Genomic Variation and Host Interaction among Pseudomonas syringae pv. actinidiae Strains in Actinidia chinensis ‘Hongyang’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of P. syringae pv. actinidiae
2.2. Plants Materials and Growth Conditions
2.3. Psa Inoculation
2.4. Genome Analysis of Psa
2.5. Transcriptomic Analysis of Inoculated ‘Hongyang’
2.6. Real-Time Quantitative PCR Analysis
3. Results and Discussion
3.1. Difference in Pathogenicity of the Isolated Psa Strains
3.2. Genomic Diversity of the Psa Strains
3.3. Transcriptomic Response of ‘Hongyang’ to the Psa with different Pathogenicity
3.4. Validation of Gene Expression in Psa-Inoculated ‘Hongyang’
3.5. New Features in Psa-‘Hongyang’ Interactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The Nutritional and Health Attributes of Kiwifruit: A Review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.R.; Huang, H. Genetic Resources of Kiwifruit: Domestication and Breeding. Hort. Rev. 2007, 33, 1–121. [Google Scholar] [CrossRef]
- Huang, S.; Ding, J.; Deng, D.; Tang, W.; Sun, H.; Liu, D.; Zhang, L.; Niu, X.; Hang, X.; Meng, M.; et al. Draft Genome of the Kiwifruit Actinidia chinensis. Nat. Commun. 2013, 4, 2640. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W. The Genus Actinidia, A World Monograph; Science Press: Beijing, China, 2014; ISBN 9787030416742. [Google Scholar]
- Scortichini, M.; Marcelletti, S.; Ferrante, P.; Petriccione, M.; Firrao, G. Pseudomonas syringae pv. actinidiae: A Re-Emerging, Multi-Faceted, Pandemic Pathogen. Mol. Plant. Pathol. 2012, 13, 631–640. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, K.; Son, K.I.; Choi, E.D.; Lee, Y.S.; Jung, J.S.; Koh, Y.J. Outbreak and Spread of Bacterial Canker of Kiwifruit Caused by Pseudomonas syringae pv. actinidiae Biovar 3 in Korea. Plant. Pathol. J. 2016, 32, 545–551. [Google Scholar] [CrossRef] [PubMed]
- McCann, H.C.; Li, L.; Liu, Y.; Li, D.; Pan, H.; Zhong, C.; Rikkerink, E.H.A.; Templeton, M.D.; Straub, C.; Colombi, E.; et al. Origin and Evolution of the Kiwifruit Canker Pandemic. Genome Biol. Evol. 2017, 9, 932–944. [Google Scholar] [CrossRef]
- Marcelletti, S.; Ferrante, P.; Petriccione, M.; Firrao, G.; Scortichini, M. Pseudomonas syringae pv. actinidiae Draft Genomes Comparison Reveal Strain-Specific Features Involved in Adaptation and Virulence to Actinidia Species. PLoS ONE 2011, 6, e27297. [Google Scholar] [CrossRef]
- McCann, H.C.; Rikkerink, E.H.A.; Bertels, F.; Fiers, M.; Lu, A.; Rees-George, J.; Andersen, M.T.; Gleave, A.P.; Haubold, B.; Wohlers, M.W.; et al. Genomic Analysis of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Provides Insight into the Origins of an Emergent Plant Disease. PLoS Pathog. 2013, 9, e1003503. [Google Scholar] [CrossRef]
- Poulter, R.T.M.; Ho, J.; Handley, T.; Taiaroa, G.; Butler, M.I. Comparison Between Complete Genomes of an Isolate of Pseudomonas syringae pv. actinidiae from Japan and a New Zealand Isolate of the Pandemic Lineage. Sci. Rep. 2018, 8, 10915. [Google Scholar] [CrossRef]
- Renzi, M.; Copini, P.; Taddei, A.; Rossetti, A.; Gallipoli, L.; Mazzaglia, A.; Balestra, G.M. Bacterial Canker on Kiwifruit in Italy: Anatomical Changes in the Wood and in the Primary Infection Sites. Phytopathology 2012, 102, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Huang, Q.; Zhao, Z.; Han, Q.; Ke, X.; Qin, H.; Huang, L. Studies on the Infection, Colonization, and Movement of Pseudomonas syringae pv. actinidiae in Kiwifruit Tissues Using a GFPuv-Labeled Strain. PLoS ONE 2016, 11, e0151169. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Sangiorgio, S.; Vanneste, J.L.; Scortichini, M.; Balestra, G.M.; Spinelli, F. Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. Microb. Ecol. 2020, 80, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Figueira, D.; Garcia, E.; Ares, A.; Tiago, I.; Veríssimo, A.; Costa, J. Genetic Diversity of Pseudomonas syringae pv. actinidiae: Seasonal and Spatial Population Dynamics. Microorganisms 2020, 8, 931. [Google Scholar] [CrossRef]
- Butler, M.I.; Stockwell, P.A.; Black, M.A.; Day, R.C.; Lamont, I.L.; Poulter, R.T.M. Pseudomonas syringae pv. actinidiae from Recent Outbreaks of Kiwifruit Bacterial Canker Belong to Different Clones that Originated in China. PLoS ONE 2013, 8, e57464. [Google Scholar] [CrossRef]
- Firrao, G.; Torelli, E.; Polano, C.; Ferrante, P.; Ferrini, F.; Martini, M.; Marcelletti, S.; Scortichini, M.; Ermacora, P. Genomic Structural Variations Affecting Virulence During Clonal Expansion of Pseudomonas syringae pv. actinidiae Biovar 3 in Europe. Front. Microbiol. 2018, 9, 656. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, J.; Gao, X.; Zhang, D.; Zhang, J.; Wen, J.; Qin, H.; Guo, M.; Huang, L. Comparative Genomics Reveal Pathogenicity-Related Loci in Pseudomonas syringae pv. actinidiae Biovar 3. Mol. Plant Pathol. 2019, 20, 923–942. [Google Scholar] [CrossRef]
- Ciarroni, S.; Gallipoli, L.; Taratufolo, M.C.; Butler, M.I.; Poulter, R.T.M.; Pource, C.; Vergnaud, G.; Balestra, G.M.; Mazzaglia, A. Development of a Multiple Loci Variable Number of Tandem Repeats Analysis (MLVA) to Unravel the Intra-Pathovar Structure of Pseudomonas syringae pv. actinidiae Populations Worldwide. PLoS ONE 2015, 10, e0135310. [Google Scholar] [CrossRef]
- He, R.; Liu, P.; Jia, B.; Xue, S.; Wang, X.; Hu, J.; Shoffe, Y.A.; Gallipoli, L.; Mazzaglia, A.; Balestra, G.M.; et al. Genetic Diversity of Pseudomonas syringae pv. actinidiae Strains from Different Geographic Regions in China. Phytopathology 2019, 109, 347–357. [Google Scholar] [CrossRef]
- Wang, F.; Li, J.; Ye, K.; Liu, P.; Gong, H.; Jiang, Q.; Qi, B.; Mo, Q. An in vitro Actinidia Bioassay to Evaluate the Resistance to Pseudomonas syringae pv. actinidiae. Plant Pathol. J. 2019, 35, 372–380. [Google Scholar] [CrossRef]
- Rees-Georgea, J.; Vannesteb, J.L.; Cornishb, D.A.; Pushparajaha, I.P.S.; Yub, J.; Templetona, M.D.; Everett, K.R. Detection of Pseudomonas syringae pv. actinidiae Using Polymerase Chain Reaction (PCR) Primers Based on the 16S-23S rDNA Intertranscribed Spacer Region and Comparison with PCR Primers Based on Other Gene Regions. Plant Pathol. 2010, 59, 453–464. [Google Scholar] [CrossRef]
- Koh, Y.J.; Nou, I.S. DNA Markers for Identification of Pseudomonas syringae pv. actinidiae. Mol. Cells 2001, 13, 309–314. [Google Scholar] [PubMed]
- Miao, M.; Niu, X.; Kud, J.; Du, X.; Avila, J.; Devarenne, T.P.; Kuhl, J.C.; Liu, Y.; Xiao, F. The Ubiquitin Ligase Seven In Absentia (SINA) Ubiquitinates a Defense-Related NAC Transcription Factor and Is Involved in Defense Signaling. New Phytol. 2016, 211, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Ishiga, T.; Sakata, N.; Nguyen, V.T.; Ishiga, Y. Flood Inoculation of Seedlings on Culture Medium to Study Interactions Between Pseudomonas syringae pv. actinidiae and Kiwifruit. J. Gen. Plant. Pathol. 2020, 86, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Moss, S.M.A.; Zeng, L.; Espley, R.V.; Wang, T.; Kui, L.; Fu, B.; Schwinn, K.E.; Allan, A.C.; Yin, X. The Red Flesh of Kiwifruit Is Differentially Controlled by Specific Activation Repression. New Phytol. 2022, 235, 630–645. [Google Scholar] [CrossRef]
- Tang, X.; Xiao, Y.; Zhou, J. Regulation of the Type III Secretion System in Phytopathogenic Bacteria. Mol. Plant.-Microbe Interact. 2006, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic, M.; James, E.H.; Burrows, P.C.; Rego, F.G.M.; Buck, M.; Schumacher, J. Regulation of the Co-Evolved HrpR and HrpS AAA+ Proteins Required for Pseudomonas syringae Pathogenicity. Nat. Commun. 2011, 2, 177. [Google Scholar] [CrossRef]
- Colombi, E.; Straub, C.; Künzel, S.; Templeton, M.D.; McCann, H.C.; Rainey, P.B. Evolution of Copper Resistance in the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae through Acquisition of Integrative Conjugative Elements and Plasmids. Environ. Microbiol. 2017, 19, 819–832. [Google Scholar] [CrossRef]
- Li, L.; Pan, H.; Deng, L.; Feng, D.D.; Zhong, C.H. First Report of Bacterial Leaf Spot Disease of Broussonetia papyrifera Caused by Pseudomonas syringae pv. actinidiae in China. Plant Dis. 2021, 105, 696. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, Q.; Zhi, T.; Fan, R.; Xie, T.; Zhao, Z.; Long, Y.; Li, Z. Genetic Causes of Non-Pathogenic Pseudomonas syringae pv. actinidiae Isolates in Kiwifruit Orchards. Front. Microbiol. 2021, 12, 650099. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Y.; Li, L.; Li, D.; Zhang, Q.; Guo, Y.; Wang, S.; Zhong, C.; Huang, H. Whole Transcriptome Sequencing of Pseudomonas syringae pv. actinidiae-Infected Kiwifruit Plants Reveals Species-Specific Interaction Between Long Non-Coding RNA and Coding Genes. Sci. Rep. 2017, 7, 4910. [Google Scholar] [CrossRef] [Green Version]
- Wurms, K.V.; Hardaker, A.J.; Chee, A.A.; Bowen, J.; Phipps, J.; Taylor, J.; Jensen, D.; Cooney, J.; Wohlers, M.; Reglinski, T. Phytohormone and Putative Defense Gene Expression Differentiates the Response of ‘Hayward’ Kiwifruit to Psa and Pfm Infections. Front. Plant Sci. 2017, 8, 1366. [Google Scholar] [CrossRef] [PubMed]
- Michelotti, V.; Lamontanara, A.; Buriani, G.; Orrù, L.; Cellini, A.; Donati, I.; Vanneste, J.L.; Cattivelli, L.; Tacconi, G.; Spinelli, F. Comparative Transcriptome Analysis of the Interaction between Actinidia chinensis var. chinensis and Pseudomonas syringae pv. actinidiae in Absence and Presence of Acibenzolar-S-Methyl. BMC Genomics 2018, 19, 585. [Google Scholar] [CrossRef]
- Song, Y.; Sun, L.; Lin, M.; Chen, J.; Qi, X.; Hu, C.; Fang, J. Comparative Transcriptome Analysis of Resistant and Susceptible Kiwifruits in Response to Pseudomonas syringae pv. actinidiae During Early Infection. PLoS ONE 2019, 14, e0211913. [Google Scholar] [CrossRef]
- Cellini, A.; Fiorentini, L.; Buriani, G.; Yu, J.; Donati, I.; Cornish, D.A.; Novak, B.; Costa, G.; Vanneste, J.L.; Spinelli, F. Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidae. Ann. Appl. Biol. 2014, 165, 441–453. [Google Scholar] [CrossRef]
- Yang, T.; Poovaiah, B.W. Calcium/Calmodulin-Mediated Signal Network in Plants. Trends Plant Sci. 2003, 8, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Sun, X.; Yue, J.; Tang, X.; Jiao, C.; Yang, Y.; Niu, X.; Miao, M.; Zhang, D.; Huang, S.; et al. Chromosome-Scale Genome Assembly of Kiwifruit Actinidia eriantha with Single-Molecule Sequencing and Chromatin Interaction Mapping. Gigascience 2019, 8, giz027. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fang, J.; Zhang, M.; Qi, X.; Lin, M.; Chen, J. Molecular Cloning and Functional Analysis of the NPR1 Homolog in Kiwifruit (Actinidia eriantha). Front. Plant Sci. 2020, 11, 551201. [Google Scholar] [CrossRef] [PubMed]
- Kachroo, A.; Venugopal, S.C.; Lapchyk, L.; Falcone, D.; Hildebrand, D.; Kachroo, P. Oleic Acid Levels Regulated by Glycerolipid Metabolism Modulate Defense Gene Expression in Arabidopsis. Proc. Natl. Acad. Sci. USA 2004, 101, 5152–5157. [Google Scholar] [CrossRef]
- Ray, S.K.; Macoy, D.M.; Kim, W.; Lee, S.Y.; Kim, M.G. Role of RIN4 in Regulating PAMP-Triggered Immunity and Effector-Triggered Immunity: Current Status and Future Perspectives. Mol. Cells 2019, 42, 503–511. [Google Scholar] [CrossRef]
- Akira, T.; Casais, C.; Ichimura, K.; Shirasu, K. HSP90 Interacts with RAR1 and SGT1 and Is Essential for RPS2-Mediated Disease Resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 11777–11782. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Lapin, D.; Feehan, J.M.; Stolze, S.C.; Kramer, K.; Dongus, J.A.; Rzemieniewski, J.; Blanvillain-Baufumé, S.; Harzen, A.; Bautor, J.; et al. Pathogen Effector Recognition-Dependent Association of NRG1 with EDS1 and SAG101 in TNL Receptor Immunity. Nat. Commun. 2021, 12, 3335. [Google Scholar] [CrossRef] [PubMed]
ScDjyH (2016) | AhHfH (2017) | ScBcH (2017) | ScGyH1 (2017) | ScGyH2 (2017) | ScMcH (2017) | ScPzH (2017) | ScYaH (2018) | ScYbH (2018) | HbEsH (2019) | |
---|---|---|---|---|---|---|---|---|---|---|
Genome size (bp) | 6,219,076 | 6,206,124 | 6,063,125 | 6,156,719 | 6,145,566 | 6,157,061 | 6,078,771 | 6,170,143 | 6,264,163 | 6,255,125 |
CDS | 5706 | 6035 | 5731 | 5676 | 5617 | 5679 | 5575 | 5728 | 6107 | 5607 |
Carbohydrate-active enzyme | 127 | 127 | 127 | 126 | 125 | 126 | 125 | 126 | 128 | 129 |
Secondary metabolism cluster | 8 | 7 | 7 | 7 | 8 | 7 | 8 | 8 | 7 | 7 |
Transporter | 1039 | 1052 | 1044 | 1045 | 1039 | 1042 | 1036 | 1026 | 1047 | 1039 |
Drug-resistance | 361 | 366 | 368 | 367 | 363 | 364 | 361 | 363 | 368 | 364 |
CRISPR-Cas | 6 | 10 | 11 | 20 | 39 | 9 | 15 | 13 | 25 | 23 |
Virulence factor | 684 | 693 | 684 | 694 | 691 | 693 | 684 | 682 | 694 | 692 |
Pathogen-host interaction | 964 | 967 | 960 | 964 | 957 | 964 | 955 | 961 | 970 | 958 |
Secretory system | 77 | 77 | 77 | 77 | 76 | 76 | 72 | 75 | 77 | 74 |
Secretory protein | 361 | 369 | 348 | 375 | 324 | 376 | 348 | 345 | 354 | 308 |
Genomic island | 2 | 9 | 10 | 5 | 6 | 4 | 1 | 6 | 7 | 5 |
Prophage | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
Pathway | Local ‘Mock’ vs. Local ‘ScPzH’ | Local ‘Mock’ vs. Local ‘ScGyH2′ |
---|---|---|
Ca2+ signaling pathway | ||
CNGC (cyclic nucleotide-gated ion channel) | Achn162021, Achn176821, Achn293571, Achn165181, Achn289381 | |
calcium-transporting ATPase | Achn012851, Achn373261, Achn370491, Achn275611, Achn030411 | Achn012851, Achn373261, Achn370491, Achn275611, Achn030431, Achn378021, Achn378031 |
CaM/CML (calmodulin/calmodulin-like protein) | Achn059531, Achn089421, Achn014601, Achn089411, Achn328561, Achn136351, Achn235431, Achn030401, Achn039201, Achn067991 | Achn059531, Achn089421, Achn014601, Achn089411, Achn328561, Achn136351, Achn235431, Achn030401, Achn039201, Achn328551, Achn039181, Achn235441, Achn237651, Achn327821, Achn328551 |
CDPK (calcium-dependent protein kinase) | Achn382671, Achn255871, Achn022761, Achn058261, Achn045801 | Achn382671, Achn255871, Achn022761, Achn058261, Achn069421, Achn341081, Achn386651 |
RBOH (respiratory burst oxidase homolog) | Achn017281, Achn108551 | Achn017281, Achn213151, Achn052291, Achn167921 |
WRKY22/33/29 | Achn275661, Achn287861, Achn175001 | Achn275661, Achn287861, Achn175001, Achn278571, Achn132821 |
fatty acid elongation | ||
3-ketoacyl-CoA synthase | Achn291611, Achn159771, Achn374091, Achn311381, Achn331621 | Achn291611, Achn159771, Achn374091, Achn311381, Achn331621, Achn221911, Achn054161, Achn030011, Achn387451, Achn322471, Achn007461, Achn232681, Achn060641, Achn091941, Achn168451, Achn172321, Achn104701, Achn330241 |
very-long-chain 3-oxoacyl-CoA reductase | Achn350941 | |
cutin, suberine, and wax biosynthesis | ||
P450-dependent fatty acid omega-hydroxylase | Achn018501, Achn017821, Achn018511 | Achn018501, Achn017821, Achn018511, Achn380671, Achn119641, Achn098691, Achn336411, Achn195921 |
fatty acyl-CoA reductase | Achn185231 | |
omega-hydroxypalmitate O-feruloyl transferase | Achn016941, Achn348111 | |
alcohol-forming fatty acyl-CoA reductase | Achn005071, Achn305621 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Huang, S.; Tang, W.; Wu, Z.; Sun, S.; Qiu, Y.; Wang, H.; Chen, X.; Tang, X.; Xiao, F.; et al. Genomic Variation and Host Interaction among Pseudomonas syringae pv. actinidiae Strains in Actinidia chinensis ‘Hongyang’. Int. J. Mol. Sci. 2022, 23, 9743. https://doi.org/10.3390/ijms23179743
Zhou Y, Huang S, Tang W, Wu Z, Sun S, Qiu Y, Wang H, Chen X, Tang X, Xiao F, et al. Genomic Variation and Host Interaction among Pseudomonas syringae pv. actinidiae Strains in Actinidia chinensis ‘Hongyang’. International Journal of Molecular Sciences. 2022; 23(17):9743. https://doi.org/10.3390/ijms23179743
Chicago/Turabian StyleZhou, Yu, Shengxiong Huang, Wei Tang, Zhongqiu Wu, Siqi Sun, Yaqiong Qiu, Hongtao Wang, Xue Chen, Xiaofeng Tang, Fangming Xiao, and et al. 2022. "Genomic Variation and Host Interaction among Pseudomonas syringae pv. actinidiae Strains in Actinidia chinensis ‘Hongyang’" International Journal of Molecular Sciences 23, no. 17: 9743. https://doi.org/10.3390/ijms23179743
APA StyleZhou, Y., Huang, S., Tang, W., Wu, Z., Sun, S., Qiu, Y., Wang, H., Chen, X., Tang, X., Xiao, F., Liu, Y., & Niu, X. (2022). Genomic Variation and Host Interaction among Pseudomonas syringae pv. actinidiae Strains in Actinidia chinensis ‘Hongyang’. International Journal of Molecular Sciences, 23(17), 9743. https://doi.org/10.3390/ijms23179743