 |
DOX-[C-(OH)] | −26.14 | ±0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Garalleh, H. Fullerene Derivatives (CN-[OH]β) and Single-Walled Carbon Nanotubes Modelled as Transporters for Doxorubicin Drug in Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 9646. https://doi.org/10.3390/ijms23179646
Al Garalleh H. Fullerene Derivatives (CN-[OH]β) and Single-Walled Carbon Nanotubes Modelled as Transporters for Doxorubicin Drug in Cancer Therapy. International Journal of Molecular Sciences. 2022; 23(17):9646. https://doi.org/10.3390/ijms23179646
Chicago/Turabian StyleAl Garalleh, Hakim. 2022. "Fullerene Derivatives (CN-[OH]β) and Single-Walled Carbon Nanotubes Modelled as Transporters for Doxorubicin Drug in Cancer Therapy" International Journal of Molecular Sciences 23, no. 17: 9646. https://doi.org/10.3390/ijms23179646
APA StyleAl Garalleh, H. (2022). Fullerene Derivatives (CN-[OH]β) and Single-Walled Carbon Nanotubes Modelled as Transporters for Doxorubicin Drug in Cancer Therapy. International Journal of Molecular Sciences, 23(17), 9646. https://doi.org/10.3390/ijms23179646