Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis
Abstract
:1. Introduction
2. Results
2.1. Root Rot Severity and Growth Parameters
2.2. RNA-Seq Analysis and Sequence Alignment
2.3. Selection of Differentially Expressed Genes
2.4. Identification of Variants between the R and S Bulks
2.5. Functional Enrichment Analyses of Differentially Expressed Genes
2.6. Analysis of Differential Expressed Genes and SNPs in the Target Region
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Root Rot Assessment
4.3. Bulks Construction and RNA Extraction
4.4. RNA-Seq and Sequence Alignment
4.5. Identification of Variants between R and S Bulks
4.6. Disease-Related Gene Expression Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agriculture and Agri-Food Canada Canada: Outlook for Principal Field Crops, 2021-07-20. Available online: https://agriculture.canada.ca/en/canadas-agriculture-sectors/crops/reports-and-statistics-data-canadian-principal-field-crops/canada-outlook-principal-field-crops-2021-07-20 (accessed on 25 July 2022).
- Xue, A.G.; Tuey, H.J.; Mathur, S. Diseases of Field Pea in Manitoba in 1997. Can. Plant Dis. Surv. 1998, 78, 97–98. [Google Scholar]
- Fletcher, J.; Broadhurst, P.; Bansal, R.K. Fusarium avenaceum: A Pathogen of Lentil in New Zealand. N. Z. J. Crop Hortic. Sci. 1991, 19, 207–210. [Google Scholar] [CrossRef]
- Hwang, S.F.; Howard, R.J.; Chang, K.F.; Park, B.; Burnett, P.A. Etiology and Severity of Fusarium Root Rot of Lentil in Alberta. Can. J. Plant Pathol. Rev. Can. Phytopathol. 1994, 16, 295–303. [Google Scholar] [CrossRef]
- Bailey, K.L.; Gossen, B.D.; Gugel, R.K.; Morrall, R.A.A. Diseases of Field Crops in Canada, 3rd ed.; Canadian Phytopathological Society: Saskatoon, SK, Cananda, 2003. [Google Scholar]
- Chang, K.F.; Hwang, S.F.; Turnbull, G.D.; Howard, R.J.; Lopetinsky, K.; Olson, M.; Bing, D.J. Pea Diseases in Central Alberta in 2004. Can. Plant Dis. Surv. Inventaire Mal. Plantes Au Can. 2005, 85, 89–90. [Google Scholar]
- Chang, K.F.; Hwang, S.F.; Ahmed, H.U.; Gossen, B.D.; Turnbull, G.D.; Strelkov, S.E. Management Strategies to Reduce Losses Caused by Fusarium Seedling Blight of Field Pea. Can. J. Plant Sci. 2013, 93, 619–625. [Google Scholar] [CrossRef]
- Chang, K.F.; Conner, R.L.; Hwang, S.F.; Ahmed, H.U.; McLaren, D.L.; Gossen, B.D.; Turnbull, G.D. Effects of Seed Treatments and Inoculum Density of Fusarium avenaceum and Rhizoctonia solani on Seedling Blight and Root Rot of Faba Bean. Can. J. Plant Sci. 2014, 94, 693–700. [Google Scholar] [CrossRef]
- Chang, K.F.; Hwang, S.F.; Ahmed, H.U.; Fu, H.; Zhou, Q.; Strelkov, S.E.; Turnbull, G.D. First Report of Phytophthora sansomeana Causing Root Rot in Field Pea in Alberta, Canada. Crop Prot. 2017, 101, 1–4. [Google Scholar] [CrossRef]
- Inoue-Yokosawa, N.; Ishikawa, C.; Kaziro, Y. The Role of Guanosine Triphosphate in Translocation Reaction Catalyzed by Elongation Factor G. J. Biol. Chem. 1974, 249, 4321–4323. [Google Scholar] [CrossRef]
- Wicker, E.; Rouxel, F. Specific Behaviour of French Aphanomyces euteiches Drechs. Populations For Virulence and Aggressiveness on Pea, Related to Isolates from Europe, America and New Zealand. Eur. J. Plant Pathol. 2001, 107, 919–929. [Google Scholar] [CrossRef]
- Banniza, S.; Bhadauria, V.; Peluola, C.; Armstrong-Cho, C.; Morrall, R.A.A. First Report of Aphanomyces euteiches in Saskatchewan. Can. Plant Dis. Surv. 2013, 93, 163. [Google Scholar]
- Chatterton, S.; Bowness, R.; Harding, M.W. First Report of Root Rot of Field Pea Caused by Aphanomyces euteiches in Alberta, Canada. Plant Dis. 2015, 99, 288. [Google Scholar] [CrossRef] [PubMed]
- Malvick, D.K.; Percich, J.A. Genotypic and Pathogenic Diversity Among Pea-Infecting Strains of Aphanomyces euteiches from the Central and Western United States. Phytopathology 1998, 88, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Grünwald, N.J.; Hoheisel, G.-A. Hierarchical Analysis of Diversity, Selfing, and Genetic Differentiation in Populations of the Oomycete Aphanomyces Euteiches. Phytopathology 2006, 96, 1134–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quillévéré-Hamard, A.; Le Roy, G.; Moussart, A.; Baranger, A.; Andrivon, D.; Pilet-Nayel, M.-L.; Le May, C. Genetic and Pathogenicity Diversity of Aphanomyces euteiches Populations From Pea-Growing Regions in France. Front. Plant Sci. 2018, 9, 1673. [Google Scholar] [CrossRef] [PubMed]
- Beute, M.K.; Lockwood, J.L. Pathogenic variability in Aphanomyces euteiches. Phytopathology 1967, 57, 57–60. [Google Scholar]
- Sundheim, L.; Wiggen, K. Aphanomyces euteiches on Peas in Norway. Isolation Technique, Physiological Races, and Soil Indexing. Aphanomyces Euteiches Peas Nor. Isol. Tech. Physiol. Races Soil Index. 1972, 51, 17. [Google Scholar]
- Manning, M.A.; Menzies, S.A. Pathogenic Variability in Isolates of Aphanomyces euteiches from New Zealand Soils. N. Z. J. Agric. Res. 1984, 27, 569–574. [Google Scholar] [CrossRef]
- Malvick, D.K. Evaluation of Methods for Estimating Inoculum Potential of Aphanomyces Euteiches in Soil. Plant Dis. 1994, 78, 361. [Google Scholar] [CrossRef]
- Pilet-Nayel, M.; Muehlbauer, F.; McGee, R.; Kraft, J.; Baranger, A.; Coyne, C. Quantitative Trait Loci for Partial Resistance to Aphanomyces Root Rot in Pea. Theor. Appl. Genet. 2002, 106, 28–39. [Google Scholar] [CrossRef]
- Conner, R.L.; Chang, K.F.; Hwang, S.F.; Warkentin, T.D.; McRae, K.B. Assessment of Tolerance for Reducing Yield Losses in Field Pea Caused by Aphanomyces Root Rot. Can. J. Plant Sci. 2013, 93, 473–482. [Google Scholar] [CrossRef]
- Wu, L.; Chang, K.-F.; Hwang, S.-F.; Conner, R.; Fredua-Agyeman, R.; Feindel, D.; Strelkov, S.E. Evaluation of Host Resistance and Fungicide Application as Tools for the Management of Root Rot of Field Pea Caused by Aphanomyces euteiches. Crop J. 2019, 7, 38–48. [Google Scholar] [CrossRef]
- Shehata, M.; Davis, D.W.; Pfleger, F.L. Breeding for Resistance to Aphanomyces euteiches Root Rot and Rhizoctonia Solani Stem Rot in Peas. J. Am. Soc. Hortic. Sci. 1983, 108, 1080–1085. [Google Scholar] [CrossRef]
- Wu, L.; Fredua-Agyeman, R.; Hwang, S.-F.; Chang, K.-F.; Conner, R.L.; McLaren, D.L.; Strelkov, S.E. Mapping QTL Associated with Partial Resistance to Aphanomyces Root Rot in Pea (Pisum Sativum L.) Using a 13.2 K SNP Array and SSR Markers. Theor. Appl. Genet. 2021, 134, 2965–2990. [Google Scholar] [CrossRef] [PubMed]
- Pilet-Nayel, M.L.; Muehlbauer, F.J.; McGee, R.J.; Kraft, J.M.; Baranger, A.; Coyne, C.J. Consistent Quantitative Trait Loci in Pea for Partial Resistance to Aphanomyces euteiches Isolates from the United States and France. Phytopathology 2005, 95, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Hamon, C.; Baranger, A.; Coyne, C.J.; McGee, R.J.; Le Goff, I.; L’anthoëne, V.; Esnault, R.; Rivière, J.-P.; Klein, A.; Mangin, P.; et al. New Consistent QTL in Pea Associated with Partial Resistance to Aphanomyces euteiches in Multiple French and American Environments. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2011, 123, 261–281. [Google Scholar] [CrossRef]
- Hamon, C.; Coyne, C.J.; McGee, R.J.; Lesné, A.; Esnault, R.; Mangin, P.; Hervé, M.; Le Goff, I.; Deniot, G.; Roux-Duparque, M.; et al. QTL Meta-Analysis Provides a Comprehensive View of Loci Controlling Partial Resistance to Aphanomyces euteiches in Four Sources of Resistance in Pea. BMC Plant Biol. 2013, 13, 45. [Google Scholar] [CrossRef]
- Lavaud, C.; Lesné, A.; Piriou, C.; Le Roy, G.; Boutet, G.; Moussart, A.; Poncet, C.; Delourme, R.; Baranger, A.; Pilet-Nayel, M.-L. Validation of QTL for Resistance to Aphanomyces euteiches in Different Pea Genetic Backgrounds Using Near-Isogenic Lines. Theor. Appl. Genet. 2015, 128, 2273–2288. [Google Scholar] [CrossRef]
- Desgroux, A.; L’Anthoëne, V.; Roux-Duparque, M.; Rivière, J.-P.; Aubert, G.; Tayeh, N.; Moussart, A.; Mangin, P.; Vetel, P.; Piriou, C.; et al. Genome-Wide Association Mapping of Partial Resistance to Aphanomyces euteiches in Pea. BMC Genom. 2016, 17, 124. [Google Scholar] [CrossRef]
- Bolger, M.E.; Weisshaar, B.; Scholz, U.; Stein, N.; Usadel, B.; Mayer, K.F. Plant Genome Sequencing—Applications for Crop Improvement. Curr. Opin. Biotechnol. 2014, 26, 31–37. [Google Scholar] [CrossRef]
- Shaffer, C. Next-Generation Sequencing Outpaces Expectations. Nat. Biotechnol. 2007, 25, 149. [Google Scholar] [CrossRef]
- Shendure, J.; Ji, H. Next-Generation DNA Sequencing. Nat. Biotechnol. 2008, 26, 1135–1145. [Google Scholar] [CrossRef] [PubMed]
- Kahvejian, A.; Quackenbush, J.; Thompson, J.F. What Would You Do If You Could Sequence Everything? Nat. Biotechnol. 2008, 26, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Ansorge, W.J. Next-Generation DNA Sequencing Techniques. New Biotechnol. 2009, 25, 195–203. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Satya, P. Next Generation Sequencing Technologies for next Generation Plant Breeding. Front. Plant Sci. 2014, 5, 367. [Google Scholar]
- Sekhon, R.S.; Briskine, R.; Hirsch, C.N.; Myers, C.L.; Springer, N.M.; Buell, C.R.; de Leon, N.; Kaeppler, S.M. Maize Gene Atlas Developed by RNA Sequencing and Comparative Evaluation of Transcriptomes Based on RNA Sequencing and Microarrays. PLoS ONE 2013, 8, e61005, Correction: PLoS ONE 2014, 9, e61005. [Google Scholar] [CrossRef] [Green Version]
- Iquebal, M.A.; Sharma, P.; Jasrotia, R.S.; Jaiswal, S.; Kaur, A.; Saroha, M.; Angadi, U.B.; Sheoran, S.; Singh, R.; Singh, G.P.; et al. RNAseq Analysis Reveals Drought-Responsive Molecular Pathways with Candidate Genes and Putative Molecular Markers in Root Tissue of Wheat. Sci. Rep. 2019, 9, 13917. [Google Scholar] [CrossRef]
- Chu, C.; Wang, S.; Paetzold, L.; Wang, Z.; Hui, K.; Rudd, J.C.; Xue, Q.; Ibrahim, A.M.H.; Metz, R.; Johnson, C.D.; et al. RNA-Seq Analysis Reveals Different Drought Tolerance Mechanisms in Two Broadly Adapted Wheat Cultivars ‘TAM 111′ and ‘TAM 112’. Sci. Rep. 2021, 11, 4301. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Wu, L.; Zhang, L.; Liu, G.; Xia, C.; Liu, X.; Kong, X. Transcriptome Profiling of Developing Leaf and Shoot Apices to Reveal the Molecular Mechanism and Co-Expression Genes Responsible for the Wheat Heading Date. BMC Genom. 2021, 22, 468. [Google Scholar] [CrossRef]
- Yang, S.S.; Tu, Z.J.; Cheung, F.; Xu, W.W.; Lamb, J.F.; Jung, H.-J.G.; Vance, C.P.; Gronwald, J.W. Using RNA-Seq for Gene Identification, Polymorphism Detection and Transcript Profiling in Two Alfalfa Genotypes with Divergent Cell Wall Composition in Stems. BMC Genom. 2011, 12, 199. [Google Scholar] [CrossRef]
- Postnikova, O.A.; Shao, J.; Nemchinov, L.G. Analysis of the Alfalfa Root Transcriptome in Response to Salinity Stress. Plant Cell Physiol. 2013, 54, 1041–1055. [Google Scholar] [CrossRef]
- Severin, A.J.; Woody, J.L.; Bolon, Y.-T.; Joseph, B.; Diers, B.W.; Farmer, A.D.; Muehlbauer, G.J.; Nelson, R.T.; Grant, D.; Specht, J.E.; et al. RNA-Seq Atlas of Glycine Max: A Guide to the Soybean Transcriptome. BMC Plant Biol. 2010, 10, 160. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, G.; Xu, S.; Mao, W.; Hu, Q.; Gong, Y. Comparative Transcriptomic Analyses of Vegetable and Grain Pea (Pisum Sativum L.) Seed Development. Front. Plant Sci. 2015, 6, 1039. [Google Scholar] [CrossRef] [PubMed]
- Sudheesh, S.; Sawbridge, T.I.; Cogan, N.O.; Kennedy, P.; Forster, J.W.; Kaur, S. De Novo Assembly and Characterisation of the Field Pea Transcriptome Using RNA-Seq. BMC Genom. 2015, 16, 611. [Google Scholar] [CrossRef]
- Alves-Carvalho, S.; Aubert, G.; Carrère, S.; Cruaud, C.; Brochot, A.-L.; Jacquin, F.; Klein, A.; Martin, C.; Boucherot, K.; Kreplak, J.; et al. Full-Length de Novo Assembly of RNA-Seq Data in Pea (Pisum Sativum L.) Provides a Gene Expression Atlas and Gives Insights into Root Nodulation in This Species. Plant J. 2015, 84, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Afonin, A.M.; Leppyanen, I.V.; Kulaeva, O.A.; Shtark, O.Y.; Tikhonovich, I.A.; Dolgikh, E.A.; Zhukov, V.A. A High Coverage Reference Transcriptome Assembly of Pea (Pisum Sativum L.) Mycorrhizal Roots. Vavilov J. Genet. Breed. 2020, 24, 331–339. [Google Scholar] [CrossRef]
- Wu, P.; Xie, J.; Hu, J.; Qiu, D.; Liu, Z.; Li, J.; Li, M.; Zhang, H.; Yang, L.; Liu, H.; et al. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat. Front. Plant Sci. 2018, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yeh, C.-T.; Tang, H.M.; Nettleton, D.; Schnable, P.S. Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq). PLoS ONE 2012, 7, e36406. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, X.; Huang, Z.; Chu, M.; Song, T.; Falk, K.C.; Deora, A.; Chen, Q.; Zhang, Y.; McGregor, L.; et al. Identification of Genome-Wide Variants and Discovery of Variants Associated with Brassica rapa Clubroot Resistance Gene Rcr1 through Bulked Segregant RNA Sequencing. PLoS ONE 2016, 11, e0153218. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Wu, P.; Li, Y.; Qiu, D.; Qu, Y.; Xie, J.; Zhang, H.; Yang, L.; Fu, T.; et al. Development of SNP, KASP, and SSR Markers by BSR-Seq Technology for Saturation of Genetic Linkage Map and Efficient Detection of Wheat Powdery Mildew Resistance Gene Pm61. Int. J. Mol. Sci. 2019, 20, 750. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000. [Google Scholar] [CrossRef] [PubMed]
- Naithani, S.; Preece, J.; D’Eustachio, P.; Gupta, P.; Amarasinghe, V.; Dharmawardhana, P.D.; Wu, G.; Fabregat, A.; Elser, J.L.; Weiser, J.; et al. Plant Reactome: A Resource for Plant Pathways and Comparative Analysis. Nucleic Acids Res. 2017, 45, D1029–D1039. [Google Scholar] [CrossRef] [PubMed]
- Caspi, R.; Altman, T.; Billington, R.; Dreher, K.; Foerster, H.; Fulcher, C.; Holland, T.A.; Keseler, I.; Kothari, A.; Kubo, A.; et al. The MetaCyc Database of Metabolic Pathways and Enzymes and the BioCyc Collection of Pathway/Genome Databases. Nucleic Acids Res. 2014, 42, D459–D471. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Lindsey, M.L.; Jin, Y.-F. Systems Analysis of Gene Ontology and Biological Pathways Involved in Post-Myocardial Infarction Responses. BMC Genom. 2015, 16, S18. [Google Scholar] [CrossRef]
- Zipfel, C. Early Molecular Events in PAMP-Triggered Immunity. Curr. Opin. Plant Biol. 2009, 12, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Okubara, P.A.; Paulitz, T.C. Root Defense Responses to Fungal Pathogens: A Molecular Perspective. In Root Physiology: From Gene to Function; Lambers, H., Colmer, T.D., Eds.; Plant Ecophysiology; Springer: Dordrecht, The Netherlands, 2005; Volume 4, pp. 215–226. ISBN 978-1-4020-4098-6. [Google Scholar]
- Hosseini, S.; Elfstrand, M.; Heyman, F.; Funck Jensen, D.; Karlsson, M. Deciphering Common and Specific Transcriptional Immune Responses in Pea towards the Oomycete Pathogens Aphanomyces euteiches and Phytophthora pisi. BMC Genom. 2015, 16, 627. [Google Scholar] [CrossRef]
- Jewell, J.B.; Sowders, J.M.; He, R.; Willis, M.A.; Gang, D.R.; Tanaka, K. Extracellular ATP Shapes a Defense-Related Transcriptome Both Independently and along with Other Defense Signaling Pathways. Plant Physiol. 2019, 179, 1144–1158. [Google Scholar] [CrossRef]
- Robert-Seilaniantz, A.; Navarro, L.; Bari, R.; Jones, J.D.G. Pathological Hormone Imbalances. Curr. Opin. Plant Biol. 2007, 10, 372–379. [Google Scholar] [CrossRef]
- Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.-A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A Reference Genome for Pea Provides Insight into Legume Genome Evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Malovichko, Y.V.; Shtark, O.Y.; Vasileva, E.N.; Nizhnikov, A.A.; Antonets, K.S. Transcriptomic Insights into Mechanisms of Early Seed Maturation in the Garden Pea (Pisum sativum L.). Cells 2020, 9, 779. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fredua-Agyeman, R.; Strelkov, S.E.; Chang, K.-F.; Hwang, S.-F. Identification of Quantitative Trait Loci Associated with Partial Resistance to Fusarium Root Rot and Wilt Caused by Fusarium graminearum in Field Pea. Front. Plant Sci. 2022, 12, 784593. [Google Scholar] [CrossRef]
- Tayeh, N.; Aluome, C.; Falque, M.; Jacquin, F.; Klein, A.; Chauveau, A.; Bérard, A.; Houtin, H.; Rond, C.; Kreplak, J.; et al. Development of Two Major Resources for Pea Genomics: The GenoPea 13.2K SNP Array and a High-Density, High-Resolution Consensus Genetic Map. Plant J. 2015, 84, 1257–1273. [Google Scholar] [CrossRef]
- Kumar, R.R.; Goswami, S.; Sharma, S.K.; Kala, Y.K.; Rai, G.K.; Mishra, D.C.; Grover, M.; Singh, G.P.; Pathak, H.; Rai, A.; et al. Harnessing Next Generation Sequencing in Climate Change: RNA-Seq Analysis of Heat Stress-Responsive Genes in Wheat (Triticum Aestivum L.). OMICS J. Integr. Biol. 2015, 19, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential Gene and Transcript Expression Analysis of RNA-Seq Experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Frederickson Matika, D.E.; Loake, G.J. Redox Regulation in Plant Immune Function. Antioxid. Redox Signal. 2014, 21, 1373–1388. [Google Scholar] [CrossRef]
- Das, P.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. Oxidative Environment and Redox Homeostasis in Plants: Dissecting out Significant Contribution of Major Cellular Organelles. Front. Environ. Sci. 2015, 2, 70. [Google Scholar] [CrossRef]
- Bleau, J.R.; Spoel, S. Selective Redox Signaling Shapes Plant–Pathogen Interactions. Plant Physiol. 2021, 186, 53–65. [Google Scholar] [CrossRef]
- Okada, K.; Abe, H.; Arimura, G. Jasmonates Induce Both Defense Responses and Communication in Monocotyledonous and Dicotyledonous Plants. Plant Cell Physiol. 2015, 56, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Ruan, J.; Zhou, Y.; Zhou, M.; Yan, J.; Khurshid, M.; Weng, W.; Cheng, J.; Zhang, K. Jasmonic Acid Signaling Pathway in Plants. Int. J. Mol. Sci. 2019, 20, 2479. [Google Scholar] [CrossRef] [PubMed]
- Gunawardana, D.; Likic, V.A.; Gayler, K.R. A Comprehensive Bioinformatics Analysis of the Nudix Superfamily in Arabidopsis thaliana. Comp. Funct. Genom. 2009, 2009, 820381. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, O.; Huard, C.; Lorrain, S.; Roby, D.; Balagué, C. Ethylene Is One of the Key Elements for Cell Death and Defense Response Control in the Arabidopsis Lesion Mimic Mutant Vad1. Plant Physiol. 2007, 145, 465–477. [Google Scholar] [CrossRef]
- Asins, M.; Bernet, G.; Villalta, I.; Carbonell, E. QTL Analysis in Plant Breeding. In Molecular Techniques in Crop Improvement, 2nd ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 3–21. ISBN 978-90-481-2966-9. [Google Scholar]
- Pilet-Nayel, M.-L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.-C.; Fournet, S.; Durel, C.-E.; Delourme, R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Front. Plant Sci. 2017, 8, 1838. [Google Scholar] [CrossRef]
- Derakhshani, B.; Jafary, H.; Zanjani, B.M.; Hasanpur, K.; Mishina, K.; Tanaka, T.; Kawahara, Y.; Oono, Y. Combined QTL Mapping and RNA-Seq Profiling Reveals Candidate Genes Associated with Cadmium Tolerance in Barley. PLoS ONE 2020, 15, e0230820. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, M.; Ma, X.; Chen, W.; Zhao, J.; Sun, C.; Tan, L.; Liu, F. Integrated RNA Sequencing and QTL Mapping to Identify Candidate Genes from Oryza rufipogon Associated with Salt Tolerance at the Seedling Stage. Front. Plant Sci. 2017, 8, 1427. [Google Scholar] [CrossRef]
- Quillévéré-Hamard, A.; Le Roy, G.; Lesné, A.; Le May, C.; Pilet-Nayel, M.-L. Aggressiveness of Diverse French Aphanomyces euteiches Isolates on Pea Near Isogenic Lines Differing in Resistance Quantitative Trait Loci. Phytopathology 2021, 111, 695–702. [Google Scholar] [CrossRef]
- Wu, L.; Chang, K.-F.; Conner, R.L.; Strelkov, S.; Fredua-Agyeman, R.; Hwang, S.-F.; Feindel, D. Aphanomyces euteiches: A Threat to Canadian Field Pea Production. Engineering 2018, 4, 542–551. [Google Scholar] [CrossRef]
- Zhou, Q.; Galindo-González, L.; Hwang, S.-F.; Stephen, E. Strelkov Application of Genomics and Transcriptomics to Accelerate Development of Clubroot Resistant Canola. Can. J. Plant Pathol. 2021, 43, 189–208. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A High-Performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinforma. Oxf. Engl. 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E. Pegas: An R Package for Population Genetics with an Integrated-Modular Approach. Bioinforma. Oxf. Engl. 2010, 26, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Lang, D. RCurl: General Network (HTTP/FTP/...) (since 20 June 2014). Client Interface for R. 2022. Available online: https://CRAN.R-project.org/package=RCurl (accessed on 26 July 2022).
- Henry, L.; Wickham, H. Purrr: Functional Programming Tools. Available online: https://purrr.tidyverse.org/authors.html (accessed on 26 July 2022).
- Obenchain, V.; Lawrence, M.; Carey, V.; Gogarten, S.; Shannon, P.; Morgan, M. VariantAnnotation: A Bioconductor Package for Exploration and Annotation of Genetic Variants. Bioinformatics 2014, 30, 2076–2078. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J. Software for Computing and Annotating Genomic Ranges. PLoS Comput. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The R Package Rsubread Is Easier, Faster, Cheaper and Better for Alignment and Quantification of RNA Sequencing Reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. The Split-Apply-Combine Strategy for Data Analysis. J. Stat. Softw. 2011, 40, 1–29. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, H.; Tang, Z.; Xu, J.; Yin, D.; Zhang, Z.; Yuan, X.; Zhu, M.; Zhao, S.; Li, X.; et al. RMVP: A Memory-Efficient, Visualization-Enhanced, and Parallel-Accelerated Tool for Genome-Wide Association Study. Genom. Proteom. Bioinform. 2021, 19, 619–628. [Google Scholar] [CrossRef]
Source of Variance | df | Mean Square | |||
---|---|---|---|---|---|
DS | Vigor | Height | DFWT | ||
Genotype (G) | 134 | 95.1 *** | 19.1 *** | 1303.2 *** | 0.069 *** |
Repeat | 2 | 1298.7 *** | 192.8 *** | 5701.6 *** | 0.562 *** |
G*Repeat | 266 | 22.4 *** | 4.2 *** | 122.1 *** | 0.018 *** |
Residuals | 3484 | 5.3 | 1.0 | 41.2 | 0.006 |
Heritability | 0.77 | 0.74 | 0.85 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Fredua-Agyeman, R.; Strelkov, S.E.; Chang, K.-F.; Hwang, S.-F. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. Int. J. Mol. Sci. 2022, 23, 9744. https://doi.org/10.3390/ijms23179744
Wu L, Fredua-Agyeman R, Strelkov SE, Chang K-F, Hwang S-F. Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. International Journal of Molecular Sciences. 2022; 23(17):9744. https://doi.org/10.3390/ijms23179744
Chicago/Turabian StyleWu, Longfei, Rudolph Fredua-Agyeman, Stephen E. Strelkov, Kan-Fa Chang, and Sheau-Fang Hwang. 2022. "Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis" International Journal of Molecular Sciences 23, no. 17: 9744. https://doi.org/10.3390/ijms23179744
APA StyleWu, L., Fredua-Agyeman, R., Strelkov, S. E., Chang, K. -F., & Hwang, S. -F. (2022). Identification of Novel Genes Associated with Partial Resistance to Aphanomyces Root Rot in Field Pea by BSR-Seq Analysis. International Journal of Molecular Sciences, 23(17), 9744. https://doi.org/10.3390/ijms23179744